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ABSTRACT 

Progressive fibrosis of a tissue or organ in response to 
a damaging insult may result in loss of organ function 
if the acute response is excessive, or a chronic fibrotic 
response is initiated due to the persistence of the in- 
sult. In the author’s laboratory over the past several 
years, a number of preclinical models of fibrosis or 
fibrogenic responses have been characterized for the 
effectiveness of various treatment approaches to ei- 
ther prevent or impede fibrosis development and pro- 
gression to identify commonalities and translatable 
research directions that could provide insights into 
human diseases. These have mainly included either 
chemically induced pulmonary fibrosis models or 
overt physical injury models in rats, pigs and rabbits. 
Some preliminary studies in human populations have 
also been undertaken. The interventions evaluated 
have included fibrinolytic agents and drugs targeting 
specific cell populations. The results indicate that 
some approaches lend themselves to modifying fi- 
brotic reactions in some models and not others, while 
others may have a more generalized impact on fibro- 
genic responses due to interference with abnormal 
cell functions in the injury environment. 
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1. INTRODUCTION 

Fibrosis of a tissue or organ can result from a variety of 
insults that are either direct (e.g. overt physical injury or 

wounding; skin wound), or indirect as a consequence of 
a process unrelated to the target tissue (e.g. deposition of 
autoantibody complexes in the kidney, lung or liver). 
However, in some situations, there can be a genetic sus- 
ceptibility of the target tissue, such as the kidney to be 
susceptible to autoimmune insults [reviewed in 1-4]. 
Such events may be acute, and potentially resolve, or 
chronic leading to a progressive loss of function. The 
pattern of responses to such insults may be influenced by 
multiple variables such as genetics, previous insults 
(history), possibly sex and age, as well as co-morbidities. 
While the spectrum of inciting stimuli which can lead to 
fibrosis or a fibrotic process are quite diverse (chemicals, 
microorganisms, autoimmune processes, burns, physical 
disruptions, loss of function, etc.), the host has a limited 
set of “tools” to instigate a response to either repair the 
damage, control the extent of the damage, or try to re- 
generate the original tissue. 

Unfortunately, many of the response patterns do not 
lead to regeneration, but instead lead to fibrosis with 
concomitant loss of integrity. In patient populations, 
many times this loss is accompanied by overt symptoms, 
but in other conditions the loss is gradual or the out- 
comes are not obvious in the short term. Therefore, it is 
critical to develop approaches to interfere with the unto- 
ward process rather than block its initiation. In this re- 
view, some evidence to suggest that interventions associ- 
ated with the use of fibrinolytics +/− mast cell stabilizers 
should be considered to intervene in some disease proc- 
esses where current options are restricted. Such consid- 
erations rely on understanding of the processes underly- 
ing the conditions, but also the development of early 
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diagnostics and biomarkers for disease activity to assist 
in the decision making. 

2. FIBRINOLYTIC APPROACHES TO 
IMPACT FIBRIN DEPOSITION AND 
FIBROSIS 

2.1. Rat Bleomycin-Induced Pulmonary Fibrosis 
Model and Urokinase Effectiveness 

Instillation of the chemical bleomycin into the lungs of 
rats leads to a progressive fibrosis that is dose dependent 
[5; reviewed in 6]. It also occurs in some strains of mice 
and not others, as well as subsets of patients receiving 
the drug for cancers, presumably due to the genetic 
presence or absence of enzymes to metabolize the com- 
pound [reviewed in 7,8]. As the rat model is well charac- 
terized [reviewed in 9,10], and access to rat lungs better 
for a variety of stimuli, studies were performed with 
Sprague-Dawley male rats. As fibrosis in this model re- 
quires continual deposition of fibrin in reaction to the 
noxious stimulus, the intervention assessed was urokinase, 
a plasminogen activator normally found in the lung [re- 
viewed in 6]. The hypothesis was that instillation of 
urokinase to the affected lungs would result in degrada- 
tion of the deposited fibrin, thus interfering with the fi- 
brin deposition-fibroblast infiltration-collagen deposition 
triad contributing to overt and progressive fibrosis. Ex- 
cessive or chronic expression of procoagulant activity in 
the lung can lead to fibrin deposition and subsequent 
fibroblast infiltration and fibrosis [reviewed in 11,12]. 
Procoagulant activity (e.g. tissue factor, prothrombinases, 
etc.) can be involved in fibrinogen activation and fibrin 
deposition in a number of inflammatory conditions with 
various target organs [11-16]. 

