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ABSTRACT 

An epidemic model is a simplified means of describing the transmission of infectious diseases through individuals. The 
modeling of infectious diseases is a tool which has been used to study the mechanisms by which diseases spread, to 
predict the future course of an outbreak and to evaluate strategies to control an epidemic. Epidemic models are of many 
types. Here, SEIR model is discussed. We first discuss the basics of SEIR model. Then it is applied for vector borne 
diseases. Steady state conditions are derived. A threshold parameter R0 is defined and is shown that the disease will 
spread only if its value exceeds 1. We have applied the basic model to one specific diseases-malaria and did the sensi- 
tivity analysis too using the data for India. We found sensitivity analysis very important as it told us the most sensitive 
parameter to be taken care of. This makes the work more of practical use. Numerical simulation is done for vector and 
host which shows the population dynamics in different compartments. 
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1. Introduction 

Mathematical epidemiology seems to have grown expo- 
nentially starting in the middle of 20th century. A huge 
variety of models have been formulated, mathematically 
analyzed and applied to infectious diseases. 

Nedelman [1] presented the review of the work done 
in the field of malaria modeling. Aron [2] modeled the 
immunity to this disease. Ngwa and Shu [3] designed and 
analyzed the model for malaria when it was in endemic 
situation. Sheikh [4] analyzed an SEIR model with lim- 
ited resources for treatment. Method for analyzing a gen- 
eral compartmental model was given by Drissche and Wat- 
mough [5]. Jones [6] has given the details on basic re- 
production number R0. Simulation is carried out in MAT- 
LAB [7]. Basics of epidemic modeling are explained in 
[8]. 

The idea behind compartmental models is to divide the 
entire population into sets of different classes according 
to its epidemiological status. Epidemic models are of many 
types depending upon the number of compartments con- 
sidered in it. 

In this paper, Section 2 gives model formulation and 
its analysis. A threshold parameter R0 is also discussed in 
this section. Next, in Section 3, we apply this model to 
vector borne diseases. Sensitivity analysis is done using 
values of different parameters in Indian context. These 
values are given in Table 1. The results of sensitivity  

analysis are given in Table 2. Simulation is done using 
MATLAB and is given in Section 5. Here, Figure 1 
shows the trends of human population in different com- 
partments and Figure 2 shows the same for mosquito 
population. 

 
Table 1. Values of Parameters. 

Parameter Value 
ph 0.022 
pv 0.24 
νv 0.083 
νh 0.1 
γh 0.0035 
δh 0.0068 
σv 0.25 
μh 1.46 × 10−5 
μv 0.0165 

 
Table 2. Sensitivity Indices of R0 to the parameters for the 
malaria model. 

Parameter Sign Value 
ph + 0.5000 
pv + 0.5000 
νv + 0.0708 
νh + 0.0009 
γh − 0.1697 
δh − 0.3296 
σv + 1.0000 
μh − 0.5008 
μv − 1.0708 
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Figure 1. Numerical Simulation of Human Population con-
sidering entire population to be susceptible at the initial 
stage. 

 

 
Figure 2. Numerical Simulation of Mosquito Population 
considering entire population to be susceptible at the initial 
stage. 

2. Mathematical Model 

Here, we discuss SEIR epidemic model (Plate 1) that 
have compartments Susceptible, Exposed, Infectious and 
Recovered. 

We prefer this compartmental model over others as it 
takes care of latent period i.e. exposed class which is left 
in SIR or SIS etc. Also it does not make the things too 
complicated as in the models with more compartments. 

2.1. Assumptions 

Let us call S, E, I and R the number of the members of 
each class. We now make assumptions regarding the 
transmission and incubation periods: 

1) The number of infected people increases at a rate 
proportional to both the number of infectious and the 
number of susceptible i.e. βSI with β > 0. So, the number 

  

  Birth 

S                            E                              I                            R 

    

 Death                        Death                    Death                     Death   

                                   

 

Plate 1. The general transfer diagram for SEIR epidemic 
model. 

of susceptible will decrease at the same rate. Here, β is 
called the effective infection rate. 

2) Individuals from exposed class will move to infec- 
tious class with a rate ν (progression rate). 

3) The rate of removal of infectious to recovered com- 
partment is proportional to the number of infectious only 
i.e. γI with γ > 0. Here, γ is called removal rate. 

4) A person can die at any stage by natural causes. 
Therefore μ is taken as natural death rate and δ as disease 
induced death rate. 

2.2. Model 

The model takes the form 
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with S > 0, E ≥ 0, I > 0, R ≥ 0. 
Here, B is new recruitment by birth etc. 
Since an epidemic occurs in a short time period, we 

ignore loss of temporary immunity. Therefore, we have 
no transfer from the recovered compartment back to the 
susceptible compartment. Thus R does not appear in any 
of the first three equations. So, we will analyse the first 
three equations forming new reduced system as 
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Adding above three equations of system (2), we have 
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Now the basic reproduction number R0 will be found 
by using the next generation matrix found in Driessche 
and Watmough (2002). 

It is easy to see that (2) always has a disease free equi- 
librium. 

