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ABSTRACT 

By the complete discrimination system for polynomials, we classify exact traveling wave solutions to the Zhiber-Shabat 
equation, and compute some new traveling wave solutions. 
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1. Introduction 

The study of exact solutions to nonlinear partial differen- 
tial equations is an important component of integrable 
systems [1]. Many methods, such as the transformed ra- 
tional function method [2], the multiple exp-function 
algorithm [3] and the factorization method [4], have been 
proposed to find exact traveling wave solutions to nonli- 
near partial differential equations. At the same time, Ma 
has obtained complexiton solutions, a kind of multi-wave 
solutions, to some nonlinear partial differential equations 
[5,6]. Liu [7] introduced a simple and efficient method to 
give the classification of exact traveling wave solutions 
to some nonlinear equations [8].  

In this paper, we focus on the Zhiber-Shabat equation 
to classify its traveling wave solutions. A. M. Wazwaz [9] 
and A. G. Davodi et al. [10] have got some traveling 
wave solutions to the Zhiber-Shabat equation. By Liu’s 
method, we’ll classify exact traveling wave solutions to 
the Zhiber-Shabat equation, and compute some new tra- 
veling wave solutions to the equation. 

2. Exact Traveling Wave Solutions 

The Zhiber-Shabat equation reads as:  
2 0u u u

xtu pe qe re            (1) 

where 0p  , q r  are three constants. Take the travel- 
ing wave transformation  

 u u kx t                 (2) 

the corresponding reduced ordinray differential equation 
is given by  

 2 0u u uk u pe qe re              (3) 

Furthermore, we take  u z    where z is a function of 
u , and so, we have  d du z z u     Substituting these 
terms into Equation (2) yields  
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Using the method of the variation of constants, the 
general solution of Equation (3) is given by  
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where c  is an arbitrary constant. Thus the general solu- 
tion of Equation (4) is  
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We take the transformation uv e , the corresponding 
integral becomes  
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Denote  
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The complete discrimination system for  F w  is 
given by  
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Case 1. 10 0D    :  
We have    2
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The corresponding solutions are  
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Case 2. 10 0D    :  
Then    3

F w w   . The solution is given by  
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Case 3. 10 0D    :  
Then      F w w w w       with  

    . Therefore, we have  
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When w   , we obtain a new traveling wave 
solution  
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When w  , we obtain another new traveling wave 
solution  
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where  
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Case 4. 0  :  
Then     2 2 4 0F w w w pw q p q       . The 

corresponding integral becomes  
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When w  , we obtain the following new traveling 
wave solution  



   



1 3

2

1 42
0

2

2
ln

2

1 cn

p
u

k

p q

p q k

p q




 

   

 

 



    
 

 


       

   

  (21) 

where 
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