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ABSTRACT 

This paper gives the simple and logical approach of LP modes in circular and elliptical waveguides. Earlier the basic 
approach of modes in circular and elliptical fibers was studied by the authors. In this paper, the role of radial antinode in 
circular and elliptical waveguides is given clearly. Splitting of modes in circular and elliptical fiber has been discussed. 
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1. Introduction 

Optical fibers (or waveguides) are important components 
of optical communication systems and information tech- 
nology [1-7]. The aim of this paper is to describe LP 
modes in circular and elliptical waveguides. These LP 
modes consist of certain patterns of electromagnetic 
waves formed within the fiber due to structurally im- 
posed (transverse) boundaries on the propagation fields. 
Each mode is a pattern of electric and magnetic field 
distributions that is repeated along the fiber at equal in- 
tervals. In modern communication systems we use as few 
modes as possible so that the interaction among several 
modes is minimized. Because optical fibers are used as 
basic mediums for transmission of optical signals, it is 
useful to make a detailed study of mode designation in 
optical waveguides.  

2. Circular Waveguides  

In weakly guiding fibers where In weakly guiding fibers 
where  1 2 1  is much less than 1 (n1, n2 being the 
core and the cladding refractive index) it is found con- 
venient to describe the modes in terms of linearly polar- 
ised modes or LP modes.  

n n n

These LP modes are due to the superposition of HE or 
EH modes. However, the LP modes are not exact modes 
of the step-index fiber and each LP-mode has many de- 
generate modes.  

Apart from degeneracy, there is also an instability of 
the lobe orientations of the fields. 

In weakly guiding fibers one can construct modes 

whose transverse fields are polarised in one direction. In 
elliptical fibers the fiber can suport two types of mode, 
one polarised predominantly in the x-direction and the 
other polarised predominantly in the y-direction. 

In actual practice, in fibers for telecommunication 
purposes the relative core-cladding index difference 
 1 2 1

This practical requirement permits us to simplify the 
mathematical analysis by considering what is known as 
the scalar wave equation in terms of a field variable  
which may represent any of the cartesian components of 
the E and H fields. The boundary conditions also become 
simpler so that  and its radial derivative may be treated 
as continuous across the core-cladding boundary. The 
modes now are designated as m  modes [8] the letters 
L and P standing for the phrase “Linearly polarised” 
The suffix  stands for the th order Bessel function 
which corresponds to the cutoff condition for the mode 
and the other suffix m enumerates the successive zeroes 
of the corresponding Bessel function. If we show the 
positions of the field antinodes of a particular mode on 
the cross-section of the fiber, the mode m  will have 

 antinodes in a ring of a certain radius and there will 
be n such rings on the cross-section thus in Figure 1 we 
show the antinodes of LP31 and in Figure 2 we show the 
antinodes of LP52. In a similar manner we can show the 
antinodes of LP42 and LP62 in Figure 3 and Figure 4 
respectively. 

n n n  is usually kept less than 0.02. 

LP



LP
2

The lowest order mode (fundamental mode) which is 
never cutoff is represented by LP01 and this corresponds 
to the HE11 mode of the previous section. The corre- 
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Figure 1. Antinodes for linearly polarized modes LP31. 
 

 

Figure 2. Antinodes for linearly polarized modes LP52. 
 

 

Figure 3. Antinodes for linearly polarized modes LP42. 
 

 

Figure 4. Antinodes for linearly polarized modes LP62. 

spondence between the mode description such as HEmn 
etc. and the LP-modes are as follows: 

11 01HE LP mode  

01 01 21 11TE ,TM , HE LP mode etc.  

As a precaution we must note that for LP0m modes 
there will be no radial antinode at the center of the cross 
section. 

3. Elliptical Waveguides  

So far we have considered only fibers of circular cross- 
section. Now we turn to elliptical cross-sections. Since 
the ellipse is less symmetrical than the circle there can be 
two orientations for the field configuration in elliptical 
fibers. The fields in an elliptical fiber can be described in 
terms of Mathieu functions which are rather complicated 
functions. Mathieu functions are generally grouped in to 
two classes: 

1) The even Mathieu functions; and 
2) The odd Mathieu function. 
A hybrid mode in an elliptical fiber is designated by a 

prescript, e or o, where e and o stand for the even mode 
and the odd mode respectively. The axial magnetic field 
of an even mode is represented by even Mathieu func- 
tions whereas the axial electric field of an even mode is 
represented by an odd Mathieu functions. This mode is 
symbolically represented as the eHEmn mode. In the case 
of the odd hybrid mode oHEmn the axial magnetic field is 
represented by an odd Mathieu function and the axial 
electric field is represented by an even Mathieu function. 

