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ABSTRACT 

Equine Infectious Anemia Virus (EIAV) is a retrovirus that establishes a persistent infection in horses and ponies. The 
virus is in the same lentivirus subgroup that includes human immunodeficiency virus (HIV). The similarities between 
these two viruses make the study of the immune response to EIAV relevant to research on HIV. We developed a 
mathematical model of within-host EIAV infection dynamics that contains both humoral and cell-mediated immune 
responses. Analysis of the model yields results on thresholds that would be necessary for a combined immune response 
to successfully control infection. Numerical simulations are presented to illustrate the results. These findings have the 
potential to lead to immunological control measures for lentiviral infection. 
 
Keywords: Deterministic Model; Virus Infection; Equine Infectious Anemia Virus; Immune Response; Antibodies; 
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1. Introduction 

One of the most significant gaps in our knowledge of 
virus-host dynamics involves how different immune re-
sponses work together to counteract the pathogen. Un-
derstanding viral dynamics in the context of immune 
responses is essential for advancing our knowledge of 
host-pathogen interactions as well as for developing con-
trol strategies. Mathematical modeling has been instru-
mental in the study of viral dynamics and has increased 
our understanding of basic pathogenic interactions for 
infections including human immunodeficiency virus, he- 
patitis B virus, hepatitis C virus, and influenza virus [1-6]. 
In this paper, we study Equine Infectious Anemia Virus 
(EIAV). 

EIAV is a retrovirus of the genus lentivirus that infects 
equids such as horses and ponies. EIAV is spread be-
tween horses through biting flies [7]. Horse flies, primar-
ily of the family Tabanidae [8], feed on acutely infected 
horses and spread the virus through a subsequent blood 
meal on an uninfected equid. Due to this insect vector, 
EIAV tends to be concentrated in warmer climates, but is 
considered a worldwide infection [7,9]. To control the 
spread of infection, horses are routinely tested at race- 

tracks, shows, and rodeos, before breeding, and crossing 
borders. This effort has proven largely successful, bring-
ing the prevalence of EIAV-positive animals down to 
0.38% by 1988 [7,10]. 

EIAV targets monocyte-derived macrophages in sev-
eral tissues of infected equids, including spleen, liver, 
lungs, and bone marrow [7,11]. These tissues serve as 
reservoirs for infection for the remainder of the animal’s 
life. Immune control of EIAV is attributed to both cyto-
toxic T lymphocyte (CTL) [12,13] and broadly neutral-
izing antibody (bnAb) [14] activity. Due to the changing 
dynamics of both the CTL and bnAb responses in both 
specificity and timing, it is believed that both responses 
are essential for long-term control of the infection. 

Infection with EIAV typically follows three stages: 
acute, chronic, and asymptomatic [7]. The acute stage is 
an initial febrile episode associated with the onset of in-
fection, high viral titer, and an adaptive immune response. 
Once the initial infection is brought under control, anti-
genic variants escape the immunological control and cause 
the increases in viral load and fevers associated with the 
chronic stage. After six to twelve months, the recurrent 
fevers cease and the animal enters the asymptomatic 
stage, which is associated with very low viral load and *Corresponding author. 
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the absence of clinical symptoms. In some cases, a fourth 
recrudescent stage is seen, where the infected animal 
experiences recurring fevers for the remainder of its life. 
This stage is often associated with immunosuppressed or 
otherwise immunocompromised animals [15]. 

EIAV shows many life history traits similar to other 
lentiviruses, including a very rapid replication rate and 
high levels of antigenic variation. However, EIAV is 
atypical among lentiviruses in that most infected animals 
experience a few episodes of fever and high viral titer 
and then progress to the asymptomatic stage character-
ized by low viral titer and an absence of clinical disease 
manifestations. This is in direct contrast to lentiviruses 
human immunodeficiency virus (HIV) and simian im-
munodeficiency virus (SIV), in which infected individu-
als and animals develop immunodeficiency and disease, 
and makes EIAV an especially interesting comparison 
species for both clinical research and mathematical mod-
els [16]. 