Rats with bleomycin-induced pulmonary fibrosis tol- 
erated instillation of commercially available human uro- 
kinase and evaluation of the extent of collagen deposi- 
tion using histological assessment methods employing 
picrosirius red staining of sections of lung tissue and 
computer-assisted quantitation of collagen under polar- 
ized light conditions revealed reproducible induction of 
fibrosis and partial reversal using urokinase [5]. However, 
the urokinase was more effective early after induction 
with bleomycin than later when the early fibrin deposi- 
tion had become infiltrated with cells and collagen de- 
posited. Furthermore, the urokinase treatment did not 
disrupt further fibrosis progression so it was a temporary 
or “stop gap” treatment without long lasting impact. Thus, 
as a proof of principle, urokinase treatment may be effi- 
cacious in situations where there is an acute stimuli pro- 
voking the fibrosis, but likely it would not be clinically 
useful alone when used in isolation for more chronic fi- 
brosis situations such as idiopathic pulmonary fibrosis [6]. 

2.2. Rat Model of Cystic Fibrosis and Urokinase 
Effectiveness 

Building on the above discussed bleomycin model, we 
turned our attention to a rat model of cystic fibrosis (CF) 
using Pseudomonas bacteria in agar beads as the inciting 
agent [17] and once again evaluated the efficacy of 
urokinase treatment. In this model, a chronic infection 
arises after instillation of a bolus of bacteria into one 
lobe of the lung [17,18]. The conversion to a chronic 
infection that mimics human CF via the change in the 
bacteria from a planktonic form to a biofilm form mimics 
what occurs in the lungs of patients with CF. 

While the focus of the studies was on fibrinolytic- 
mediated destruction of the fibrosis associated with the 
chronic infection, an unexpected result was detected. 
That is, the urokinase was partially effective with regard 
to its impact on fibrosis [19], but apparently the enzyme 
can also interact with bacteria to alter their growth [20]. 
This activity of urokinase was found for a number of 
bacteria that can infect burn patients [21]. Thus, in this 
situation of fibrosis associated with bacterial infection, 
the fibrinolytic approach could be a “double-edged 
sword” yielding a complicated outcome. In this circum- 
stance, one would likely have to eradicate the microor- 
ganisms by another mechanism (e.g. specific antibiotics) 
prior to attempting to impact the remaining residual fi- 
brosis. 

2.3. Fibrinolytics in Patients with Fibrotic 
Conditions 

While a number of fibrotic diseases or conditions exist 
for a variety of target organs (e.g. lung, kidney, liver, 
skin, etc.), fibrinolytic approaches to affecting the fibro- 
sis have not been well studied. However, some insights 
have been gained from the study of patients with sclero- 
derma, a disease that leads to thickening and fibrotic 
responses in the skin [22,23]. The phenotype of the skin 
involvement can vary extensively [reviewed in 22], as 
well as disease progression, with some patients at risk for 
cardiovascular events, pulmonary hypertension and pul- 
monary fibrosis [reviewed in 24]. In many scleroderma 
patients, the condition is preceded by Raynaud’s phe- 
nomenon (likely related to an abnormal neuro regulation 
of vasoconstriction; 25; and others). Scleroderma is con- 
sidered an autoimmune disease with characteristic auto- 
antibodies present [25; and others]. 

The potential efficacy of fibrinolytic approaches to 
impact scleroderma initially arose due to some serendip-
ity, a patient with scleroderma of long duration and sig-
nificant progression suffered a myocardial event and was 
entered into a tissue plasminogen activator (tPA) trial 
using 100 mg of tPA. Almost immediately following 
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infusion of the tPA, the patient reported feeling warmth 
in her feet for the first time in years. Moreover, the pa- 
tient also exhibited a good response to the tPA in relation 
to the myocardial event with no further complications 
[26]. Circulation to the extremities improved for several 
years following the tPA infusion and the skin involve- 
ment appeared to stabilize, but the existing fibrosis did 
not resolve [26; and discussed in 27].  

