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ABSTRACT 

The application of Sobolev gradient methods for finding critical points of the Huxley and Fisher models is demonstrated. 
A comparison is given between the Euclidean, weighted and unweighted Sobolev gradients. Results are given for the 
one dimensional Huxley and Fisher models. 
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1. Introduction 

The numerical solution of nonlinear problems is a topic 
of basic importance in numerical mathematics, as stated 
in [1]. It has been a subject of extensive investigation in 
the past decades, thus having vast literature [2-5]. The 
most widespread way of finding numerical solutions is 
first discretizing the given problem, then solving the 
arising system of algebraic equations by a solver which is 
generally some iterative method. For nonlinear problems 
most often Newton’s method is used. However, when the 
work of compiling the Jacobians exceeds the advantage 
of quadratic convergence, one may prefer gradient type 
iterations including steepest descent or conjugate gradi- 
ents. An important example in this respect is the Sobolev 
gradient technique, which is relying on descent methods. 
The Sobolev gradient technique presents a general effi- 
cient preconditioning approach where the preconditioners 
are derived from the representation of the Sobolev inner 
product. 

Sobolev gradients have been used for ODE problems 
[6,7] in a finite-difference setting, PDEs in finite-differ- 
ence [7,8] and finite-element settings [9], minimizing 
energy functionals associated with Ginzburg-Landau 
models in finite-difference [10] and finite-element [11,12] 
settings and related time evolutions [13], the electrostatic 
potential equation [1], nonlinear elliptic problems [14], 
semilinear elliptic systems [15], simulation of Bose-Ein- 
stein condensates [16], inverse problems in elasticity [17] 
and groundwater modelling [18]. 

A detailed analysis regarding the construction and the 
application of Sobolev gradients can be found in [6]. For 
a quick overview of Sobolev gradients, applications and 
some open problems in the subject we refer to [19]. 

Sobolev gradients are also useful for preconditioning 
for linear and nonlinear problems. Sobolev precondi- 
tioning [20] has been tested on some first order and sec- 
ond order linear and nonlinear problems and it is found 
comparable in terms of efficiency and stability with other 
methods such as Newton’s method and Jacobi method. 
For differential equations with nonuniform behavior on 
long intervals, “Sobolev gradients have proved to be ef- 
fective if we divide the interval of interest into pieces and 
take a recursive approach (cf. [21])”. Sobolev gradients 
have interesting applications in the field of geometric 
modelling [22]. It has been proved therein that the Sobo- 
lev gradient is a very useful tool for minimizing func- 
tionals that pertain to the length of curves, curvatures, 
surface area etc. Recently, the paper [23] has shown the 
possible applications of Sobolev gradient technique for 
systems of Differential Algebraic Equations. 

The idea of a weighted Sobolev gradient has been in- 
troduced by W. T. Mahavier in [7]. The weighted Sobo- 
lev gradient has successfully exhibited its effectiveness 
in dealing with linear and nonlinear singular differential 
equations with regular and some typically irregular sin- 
gularities. Weighted gradients have also been used for 
DAEs and it turns out that weighted Sobolev gradients 
outperform unweighted Sobolev gradients in many situa- 
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tions. 
In the field of gene technolog, Modelling of gene fre- 

quencies is of the prospective area of research. Its appli- 
cations can be seen in livestocks and agricultural crops. 
By the modification of their genes, they can be made 
more resistive to infection and to produce more yield. To 
derive historical patterns of migration, archaeologists are 
expecting that study of the entire human genetic material, 
will facilitate to map geographical distribution of signa- 
ture genes. By using gene technology, many bacteria have 
been developed to prescribed antibiotics. From medical 
point of view, it is important to study the genetic back- 
ground of diseases, with implications in diagnosis, treat- 
ment and drug development. In order to make use of ge- 
netic population data, we need to understand the dynam- 
ics of gene patterns through the population. 