There is a great body of previous work modeling the 
dynamics of viral infection. The standard three equation 
model of viral infection considers the uninfected cell, 
infected cell, and virus populations but does not include 
the dynamics of immune compartments [16-18]. Subse-
quent models augmented the standard model to four or 
five equations, examining the dynamics of the cellular 
(CTL) and humoral (antibody) immune responses indi-
vidually [17,19] and in concert [20]. Two studies explic-
itly modeled viral dynamics with the dynamics of CTLs 
and antibodies to study Hepatitis C Virus (HCV) [21,22]. 
Wodarz investigated the dynamics and pathology of 
HCV, and Yousfi et al. extended the theoretical results 
by Wodarz with a global stability analysis. However, these 
studies used a model with a depiction of antibody pro-
duction in which antibodies proliferate according to mass 
action between antibodies and virus; this depiction is 
imprecise and a more accurate representation is needed. 

The goal of this study is to create a mathematical 
model of EIAV and immune system dynamics in order to 
predict conditions that correlate with viral control. We 
use a five-equation model, explicitly containing the dy-
namics of CTLs and of antibodies, which builds upon 
previous work. We include an alternate equation for an-
tibody dynamics that models antibody production in di-
rect proportion to virus, consistent with known immu-
nology [23]. We use our model to gain insight into EIAV 
infection, in which both CTL and antibody responses are 
known to be important for control. Specifically, our analy-
sis gives the characteristics of 3 scenarios: no infection, 
viral persistence without CTLs, and viral persistence with 
both CTL and antibody responses. We simulate the long- 
term dynamics of viral infection, showing viral persis-
tence in the context of antibodies alone or of both anti-
bodies and CTLs. 

This paper is organized as follows: Section 2 contains 
a description of the deterministic model along with its 
equilibrium points. In Section 3 we discuss the linear 
stability analysis of the biologically relevant equilibria 
and the conditions for their stability. In addition we dis-
cuss the basic reproduction number, 0 , of the model. 
We also provide numerical simulations that illustrate the 
behavior of solutions for representative parameter sets. In 
Section 4 we conclude the paper with a discussion of the 
implications of these results for understanding control of 
EIAV infection by the cell-mediated and humoral arms 
of the immune response. 

R

2. Mathematical Model 

In this section we present a five-equation model that 
builds upon earlier studies [16,17,21,22]. Our model ex-
plicitly contains the dynamics of CTLs and antibodies, 
including an equation for antibody dynamics that models 
antibody production in direct proportion to virus [23]. 
We then find the steady state solutions. 

2.1. Model Formulation 

Our deterministic model representing the five interacting 
populations is shown by the following system of ordinary 
differential equations: 
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In this model, the target cells of EIAV infection are 
monocyte-derived tissue macrophages [7,11,24,25]. The 
number of uninfected target cells is represented by M. 
These cells become infected cells (I) following contact 
with virus (V) at rate  . Uninfected target cells are gen-
erated at rate   and die at rate  . The infected cell 
death rate is  . Infected cells are killed by cytotoxic T 
lymphocytes, or CTLs (C), at rate . Virus is produced 
by infected cells at rate b and cleared at rate γ. The virus 
is neutralized by antibodies (A) at rate 

k

f . CTLs prolif-
erate in response to contact with infected cells at rate   
and die at rate  . The antibody population grows in 
proportion to virus at rate α [23] and is cleared at rate  . 
A schematic diagram of the model dynamics, indicating 
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,

the flow in and out of each compartment, is shown in 
Figure 1. Model variables and parameters are listed in 
Table 1. The initial conditions for the model are 

0     0 0,  ,  0 00M M V V C C   and    0 0I A  
. We assume all parameters are nonnegative. 0

by setting the equations of the model to zero. The infec-
tion-free steady state (also called the infection-free equi-
librium, or IFE) is given by  

 0 , , , , ,0,0,0,0E M I V C A



 
   

 
     