The efficacy of the tPA in this patient did not address 
the skin fibrosis, but apparently did impact the dysregu- 
lated intravascular fibrin deposition for an extended pe- 
riod of time. Thus, in patients such as the case discussed, 
some of the progression of the disease is related to in- 
travascular dysregulation which complements the skin 
thickening. 

Subsequent to the above case report [26], a small clini- 
cal trial was implemented with a subset of scleroderma 
patients wirh a treatment regimen of 10 mg tPA (a dose 
restriction implemented by the providing company to 
minimize potential bleeding risk associated with higher 
doses). A cross-over trial format was used and the out- 
comes related to standard skin scores [27]. Most of the 
patients did not experience a significant response to this 
low dose regimen of tPA, but a subset of estrogen-defi- 
cient patients did appear to experience a positive re- 
sponse, however, the numbers involved were small. 

Subsequently, and sometimes in parallel to those early 
investigations, a number of studies have been reported 
which indicate that regulation of fibrinolysis in sclero- 
derma patients is either fairly normal [28] or abnormal 
[29-31], and that treatment of subsets of scleroderma 
patients with fibrinolytics such as urokinase or tPA can 
offer benefit to patients [32-34], but the benefit may not 
be of long duration [35]. Also, in some patients, antibod-
ies to fibrin bound tPA were detected [36], a finding that 
could contribute to fibrinolytic abnormalities detected in 
such patients. In addition, fibroblasts from scleroderma 
patients have been reported to over express inhibitors of 
fibrinolysis such as Plasminogen Activator Inhibitor-2 
(PAI-2) [37]. or have an altered phenotype in cells from 
some patients [38]. Recent studies have indicated some 
genetic variants of the urokinase receptor (uPAR) may 
present fibrinolytic risk for a subset of patients with 
scleroderma [39], findings which may explain some of 
the heterogeneity in patient disease progression and per- 
haps, responsiveness to fibrinolytic interventions. There- 
fore, whether the fibrinolytic approach would benefit 
only a distinct subset of patients with this complex dis- 
ease to impact the fibrosis and pro-fibrotic environment, 
must await the outcomes of further studies. 

However, additional clinical trials with higher doses of 
tPA (perhaps 25 and 50 mg) and possibly multiple expo- 
sures, are likely warranted to address the vascular fi- 
brotic/pro-fibrotic environment based on the information 

gained thus far, but certainly such trials with higher 
doses would be accompanied by some increased risk for 
bleeding disorders. As many patients have a progressive 
disease without many other options, the risk may be ac-
ceptable for some patients. Furthermore, as the action of 
tPA is fibrin dependent, as opposed to urokinase, the tPA 
approach may offer more benefit to the vascular pro- 
fibrotic environment, while urokinase, the natural plas-
minogen activator of the lung may be a better choice for 
pulmonary actions. Similarly, more studies using uro- 
kinase to address the early pulmonary complications in 
scleroderma are also likely warranted, possibly using the 
direct instillation of the urokinase into the affected lungs 
to maximize impact. 

Furthermore, as will be discussed below, other ap- 
proaches may be entertained in subsets of scleroderma 
patients that could complement the fibrinolysis approach 
either using tPA or urokinase. 