In a similar manner, one can describe the EH modes. 
The axial electric field of an even mode is represented by 
even Mathieu functions whereas the axial magnetic field 
of an even mode is represented by an odd Mathieu func- 
tions. This mode is symbolically represented as the 
eEHmn mode. In the case of the odd hybrid mode 
oEHmn the axial electric field is represented by an odd 
Mathieu function and the axial magnetic field is repre- 
sented by an even Mathieu function. Now we turn to 
LPlm modes in the case of elliptical waveguides. Mode 
which is designated by a prescript, e or o, where e and o 
stand for the even mode and the odd mode respectively. 
So in this case the mode will be symbolically represented 
by eLPlm mode and oLPlm mode. In eLPlm mode and 
oLPlm mode the letters L and P standing for the phrase 
Linearly polarised the suffix l stands for the lth order 
Mathieu function which corresponds to the cut off condi- 
tion for the even mode and odd mode and the other suffix 
m indicates the successive zeros of the corresponding 
Mathieu functions. 

For linearly polarized modes in elliptical fibers the 
hybrid LP11 mode is split in to even LP11 and odd LP11 
modes with well-defined mode intensity patterns. The 
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even LP11 and odd LP11 modes have significantly differ- 
ent cutoff wavelengths, which allow the existence of a 
wavelength range within which only even LP01 and LP11 

modes are supported by the fiber. The elliptical core fi- 
bers that support two stable special modes, the LP01 and 
LP11 even/odd modes, are called elliptical core two-mode 
fibers. One important application of these fibers is to in- 
terferometric model/polarimetric sensors, which is useful 
to measure strain and temperature. The antinodes of even 
LP11 and odd LP11 are shown in Figure 5 and Figure 6 
respectively. 

Figure 6. Antinodes for odd linearly polarized modes LP11. 
 

Table 1. Mode splitting in weakly guiding approximation. 

Circular fiber Elliptical fiber 

LP0m HE1m eLP0m e/oHE1m 

eLP1m oEHom, eHEom
LP1m 

TEom 
TMom 
HE2m oLP1m e/oHE2m 

eLPnm n ≥ 2 e/oEHn-1,m LPnm 
n ≥ 2 

HEn+1,m 

EHn-1,m oLPnm n ≥ 2 e/oHEn+1,m 

4. Splitting of Modes in Circular and  
Elliptical Fibers 

All guided optical modes in a circular symmetric optical 
fiber are fundamentally a transverse electric (TEom), 
transverse magnetic (TMom) or a hybrid mode (EHnm or 
HEnm). This is described in the weekly guiding approxi- 
mation, where the solution is the well known LPnm 
modes. The LPnm modes are due to superpositions of the 
transverse and hybrid modes. 

 
modes in circular waveguides and even and odd LP modes 
in elliptical waveguide. Some basic figures are introduced 
when necessary without derivation. The application of 
modes is useful in illumination engineering. This helps 
our attention on the physical description of the problem. 

Modes splitting of higher order is due to the fact that 
the degeneracy of the linearly polarized modes in circular 
case is lifted as the fiber core is made elliptical. Thus the 
TEom and TMom modes become the hybrid modes oEH0m 
and eHE0m when it’s made elliptical. The prefix e and o 
indicates even or odd function. Each hybrid mode from 
the from the circular symmetric case splits in the ellipti- 
cal case into two hybrid modes, as symmetry dictates 
only two field configuration in an elliptical core fiber. 
This can be seen by EHnm that splits into eEHnm and 
oEHnm. In weekly guiding approximation, there is no 
observable splitting in cutoff measurements between the 
even and odd versions of a given hybrid mode, as b/a is 
changed from 1 to 0.1. As a consequence only the LP1m 
and LPnm (n > 2) split as fibre becomes elliptical and 
each of these LP modes will only split into two other 
modes called eLP and oLP, where e and o here denotes if 
the LP mode is even or odd. A summary is further given 
in Table 1.  
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