2.2. Equilibrium Points We obtain four other solutions:  1,2 1,2, , , ,E M I V C A  
and  3,4 1,2

ˆ ˆˆ ˆ ˆ, , , ,E M I V C A , where The equilibria (or steady states) of the model are found  
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Figure 1. Schematic diagram of mathematical model of EIAV 
infection with cellular and humoral immune responses. Po- 
pulations modeled include the target cells (macrophages, M), 
infected cells (I), virus (V), cytotoxic T lymphocytes (C) and 

Table 1. Param

antibodies (A). 
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Since 2V  and are less he steady states 

3. Linear Stability Analysis of Model  

In  discuss the basic reproductive number, 

3.1. Analytical Results 

mber, , is a threshold that 

e  

m

2̂V  than zero, t

2  and 4  are not biologically meaningful and there-
e will n  be discussed further. 

E
for

E
ot

Equilibria 

 this section we

0R , which arises from linear analysis around the infec-
-free equilibrium point, 0E . We provide stability 

conditions for 0E  in Theorem , and we provide exis-
tence criteria fo 1E  and 3E  in Theorem 3. In addition 
we provide a num ical sta lity analysis as well as nu-
merical simulations that illustrate the stability of these 
equilibrium points. 

tion
 2

i
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ed a

delineates whether an infection sp ds or dies out when 
a single infected cell encounters a population of unin-
fected target cells [26-30]. If 0 1R  , then more than one 
cell (on average) becomes infe nd the infection will 
spread; if 0 1R  , then less than one cell (on average) 
becomes infect  and infection will not take hold [31]. 
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Theorem 2. The IFE, 
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of both antibodies and CTLs. 
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Si
Endemic Equilibrium, E3. The endemic equilibrium 

3  shows the case with both antibodies and CTLs. We 
observe nonnegative steady state values for all popula- 
tions. In this case, 0  and 1 . The time course 
of infection, showing each of the populations over 150 
days, is shown in Figure 4. This is the case that corre-
lates with clinical infection of horses with EIAV. 

E

1R  1R 

nce  ˆ 1C R1k


  , E  is b logically possible only  3 io

. Theorem 3 llo

bo

3.2. Numerical Stability Analysis 

eady states of the 

ear stability analysis of the 
eq

3.3. Numerical Simulations 

ear stability with nu-

ection-Free Equilibrium, E0. In the IFE, the infec-
tio

Equilibrium, E1. The boundary equilibrium 

if R   fo ws from the arguments above.  1 1
e noW te that 1R  is a threshold that delineates the 

undary equilibr   1E  from the endemic equilib-
rium  3E . 

ium

Long-term dynamics over 3000 days. Equilibrium val- 
ues are seen clearly in simulations run over 3000 days. 
The boundary equilibrium over 3000 days is shown in 
Figure 5. The endemic equilibrium over 3000 days is 
shown in Figure 6. We observe that final values for M , 

,  and I V A  are greater in 3  than in 1 , but this 
is likely due to the larger value for 

E E
  in this parameter 

set. For parameter set 1 representing the IFE, all popula- 
tions except M  reach zero over 3000 days (data not 
shown). 

In the previous sections we found the st
model and determined thresholds for their linear stability. 
The biologically plausible steady states 0E , 1E , and 

3E  represent the scenarios of the infection-free equilib-
 (IFE), the boundary equilibrium with no CTLs, and 

the endemic equilibrium with both CTL and antibody 
function (Ab), respectively. 

We next performed a lin

rium

uilibria of the model by using numerical values for the 
parameters (i.e., a unique parameter set representing each 
of the three equilibria) and determining the eigenvalues 
of the Jacobian matrices evaluated at each steady state. 
Negative real parts of all the eigenvalues indicated stabil-
ity of the steady state. We present the results using three 
representative parameter sets. Our results are summa-
rized in Table 2. Parameter sets 1, 2, and 3 were selected 
because they predict equilibria 0E , 1E , and 3E , re-
spectively. These parameter sets differ in the valu or λ; 
equivalent results were found by altering the other parame-
ters that affect 0R  (data not shown). 