3. USING MAST CELL STABILIZERS TO 
INTERFERE WITH FIBROSIS 
DEVELOPMENT AND FIBROGENIC 
RESPONSES TO INJURY 

3.1. The Red Duroc Porcine Model of Abnormal 
Skin Wound Healing 

The red Duroc pig model of excisional skin wound heal- 
ing exhibits some features of hypertrophic scarring [40- 
44], but likely it should more accurately be described as 
a fibrogenic response to injury [45]. Excisional wounds 
on the dorsum of this breed of pig heal with a hypercon- 
tracted phenotype, plus abnormal deposition of collagen 
(e.g. collagen nodules) and pigmentation, and an abnor- 
mal mRNA expression pattern/phenotype (two phases of 
inflammatory molecule expression). In contrast, healing 
of similar excisional wounds in animals of the Yorkshire 
breed proceed with less contraction than what is ob- 
served in the red Duroc model. That is, with a single 
phase of molecular expression, and a pattern not dis- 
similar to healing in humans. Histologic analysis of scar 
tissue developing following injury to red Duroc skin re- 
vealed elevated numbers of nerves, mast cells and myo- 
fibroblasts in red Duroc scars compared to those in 
Yorkshire animals [46]. This lead to the hypothesis that a 
nerve-mast cell-myofibroblast axis exists and in the ab- 
normal healing phenotype, and this axis was contributing 
to the abnormal phenotype in the healing of red Duroc 
skin wounds [46]. 

To assess whether stabilizing mast cells and poten- 
tially preventing degranulation due to neuropeptide 
stimulation, red Duroc pigs were provided the mast cell 
stabilizer ketotifen in a syrup on a biscuit 2x day, starting 
at day 0 (time of wounding) or at Day 28 post-wounding. 
Ketotifen has been used for >20 years in both pediatric 
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and adult asthma sufferers, and has a fairly well defined 
safety profile. The doses chosen for the pig models were 
based on an extrapolation of human doses on a mg/kg 
basis. Controls included feeding red Duroc pigs a syrup 
without ketotifen, and giving Yorkshire pigs with similar 
skin wounds similar doses of ketotifen at Day 0. 

The findings indicated that ketotifen treatment starting 
at Day 0 completely abrogated the abnormal skin wound 
healing phenotype in the red Duroc animals, but starting 
treatment at Day 28 post-injury, when re-epithelization 
was complete did not lead to detectable reversal of the 
abnormal fibrogenic phenotype [46]. Similarly, stopping 
treatment of the animals initially treated from Day 0 did 
not lead to a re-activation of the abnormal healing re- 
sponse. Histologically, ketotifen treatment initiated at 
Day 0 led to decreased nerves, mast cells and myofibro- 
blasts in the scar tissue. Based on these findings, it was 
clear that stabilizing mast cells with ketotifen early after 
wounding was very effective in preventing development 
of the abnormal fibrogenic response, but the scars healed 
normally and healing was not compromised. Interestingly, 
and further to the last point, treatment of injured York- 
shire animals with ketotifen had no detectable effect on 
the healing outcomes. Therefore, ketotifen prevented 
development of the abnormal fibrogenic phenotype, but 
did not compromise normal healing. Thus, this intervene- 
tion can discriminate between normal involvement of 
nerves, mast cells and myofibroblasts in the healing 
process of skin, but is somewhat specific for abrogating 
the abnormal influences. Several factors that remain to 
be further investigated is the why, where and how the 
ketotifen is working in the dynamic and complex envi- 
ronment of the wounds. Thus, studies examining ke- 
totifen effectiveness at time points between Day 0 (fully 
effective) and Day 28 (no effect) post-wounding (e.g. 
Day 7, 14, 21) may provide additional clues as to when 
the drug is most effective and further insights into the 
“how and why” it is effective. 

One clue that has arisen relates to cells in the dorsal 
dermis of the red Duroc pigs. It was found that the be- 
havior of fibroblasts/myofibroblasts derived from the 
dorsum of the re Duroc animals exhibited differences 
from those from the dorsum of Yorkshire pigs, or even 
the ventral skin of the red Durocs [47]. As the ventral 
skin arise during development separately from the dorsal 
skin (discussed in [48]), it would appear that endogenous 
cells at the site of an insult can potentially contribute to 
the response pattern. However, a direct comparison of 
wound healing between the dorsal and ventral skin in 
these pigs has not been reported. Such studies examining 
the myofibroblasts, nerve properties and mast cells be- 
tween such sites may provide some additional clues for 
other disease processes such as in scleroderma which 
exhibits considerable heterogeneity both within and be- 

tween patients. Such studies may provide insights into 
the basis for development and progression of fibrotic 
processes in specific environments, insights that ulti- 
mately could impact the nature of interventions used to 
negate the processes. 