2. Fisher and Huxley Models 

In the 1930s, number of authors proposed reaction-dif- 
fusion equations to model changing gene frequencies in a 
population. One of the earliest and best known such 
equations was that of Fisher. In his paper in 1937 [24], he 
proposed a reaction-diffusion equation with quadratic 
source term that models the spread of a recessive advan- 
tageous gene through a population i.e.; 

   1t xxp p mp p                (1) 

where  is the frequency of the new mutant gene, p   
is the coefficient of diffusion, and  is the intensity of 
selection in favor of the mutant gene. The equation 
predicts a wave front of increasing allele frequency, 
propagating through a population. The quadratic logistic 
term of Fisher’s equation is more appropriate for asexual 
species. 

m

Fisher’s assumptions for a sexually reproducing spe- 
cies lead to a Huxley reaction-diffusion equation, with 
cubic logistic source term for the gene frequency of a 
mutant advantageous recessive gene. Huxley’s equation 
is given by 

 2   1t xxp p p p    .             (2) 

3. Review of Sobolev Gradient Methods 

In this section we discuss the Sobolev gradient and steep- 
est descent. A detailed analysis regarding the construc- 
tion of Sobolev gradients can be seen in [6]. 

Let us consider  is a positive integer and  is a 
real valued  function on . We can define its gra- 
dient  as 

n G
1C nR

G
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1
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For  as above, but with G .,.
S

 an inner product on 
 different from the standard inner product nR .,. nR

, 
there is a function  so that : n

sG R R  n

   ,  , n
S S

G x h h G x x h R    .         (4) 

The linear functional  G x  can be represented using 
any inner product on . Let us call S  is the 
gradient of  with respect to the inner product 

nR G
G .,.

S
 

and it can be seen that SG  has the same properties as 
G . 
By applying a linear transformation, we have 

: n nA R R , 

we can relate these two inner products 

, , nS R
x y x Ay  

for , nx y R , and by a reflection 

    1 , .n
SG x A G x x R            (5) 

For each nx R  an inner product is assciated 

.,.
x

 

on . Thus for nR nx R , define  such 
that 

: n
xG R R  n

   ,  , n
x x

G x h h G x x h R    .        (6) 

When gradient is defined in a finite or infinite di- 
mensional Sobolev space we call it Sobolev gradient. 
Steepest descent can be classified into two categories: the 
one is discrete and other continuous steepest descent. Let 

 be a real-valued  function, defined on a Hilbert 
space 
G 1C

H  and SG  be its gradient with respect to the 
inner product .,.

S
 defined on H . Discrete steepest 

descent method is a process of constructing a sequence 
 ix  so that  is given and 0x

  1 1 ,  1,2, .i i i ix x G x i             (7) 

where for each , i i  is chosen so that 

   1i i iG x G x   1             (8) 

is minimal in some appropriate sense. In continuous 
steepest descent we construct a function  
so that 

 : 0,z H 

     initial

d
,  0 .

d

z
G z t z z

t
           (9) 

Under suitable conditions on G ,  z t z  where 
 G z  is the minimum value of . G
Continuous steepest descent is interpreted as a limiting 

case of discrete steepest descent. So (7) can be 
considered as a numerical method for approximating 
solutions to (9). Continuous steepest descent gives a 
theoretical starting point for proving convergence of 
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discrete steepest descent. Using (7) one seeks  
limi iu x , so that 

0  oG    r  0SG u             (10) 

and using (9) one seeks 

lve these problems by using various de- 
sc

3.1. Using Second Order Operators 

limt tu z  
ms can be 

rv
 G

so that (10) holds. 
Two groups of proble cast in terms of 
determining the functional G . The first group deals with 
those problems where G  se es as an energy functional. 
For cases of the use o  as an energy functional see 
[6,10,12,13]. 

Now we so

f

ent techniques. 

Consider Fisher’s equation 

 1t xx mp p     p p             (11) 

in the space domain which is the

 will be 
do

  
 c

 interval [0,2]. We 
use Neumann boundary onditions, i.e. 0xp  . 