e f

4. Discussion 

In summary, we constructed a mathematical model of 
EIAV infection that takes into account the dynamics of 
cell-mediated and humoral immune responses. Both of 
these immune components have been found to be neces-
sary for immune control of this infection. We performed 
linear stability analysis and simulation of the model to 
predict long-term behavior in healthy and infected states. 
We presented equations for the basic reproductive num-
ber  as well as a second threshold, 1 . We showed 
that 0  distinguishes the IFE  from the boundary 
equilibrium 

0R
R

R
 0E

 1E  and the endemic equilibrium  3E , 
and that 1  distinguishes 1  from 3 . Finally, we 
presented parameter sets that correlate with the results of 
the linear stability analysis.  

R E EWe now illustrate the results on lin
merical simulations using each of the three parameter 
sets. 

Inf The steady states each describe a scenario with a dif-
ferent virological and immunological profile: viral clear-
ance  0E , control of infection with antibodies and no 
CTLs  1E , and control of infection with both antibod-
ies and CTLs  3E . Biologically, two of these scenarios 
are seen in horses: viral clearance (i.e., no infection) 
 0E  and control of infection with both antibodies and 
CTLs (i.e., coexistence of all five populations)  3E . 
Since coexistence is what is observed in clinical EIAV 
infection, knowledge of the characteristics of this steady 
state may be useful both for understanding fundamental 
mechanisms of immune control as well as for developing 
therapeutic strategies to bring about the control of viral 

n dies out. All populations approach zero except the 
number of uninfected cells, which approaches its unin-
fected steady state level. The time course of infection 
showing each of the populations over 150 days is shown 
in Figure 2. 

Boundary 

1  represents the case with antibodies but no CTLs. 
re 0 1R   and 1 1R  . The long-term dynamics show 

that a lations  a positive steady state except 
CTLs, which decay to zero. The time course of infection 
showing each of the populations over 150 days is shown 
in Figure 3. 

E
He

ll popu  reach

 
Table 2. Numerical results of linear stability analysis. 

Parameter set R0 1 Interpretation Figure R  Equilibrium stability 

1 <1 <1 E0 s ist table, E1 and E3 do not ex No infection 2 

2 >1 <1 E0 ist 3

C  

unstable, E1 stable, E3 does not ex No CTLs , 5 

3 >1 >1 E0 unstable, E1 unstable, E3 stable TLs and Ab 4, 6 
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Figure 2. Long-term dynamics of M, I, V, C, and  popula- A
tions over 150 days for a parameter set representing the 
infection-free equilibrium (IFE). Parameters are as follows: 
λ = 0.05, ρ = 0.01, β = 0.0001, δ = 0.5, k = 0.01, b = 10000, γ = 
20, ψ = 0.75, ω = 5, f = 3, α = 150, μ = 20 (parameter set 1). 
Here, R0 = 0.5 and R1 = 0. 

 

 

Figure 3. Long-term dynamics of M, I, V, C, and A popula-
 tions over 150 days for a parameter set representing the E1

boundary equilibrium. Parameters are as in Figure 2 except 
λ = 1 (parameter set 2). Here, R0 = 10 and R1 = 0.02. 

 

 

Figure 4. Long-term dynamics of M, I, V, C, and A popula-
tions over 150 days for a parameter set representing the E3

endemic equilibrium. Parameters are as in Figure 2 except λ 
= 50 (parameter set 3). Here, R0 = 500 and R1 = 5.26. 

 

 

Figure 5. Long-term dynamics of M, I, V, C, and A popula-
tions over 3000 days for parameter set 2 representing the E1 
boundary equilibrium. Parameters are as in Figure 3. 

 

 

Figure 6. Long-term dynamics of M, I, V, C, and A popula-
tions over 3000 days for parameter set 3 representing the E3 
endemic equilibrium. Parameters are as in Figure 4. 
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 the manuscript. 

Hepatitis B Virus Infection,” Journal of Theoretical Bi- 
ology, Vol. 24 .  

 
infection without disease. Future work in this area may 
be applicable for understanding other lentiviral infections 
that cause disease, such as HIV. 
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