3.2. Use of Ketotifen in Prevention Joint 
Contractures Following Joint Injury in a 
Rabbit Model 

In a significant subpopulation (~15%) of individuals ex- 
periencing an injury to a joint such as the elbow, the 
outcome of the repair is less than ideal and the patients 
suffer from a joint contracture with loss of range of mo- 
tion that compromises function [discussed in 49-51], 
with excessive deposition of collagen likely via a fibro- 
genic response to injury. For those that are severely 
compromised, the only viable option to help restore some 
range of motion is surgery to release the affected joint 
capsule in an attempt to restore healing. Unfortunately, 
most surgeries result in ~50% restoration of function at 
best [reviewed in 52,53], so the intervention is not opti- 
mal. Why this subset of patients have an abnormal heal- 
ing outcome is not known presently, but characterization 
of affected tissues have provided some insights. 

Analysis of tissue from such patients compared to con- 
trols at the histologic and molecular levels have indicated 
a fairly uniform pattern of differences in the affected 
tissues, including excessive nerves, mast cells and myo- 
fibroblasts in affected capsular tissue [49-51]. Thus, 
there appears to be some parallels between the red Duroc 
model of abnormal healing and that observed in the hu-
man joint contracture situation. 

Over the past several years, a rabbit joint injury/joint 
immobilization model leading to contractures which 
mimic the pattern of changes observed in patient joint 
contracture samples has been characterized [54-56]. 
Many features of this preclinical model parallel those 
observed in both the human tissue samples and the red 
Duroc model, namely elevated presence of nerves, mast 
cells and myofibroblasts [56]. Therefore, this rabbit 
model is also a likely candidate to assess the efficacy of 
ketotifen to prevent contracture development. 

Treatment of rabbits with a knee injury analogous to 
injuries suffered by humans to their elbows with ke-
totifen, was initiated at Day 0. The ketotifen was injected 
subcutaneously 2x/day as it was not possible to effect- 
tively administer the drug orally to the rabbits. The 
treatments were maintained for 8 weeks at which time 
the animals were sacrificed and joints assessed function- 
ally, and joint tissue assessed at the histologic and the 
molecular levels (mRNA expression patterns). Treatment 
with ketotifen led to significantly improved function 
(less contraction) and a significant decline in nerves, 
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mast cells and myofibroblasts in the capsular tissue [57]. 
Treatment also significantly modified the expression 
pattern for a number of relevant molecules in the capsu- 
lar tissue [58]. Again, this outcome in another species 
added to the conclusion that use of mast cell stabilizers 
such as ketotifen in some abnormal healing situations 
could be of benefit to at risk patients who may experi- 
ence joint contractures. In the above studies, the ke- 
totifen was administered starting at the time of injury, so 
similar to the red Duroc pigs, additional studies where 
the administration of the ketotifen was delayed after in- 
jury may also provide insights in the “window of oppor- 
tunity” to modify the contracture outcomes. 

Currently, we are initiating a clinical trial of ketotifen 
in patients with elbow injuries (Hildebrand et al., in pro- 
gress). Aligned with this trial is work to identify bio- 
markers for those at highest risk for developing joint 
contractures. As mentioned above, ~15% of such patients 
develop such fibrotic joint contractures following a seri- 
ous elbow injury, so it would be prudent to identify those 
at risk as early as possible to initiate appropriate treat- 
ment(s). 

3.3. Administration of Ketotifen to Scleroderma 
Patients 

In a number of studies [discussed in 59,60], elevated 
numbers of mast cells were detected in skin samples 
from involved skin of scleroderma patients. Many of the 
mast cells appeared histologically to be in a state of ac- 
tive degranulation. Other groups have also focused on 
mast cells in scleroderma patients, and suggested they 
may be a potential target for interventions [61]. Such 
findings, plus reports of ketotifen being effective in pre- 
venting skin thickening in the tsk/tsk mouse (the thick 
skinned mouse model of scleroderma) [62], led Gruber 
and Kaufman to use ketotifen in the treatment of a small 
number of patients with diffuse scleroderma [59]. Ultil- 
izing a dose of 3 mg ketotifen twice a day, it was found 
that the drug was effective in relieving some of the 
symptoms of scleroderma in two male patients with early 
diffuse disease. This small case report was followed by a 
larger 24 patient double-blind randomized control trial 
[60] of 6 months duration. Unfortunately, in this larger 
trial ketotifen was not found to be efficacious (using 
pulmonary function, global assessments and mast cell 
releasability), but some relief from pruritus was noted in 
some patients. In fact, the authors were unable to show 
mast cell suppression in their study. Why the initial two 
patients did receive some benefit from the ketotifen 
treatment, while those in the larger trial did not was 
likely due to variability in response patterns and perhaps 
a more advanced disease in some of the patients selected. 
Based on the porcine and rabbit studies discussed above 
regarding ketotifen use, one has to give the drug early 