Now a suitable finite difference disc onretizati
ne. We work with a finite-dimensional vector Mp R  

on the interval. We will denote by 2L  the vecto  r space
MR  equipped with the usual inner p uct  rod

   i
q p i q i . The operators  ,p

y 

         (12) 

2  are defined b0 1 2, , : M MD D D R R
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p i p i
D p i
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for  and where 1,2, , 2i M  2

1x M
 


 is the  

g between the n s up the poispacin odes. just pick nts 0D  
the in the grid which are not on endpoints. 1D  and 2D  

are standard central difference formulas fo stimating 
the first and second derivatives. The choice of difference 
formula is not central to the theoretical development in 
this paper, other choices would also work. The numerical 
version of the problem of evolving from one time 

r e

t  to a 
time tt   is to solve 

    1xx
t

p f
p mp p


             (15) 

where in the equation is at the previous time and 

op

2    (16) 

The time-step 

f  
e 

p  
exp  is th p  desired at the n t time level. In terms of 

erators problem can be written as 

  2D m p m p f       0 1 0t t t D p   .

t  must be prescribed small e
ha

nough ti 
ve 1 tm . We can put the solution of this problem in 

other of minimizing a functional via steepest de- 
scent. Define 2ML R

terms 
  by 

      2
0 2t t tp f D p   1 m

o when the

 

L p D p m     (17) 

which is zer  we have the desired p . The 
functional 

   ,
  

2

L p L p
F p               (18) 

has a minimum of zero when is zero so we will  L p  
look for the minimum of this functional. This functional 
is a convex functional that guarantees global minima in 
 , a solution to problem (11). The aim is to find the 

dient of a convex functional  gra F p  associated with 
the problem and use this gradie steepest descent 
minimization process to finding the zero of the functional, 
that is the minimum of  

nt in 

F u  and the solution of the 
original problem. 

3.2. Gradients and Minimization 

The gradient   MF p R   of a fun  F pctional  in 

2L  is found by solving 

       2  ,F p h F p  F p h O h        (19) 

for test function . The gradient points in the directioh n 
of greatest increase of the functional. The direction of 
greatest decrease of the functional is  F p . This is 
the basis of steepest descent algorithm n reduce s. One ca
 F p  by replacing an initial p  with  p F p   

the step size where   is a positive number  
done repeatedly until either  

. This can be
F p  or  F p  is less 

than some specified toleran e d  finite- 
dimensional analogue to the original problem in which 

0xu

ce. W esire a

  on the endpoints of the interval. So, we use a 
ion π :project M MR R  which projects vectors in MR  

onto the su ch the gradient vanishes at  
boundary. Rather than using  

bspace in hiw  the
F p , we will use 

 π F p . The steepest descent algorithm in this new 
 looks like 

1) Calculate 
space now

 F p ; 
 by 2) Update p        πp p F p   where   is 

so

ular case, 

me fixed pos ve num
3) Repeat.  

iti ber; 

In this partic

       2
0 2π t t

t t tπ 1 2F p m m p D L p D L  p     
(20) 

gives the desired gradient for steepest descent in

h t

 L . 2

The operators 2
0 2, :t t M MD D R R   are the adjoints of 

0D  and 2 e Sobolev gradient a  
proac o the problem of minimizing functionals is to do 
the minimization in Sobolev spaces which correspond to 
the problem. In this paper only discrete Sobolev spaces 

D  respectively. Th p-
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are used. We define two such spaces in which the 
minimization can be compared to minimization in 2L . 
We are prompted to consider the space 2

Huxley’s equations were conducted as follows. A system 
of M  nodes was set up with    20, 0.2exp 4p x x   
i.e. the initial conditions. The internodal spacing was x . 
The value of   was set to 1 for all the experiments. We  

2H  which   is
MR  with the inner product 

     chose 
16

27
m


  with 1   so that both source  

       
0 0

1 1 2,  ,

s

D p D q D p D q 
     

 and 

2

, ,p q D p D q
(21)

because 

functions has the same maximum value. The function  
was then evolved. The updated value of  for a given 
time step was considered to be correct when the infinity 
norm of 

p
p

 πL p  was less than . We set 710 0.4t   
for the time increment. For the gradients in 2

2H  and 
2
2Ĥ  we used the same step size regardless of the nodal 

spacing. The total number of minimization steps for 
fifteen time steps, the largest value of   that can be 
used and CPU time were recorded in Tables 1 and 2. 