0 ,0,0
B

X


 
  
 

 

Therefore, here, I has to be less than its initial value I0 
(say). Let  T

, ,X E I S  . 
Therefore  
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where  XF  gives the rate of appearance of new in- 
fections in a compartment and  XV  gives the trans- 
fer of individuals. And  
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Since, 0X  is a disease free equilibrium of (3), there- 
fore the derivatives  and  are par- 
titioned as  
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where F and V are 2 × 2 matrices defined as 
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where i = 1, 2; j = 1, 2. 
Therefore, 
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Here, V is a non-singular M-matrix. Therefore it is in- 
vertible. So,  
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Hence, basic reproduction number R0 is given by 

 1
0 spectral radius of matrix   R FV FV    

 0

B
R


     

 
  

         (5) 

The disease free equilibrium 0X  is locally asymp- 
totically stable if all the eigenvalues of the matrix 

 have positive real parts.    0 0DX X X F V 

Theorem: Consider the disease transmission model 
given by (2) with X  . If 0X  is a disease free equilib- 
rium of the model, then 0X  is locally asymptotically 
stable if 0 1R  , but unstable if , where  is 
defined by (5). 

0 1R  0R

Proof: Let J F V  . Since V is a non-singular M- 
matrix and F is non-negative, J V F    has the Z- 
sign pattern. Thus, 

  0  is a non-singular M-matrix;s J J    
{s(J) is spectral abscissa of J}. 
Since 1FV   is non-negative,  
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Then, we have 
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Finally, since FV   is non-negative, all eigenvalues 
of 1FV   have magnitude less than or equal to  1FV  . 

Thus, 11 FV   is a non-singular M-matrix  
 1 1FV  . 

Hence,  s J 00 if and only if 1R  . 
Similarly it follows that 
  0  is a singular M-matrixs J J  

11  is a singular M-matrixFV  
. 

. 
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It follows that 
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The disease free equilibrium 0X  is locally asymp- 
totically stable if all the eigenvalues of the matrix 

    0 0DX X X F V 0  

have positive real parts. 

3. Application to Vector Borne Disease 

Now we apply this SEIR model to vector borne diseases 
especially in our case to malaria. The model is formu-
lated for both—human population as well as vector po- 
pulation. At time t, for human population, there are Sh 
susceptible, Eh exposed, Ih infectious, Rh recovered and 
for vector population there are Sv susceptible, Ev exposed 
and Iv infectious. We do not take recovered class for 
vector population because once infected, mosquitoes are 
assumed to remain so until death. 

The state variables and parameters used for two popu- 
lations are listed below: 

Mosquito Population 
 Sv: Number of susceptible mosquitoes; 
 Ev: Number of exposed mosquitoes; 
 Iv: Number of infectious mosquitoes; 
 Bv: Recruitment as susceptible per unit time; 0
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 ív: Rate of progression of mosquitoes from the exposed 
state to the infectious state; 

 σv: Mosquito biting rate; 
 ìv: Natural death rate;  
 pv: Probability of transmission of infection from an 

infectious human to a susceptible mosquito; 
 βv: Infection rate = pv ×σv. 

Human Population 
 Sh: Number of susceptible humans; 
 Eh: Number of exposed humans; 
 Ih: Number of infectious humans; 
 Rh: Number of recovered humans; 
 Bh: Recruitment as susceptible per unit time; 
 íh: Rate of progression of humans from the exposed 

state to the infectious state; 
 βh: Removal rate; 
 äh: Disease-induced death rate;  
 ìh: Natural death rate;  
 ph: Probability of transmission of infection from an 

infectious mosquito to a susceptible human;  
 βv: Infection rate = ph ×σv. 

Now the systems differential equations for both the 
populations describing the spread of malaria are as fol- 
lows: 

For human population 
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and for mosquito population 
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By relation (5), R0 is given by  
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This shows that it is a product of the rate of production 
of 1) new exposures and 2) new infections. 

Now if we have a system in which there are multiple 
discrete types of infected individuals [e.g. human and 
mosquitoes, men and women, human and chickens etc.], 
we define the next generation matrix as the square matrix 
G [6] in which ijth—element of G, gij is the expected 

number of secondary infections of type i caused by a 
single infected individual of type j assuming that the 
population of type i is entirely susceptible. That is, each 
element of the matrix G is a reproduction number, but one 
where who infects whom is accounted for. 

So, in our case, there are two classes of infected indi- 
viduals viz. human and mosquitoes. The next generation 
matrix is thus 2 × 2. 

Let M be the expect number of infected mosquitoes and 
H be the expected number of infected humans given that 
the contact between the two occurs in completely suscep- 
tible population. Then the next generation matrix is  
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where 

 2
v v v

v v v

B
M

 
  




 (using relation (5)) 

Here we analyse the model for epidemic situation, so 
new recruitments will not be allowed. So, 
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4. Sensitivity Analysis 

In order to decide the most sensitive parameters, it is 
necessary to know the relative importance of the differ- 
ent factors responsible for its transmission. We calculate 
the sensitivity indices of R0 to the different parameters in 
the model. These indices tell us how crucial each para- 
meter is to disease transmission. 

Here, we use the normalised forward sensitivity index 
of a variable, u, which depends continuously on a pa- 
rameter, p is defined as 

u
p

u p

p u
 

 


 

From Table 2, we see that the most sensitive parame- 
ters are mosquito biting rate σv and mosquito death rate 
μv. 

5. Numerical Simulation 

We do computer simulation using MATLAB for human 
population as well as for mosquito population to visual- 
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