after the injury/insult (skin wounding or joint injury). 
Thus, in scleroderma patients with established skin fi- 
brosis ketotifen treatment may not be very effective due 
to the advanced state of the fibrotic response. Early 
scleroderma is known to be somewhat difficult to diag- 
nose, so once skin involvement is very evident, it may be 
too late to have a strong impact using ketotifen to target 
mast cells. Likely it would be most effective during the 
edematous phase of the condition when initial mast in- 
volvement is just starting versus later when mast cells are 
still involved, but the fibrosis in the skin is established 
and inhibiting mast cells would possibly interfere with 
progression but not reverse established fibrosis (not 
unlike what we have observed in the rat bleomycin 
model discussed above when treated with urokinase). 

While using ketotifen to address skin involvement in 
scleroderma has not yet been justified by the evidence, 
for a variety of reasons such as those discussed above, it 
might have application in patients that are progressing to 
pulmonary hypertension and pulmonary fibrosis, disease 
complications/phenotypes that may be detected early so 
intervention with ketotifen would potentially have a sig- 
nificant impact on this often fatal complication of the 
disease [discussed in 24]. Currently, evidence to support 
such a direction for use of ketotifen is meager, but we did 
have one patient with rapidly progressive scleroderma 
with pulmonary manifestations (fibrosis and pulmonary 
edema). The patient was treated with ketotifen on com- 
passionate grounds after failing most other medical in- 
terventions. He rapidly exhibited some improvement in 
pulmonary function, was able to walk some distances, 
and regained some of his strength while on the drug. 
Unfortunately, he developed hives in relation to taking 
the drug and it was discontinued, and he died soon there- 
after [discussed in 26]. Thus, in situations where pulmo- 
nary fibrosis becomes a feature of disease with some- 
thing of a defined early starting point, ketotifen +/− 
urokinase may be an effective treatment regimen for a 
subset of scleroderma patients evolving pulmonary in- 
volvement. In fact, one could envision adding tPA to a 
complex intervention regimen to address both vascular 
and pulmonary aspects of the condition. This speculation 
would certainly require a well designed clinical trial, but 
is an option to be entertained in the face of limited alter- 
natives. 

3.4. Potential Application of Mast Cell 
Stabilizers +/− Fibrinolytics in Other 
Human Fibrotic Conditions 

In addition to the above discussed conditions, other con- 
ditions or abnormal fibrotic response patterns in humans 
could also be envisioned to have efficacious treatments 
based on ketotifen and or fibrinolytics. These include 
hypertrophic scarring following thermal burn injuries, 

Copyright © 2013 SciRes.                                                                                JBiSE 



D. A. Hart / J. Biomedical Science and Engineering 6 (2013) 1-9 6 

tendinopathies involving fibrosis, and possibly Dupuy- 
tren’s contractures of the hand. 

In burn patients, increasing size of the injury, or the 
location site increases the risk for hypertrophic scarring, 
an abnormal fibrogenic response [45,63]. Hypertrophic 
scars have abnormal collagen deposition, are hypercon- 
tracted due to myofibroblasts, have elevated numbers of 
mast cells and nerves, and can be itchy (pruritis), disfig- 
uring, and if occurring across a joint, lead to joint con-  
tractures. Serum levels of histamine metabolites (hista- 
mine is a component of mast cells granules) are elevated 
in burn patients developing hypertrophic scars [64]. 
Many of these characteristics are similar to the pig and 
rabbit models discussed above where ketotifen was ef- 
fective. Thus, ketotifen or other mast cell stabilizers 
should be considered for studies regarding effectiveness 
to prevent hypertrophic fibrosis development, or follow- 
ing revision surgery to prevent re-establishment of ab- 
normal healing. 