 L p  F p
f Mah

 have in them. We 11D  
r s

 also 
follow th nique o avier fo olving differential 
equations for this we define a new inner product 2

e tech

2Ĥ  as 
MR  equipped with the inner product 
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(22) 
his takes into account the coefficients ofbecause t  1D  

and 0D  in  L p  and  F p . The desired Sobolev 
gradi  πents s F p ,  π wF p  in 2

2H  and 2
2Ĥ  are 

found by s

π t tD D D D

olving 

    0 0 1 1 2 2 πt
sD D F p F p     π   (23) 

 w
 (24) 

respectively. Here is the adjoint of . Following 

rical experiments for the solution of Fisher and  

From the tables we see that the results in 2
2H  are far 

better than 2 , in fact there is no 2  convergence for 
. The best results are in the weighted Sobolev 

space 

L L
101M 

2
2Ĥ . When we perform minimization in 2

2Ĥ  the 
convergence is three times faster for solving Huxley’s 
model than from that 2

2H . 

     
 

2 2

0 0 1 1 2 21   πt t t
t tm D D D D D D F p

F p

    

t

3.3. Using the Associated Functional π

π 
Here we suggest another approach, in order to avoid 
second order operators. Once again consider the problem 

 1D  
on

 1D
the same line we c struct the gradients for Huxley’s 
model. 

Nume

   1t xxp p mp p               (25) 

with Neumann boundary conditions. We think of the M  
nodes as dividing up [0,2] into 1M   subintervals. The  

 
ablT e 1. Numerical results of steepest descent in  using  over time steps using second order  L2 , H 2

2 , Ĥ 2
2 t 0.4  15  

operators for Fisher’s model. 

  iterations CPUs M 

2L  2

2H  2

2Ĥ  2L  2

2H  2

2Ĥ  2L  2

2H  2

2Ĥ  - 

71.5 1   0 1.2 0.7 >164 0 487 238 >6 403.4 1.140 0.562 10 51 

- 1.2 0.7 - 431 193 - 5.827 2.734 101 

- 1.2 0.7 - 398 186 - 36.525 17.622 201 

- 1.2 0.7 - 369 172 - 246.32 123.32 401 

 
able 2. Numerical results of steepest descent in  using  L2 , H 2

2 , Ĥ 2
2 t 0.4 T  over time steps using second order 15  

operators for Huxley’s model. 

  iterations CPUs M 

2L  2

2H  2

2Ĥ  2L  2

2H  2

2Ĥ  2L  2

2H  2

2Ĥ  - 

51.2 10  1.6 1.2 >2164 00 337 87 >4 003.4 0.828 0.234 1 51 

- 1.6 1.2 - 273 88 - 4.093 1.281 101 

- 1.6 1.2 - 257 81 - 27.011 8.311 201 

- 1.6 1.2 - 249 81 - 186.14 59.46 401 
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 derivative on the 

1
1 : M MD R R 
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1
1D p i p i    

x
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         (27) 

for  and where 1,2, , 1i M  x  is the internodal 
spac ciated functi al for a finite 
dimensional version of the problem with discrete time 
steps is given by 

 

ing. The asso on

   
   

2 3
0

1 1

2 ,1 3 2 ,1

,
2

t

t

fp m D p p

D p D p





  


 

(28) 

and we wish to minimize the functional 

2
0G p D p

 G p  
ce. 

until 
 π G p  is smaller than some set toleran  G p  

has a mi mum when the gradient 


ni

    2
0 0π   π t t

tG p D D p f m p     1 1t tm p D D p 

(29) 

is equal to zero, and this might be considered

and also in so e new roduc es 

 the 
condition for finding p  at the next time step. Here 

1
0 1, :t t M MD D R R   a r e  t h e  a d j o i n s  o f  0 1,D D  

respectively. We want to minimize this functional in   2L ,

m inner p t spac 2
1H , 2

1H , 
defined via 

0 0 1 1,
s

p q ,   , .D p D q D p D q             (30) 

  0 0 1 1, = 1 , , .D p D q   (31) t tw
p q m D p D q  

Once again numerical experiments are conduc
us

ted by 
ing the same parameters as defined earlier. for solution 

of Fisher and Huxley models were conducted as follows. 
The updated value of p  for a given time step was 
considered to be correct when the infinity norm of 

 π G p  was less than 710 . We set 0.4t   for the 
time ement. For the gradients in 2incr 1H  and 2

1H  we 
used the same step-size regardless of th odal spacing. 
The total number of minimization steps for fifteen time 
steps, the largest value of 

e n

  that can be used and CPU 
time were recorded in Tables 3 and 4. 