In tendon disorders such as Carpal Tunnel Syndrome 
(CTS), the initial phases of the condition involve a 
swelling/edema of the tendon sheath leading to fibrosis, 
pain, and compromised nerve function, often times re- 
quiring surgical interventions that are variable in out- 
comes [reviewed in 65; and others]. Abnormal collagen 
deposition is noted [66; and others], as well as the pres- 
ence of mast cells and myofibroblasts but these cells 
have not been investigated for their role in the disease 
process. Mast cells have also been identified in other 
tendon disorders such as patellar tendinosis [67], but 
again their role has not been pursued. Interestingly, car- 
pel tunnel-like syndromes have been reported in some 
scleroderma patients with early disease [discussed in 68], 
so there may be some common mechanisms of fibrosis 
operative here as well. 

Dupuytren’s contracture of the hand is a fibrotic proc- 
ess occurring in the fascia of the planar region which 
leads to a thickening of the fascia and loss of tendon 
function. This progressive condition appears to have a 
genetic component, and it is fairly common in some 
countries such as Sweden and Scandinavian countries 
[69-71]. Mast cells and nerves have been detected in the 
fibrotic tissues [72]. While the early stages of the process 
has not been studied in detail, the finding of mast cells, 
nerves and myofibroblasts certainly raise the possibility 
that agents such as ketotifen might have efficacy in pre-
venting or inhibiting progression from the early phases. 
Presently, one approach to remove the deposited collagen 
is to treat the affected area with bacterial collagenase 
[73,74] to degrade the fibrotic material. Whether such 
interventions have long lasting effects, or whether ke- 
totifen could be used post-collagenase, remains to be 
studied. 

It should be pointed out that ketotifen has been inves- 

tigated for use in rheumatoid arthritis (RA) where mast 
cells, nerves and fibrotic processes are known to occur in 
synovium and during pannus progression. Pannus pro- 
gression occurs in RA due to chronic fibrin deposition 
(as well as attempts to remove it via endogenous fibri- 
nolytic elements) with invasion of fibroblasts and colla- 
gen deposition. However, in clinical trials involving RA 
patients treated with ketotifen +/− other drugs, ketotifen 
exhibited no detectable effects on disease parameters 
[75,76]. Therefore, unique disease features may influ- 
ence whether mast cells stabilizers have efficacy in pre- 
venting the progression of fibrosis associated with some 
clinically defined conditions. 

4. SUMMARY 

From the above discussion, it is clear that fibrosis and 
fibrotic processes associated with specific conditions can 
be interfered with using fibrinolytic agents such as 
urokinase and tissue plasminogen activator. Such treat- 
ments are partially effective in both the lung and in the 
vasculature to mitigate chronic fibrosis where there is 
continual fibrin deposition contributing to the fibrosis. 
Thus, this approach alleviates the product of the process 
but does not stop the process itself. In contrast, the use of 
mast cell stabilizers is directed more upstream in the fi- 
brotic process, and thus, work more effectively when 
administered early in the process. What has not been yet 
evaluated is the use of both approaches in the same mod- 
els, or in selected patient populations. Thus, subsets of 
scleroderma patients may benefit from the tPA-focused 
vascular approach, while others with the condition and 
onset of pulmonary involvement may benefit from both 
urokinase + mast cell stabilizer protocols. A key element 
of all of these approaches is the ability to identify those 
patients who will benefit most (e.g. precision medicine) 
and conduct clinical trials to validate the appropriateness 
of the interventions. 

While it is clear that other options are also potentially 
valuable in treating fibrotic conditions [e.g. controlling 
the expression and activity of pro-fibrotic growth factors 
such as TGF-beta1 and others; 77-79], the reagents and 
drugs discussed in this review are already approved for 
use in human populations and have extensive safety and 
efficacy data available regarding their use in humans. 
Thus, the application for the conditions described would 
potentially be new uses of existing reagents/drugs which 
would expedite their approval going forward. 
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