We note that the finer the spacing the less CPU time 
the Sobolev gradient technique uses in comparison to the 
usual steepest descent method. The step size for minimi- 
zation in 2L  has to decrease as the spacing is refined. 
From the tables one can see that the results in 2

1H  are 
far better than 2L  and results in the space 2

1H  are the 
best. 

3.4. Using First Order Operators 

 using 

Once again consider the problem 

  1 .t xxp p mp  p  

 
able 3. Numerical results of steepest descent in L 2T 2 , H1 , H 2

1 t 0.4   over 15 time steps using the associated 

functional for the Fisher’s model. 

  iterations CPUs M 

2L  2

1H  2

1H  2L  2

1H  2

1H  2L  2

1H  2

1H  - 

32.0 1   0 1.2 0.9 88 135 144 99 0.750 0.078 0.047 51 

45.0 10  1.2 0.9 349 444 141 97 4.718 0.2343 0.156 101 

41.2 10  1.2 0.9 1449 408 143 97 36.197 0.8904 0.547 201 

53.0 10  1.2 0.9 5784 213 142 96 260.55 3.328 2.046 401 

 
able 4. Numerical results of steepest descent in  using T  L2 , H 2

1 , H 2
1 t 0.4   over time steps using the associated 15  

functional for the Huxley’s model. 

  iterations CPUs M 

2L  2

1H  2

1H  2L  2

1H  2

1H  2L  2

1H  2

1H  - 

32.0 1   0 1.2 1.0 54 621 113 63 0.4686 0.0624 0.0312 51 

45.0 10  1.2 1.0 215 093 113 62 2.9213 0.203 0.1249 101 

41.2 10  1.2 1.0 892 470 113 61 22.51 0.7498 0.4218 201 

53.0 10  1.2 1.0 3570 492 113 61 163.55 2.796 1.5622 401 
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1
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ion which is first order in 
e is to solve 
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tp m p f D q      1 0    (34) 

                  

We define functions 

1     (36) 

               

The functional for the pr

t tD m

   1 0 0.D p D q       (35) 

 0 1 tS D p    2
t tp f D q     

   1 0    .T D p D q        (37) 

oblem is 

  1 1
,   ,   , .

2 2
F p q S S T  T          (38) 

The problem is considered to be solved when 
 ,F p q  has been minimized, that is, when 0S T   

ty norms of S  and T  are less than some 
desired tolerance. The  gradients are 

   

or infini

2L

     0 1
t t, π 1 2p t tF p q m m p D    S D T   

(39

.

) 

     1 0, t t
q tF p q D S D T             

The Sobolev gradients in 

(40) 

2
1H  are found by solving 

    0 0 1 π ,t t
sD D F q       1) 1  D Dπ ,p p q pF p   (4

    0 0 1 1 ,t t
s q qD D D D F p q F p q     , .

We want to minimize this functional in 

     (42) 

2 , 2
1L H  and 

so in the new inner product spaces 1
2H  d an 2

1H


al . To 
define these new inner products we follow the tec ique 
of Mahavier [7] for singular differential equations and 
use weighted Sobolev spaces 2

1

hn

H  and 2
1H


 such that 

           0 0 1 1, 1 , 1 ,t tS
p q D p q p D q    D D

(43) 

       0 0 1 1, , ,t tS
p q D p D q D p D q     

and new gradients 

(44) 

  1 2, , ,w w F p q F p q   are found 
by solving 

     2

0 0 1 1 1π , π ,t t
t w pD D D D F p q F p q     p

(45

π 1 m

) 

      2

0 0 1 1 2 , ,t t
t w q qD D D D F p q F p q    .   

Numerical experiments are conducted by us
sa

(46) 

ing the 
me parameters as defined in Section 2.2 . The updated 

value of p  for a given time step was considered to be 
correct when the infinity norms of both s  and T  were 
less than 710 . We set 0.4t   for the time increment. 
The total number of minimization steps for fifteen time 
steps, the largest value of   that can be used and CPU 
time were recorded in Tables 5 and 6. 

H 2 H


2  using 

 
a  st  and T ble 5. Numerical results of eepest descent in L2 , H 2

1 1 , 1 t 0.4   over 15 time steps using first 

order operators for the Fisher’s model. 

  iterations CPUs M 

2L  2

1H  2

1H , 2

1H


 2L  2

1H  2

1H , 2

1H


2L  2

1H  2

1H , 2

1H


 - 

48.0 1   0 0.9  2745 30 494 16 221 47.34 3.359  0.7 683 2.7 51 

42.0 10  0.9 0.7 20436 186 95 571 43 389 578.48 17.33 11.16 101 

55.0 10  0.9 0.7 - 212 550 47 415 - 92.172 49.48 201 

51.2 10  0.9 0.7 - 59 348 39 556 - 507.45 258.75 401 

 
able 6. Numerical results of steepest descent in  and  using T  L2 , H 2

1 H 2
1 , H


2
1 t 0.4   over 15 time steps using first 

order operators for the Huxley’s model. 

  iterations CPUs M 

2L  2

1H  2

1H , 2

1H


 2L  2

1H  2

1H , 2

1H


2L  2

1H  2

1H , 2

1H


 - 

48.0 1   0 0.9  2500 36 675 20 125 46.83 3.125 2.25 0.5 498 51 

42.0 10  0.9 0.5 17169 941 72 158 47 371 525.14 12.03 8.61 101 

55.0 10  0.9 0.5 - 115 047 80 785 - 55.83 36.45 201 

51.2 10  0.9 0.5 - 42 214 1 21 167 - 351.94 169.25 401 
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We note that th ner the spacing the less CP

the Sobole  gradi echniq ses in co arison
s

e fi U time 
v ent t ue u mp  to the 

u ual steepest descent. For the Fisher and Huxley model 
the same step size   can be used for all spacings   
when minimizing in the appropriate Sobolev space. The 
step-size for minimization in 2L  has to decrease as the 
spacing is refined. 

From the table one can see that the results in 2
1H  are 

far better than 2L  and results in the space 2
1H , 2

1H


 
are the best. 

4. Summary and Conclusions 

In this paper, we have presented minimization schemes 
sed on the Sobolev for the Huxley and Fisher’s models ba

gradient technique [6]. The Sobolev gradient technique is 
computationally more efficient than the usual steepest 
descent method as the spacing of the numerical grid is 
made finer. Choosing an optimal inner product can im- 
prove the performance with respect to which the Sobolev 
gradient works better. it is still an open question what the 
absolutely optimal inner product is, and it is possible that 
different inner products might not make large differences 
in computational performance in all cases. One advan- 
tage of steepest descent is that it converges even for a 
poor initial guess. The Sobolev gradient methods pre- 
sented here converge even for rough initial guess or 
jumps in the initial guess. 

In Figures 1 and 2, we display the numerical solution 
of two models with the same localized Gaussian clump 
of the mutant alleles, contained within the region 
0 2x   by zero flux boundary conditions i.e.; 0xp  . 

We choose 
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  with 1   and diffusion coe-  

0.005   so that the differences in the e fficient sourc
ighlight mpaterm can be h ed in co rison to the diffusion  

 

 

Figure 1. Graph of solution of Fisher’s equation for t 
3, 5, 7. 

= 0.1, 

 

Figure 2. Graph of solution of Huxley’s equation for t = 0.1, 
5, 10, 20, 30, 37. 
 

 to increase at the origin and then spread through- 
out the range. As expected mutant take over is greatly 
retarded in the Huxley model compared to the Fisher 
model. So, for asexually reproducing population, a cubic 
source term is more appropriate than a quadratic source 
term and for sexually reproducing population, Fisher’s 
equation is more appropriate. 
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