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ABSTRACT 

We consider the initial-boundary value problem for a nonlinear wave equation with strong structural damping and 
nonlinear source terms in IR. We prove the global existence and uniqueness of weak solutions of the problem and then 

we will study the determining modes on the phase space    2 1
00,1 0,1H H  by using energy methods and the concept 

of the completeness defect. 
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1. Introduction 

In this paper we study the initial-boundary value problem 
for the following nonlinear wave equation 

   

   

22
,

0,1 , 0,

tt xx txx x x
x

u u u u u u u f x

x t

      

  
  (1.1) 

with boundary conditions 

   0, 1, 0, > 0u t u t t            (1.2) 

and initial conditions 

        0 1,0 , ,0 , 0,1tu x u x u x u x x       (1.3) 

where > 1  constant,  is a strong structural damp- 

ing term, 

txxu
2

u u  is nonlinear source term and  2

x x
x

u u  

is a nonlinear strain term. 
An other version of problems (1.1)-(1.3) was studied 

in [1-4]. In [1] Chen et al worked that the following ini- 
tial boundary value problem 

     
   

,

0,1 , 0,

tt txx x x
u u u f u g x

x t

    

  
      (1.4) 

         0 10 , 0 ,tu u x u u x x   0,1      (1.5) 

   0, 1, 0, > 0u t u t t           (1.6) 

has a global solution and there exists a compact global 
attractor with finite dimension. In [2] Karachalios and 
Staurakalis studied the local existence for (1.1) with 

0,   ut is a damping term and without nonlinear 
source term. In [3] Çelebi and Uğurlu gave the existence 
of a wide collection of finite sets of functionals on the 
phase space   2 1

00,1 0,1H H   that completely deter- 
mines asymptotic behavior of solutions to the strongly 
damped nonlinear wave equations. In [4] Chueshov pre- 
sented the approach of a set of determining functionals 
containing determining modes and nodes that completely 
determines the long-time behavior of some first and sec- 
ond order evolution equations. 

Similar results of determining modes for similar equa- 
tions have been obtained in [5-7]. 

In this article, we take the problem defined by (1.1)- 
(1.3) which was not investigated in above mentioned 
articles. Our problem has nonlinear strain and source 
terms. The control of long time behavior is achieved due  

to the presence of restoring forces  2
.x x 

x
u u  In Section  

2 under conditions 
       2 1 2

0 1 0, 0,1 0,1 0,1 ,u u H H L      2 0,1f x L  
and > 1,  we prove the global existence and unique- 
ness of a weak solution u of the problems (1.1)-(1.3). In 
Section 3 we study determining modes on the phase 
space    2 1

00,1 0,1H H  by using energy methods and 
the concept of the completeness defect. 
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2. The Global Existence and Uniqueness of 
Weak Solutions 

Let  be the usual Hilbert space of square inte- 
grable functions with the standard  norm 

 2 0,1L
2L .  and  

inner product  Denote  .,. .
2

2
,A

x


 


 the Laplacian  

operator on L2 with domain      2 1
00,1 0,1 .D A H H 

1
 

A is a sectorial operator and that A

 0,1
 is a bounded lin- 

ear operator defined in  see [8]. The nonlinear 
source term 

2L
  2

g u u u  satisfies the following condi- 
tions 

 
2

lim inf 0,
s

G s

s
  

there exists a constant  such that 0 < w

   
2

lim inf 0,
s

sg s wG s

s


  

where  Finally we denote  
0

( ) d .
s

G s g t t 
2   0,1Y D A L   with the standard product norm 

   
1

2 2 2, .
Y

u v Au v   Define A  in Y by 

   
       

, , ,

, .

A u v v Av Au

u v D A D A D A





   

  
      (2.1) 

Then the following Lemma1 is valid [9]. 
Lemma 1 A  is a sectorial operator on Y. 
We define a map G  from  D A  to Y by 

   
   

22
, 0, 3

for ,

x xxG u v u u u u f x

u v D A





   



 ,
  (2.2) 

where   2 0,1 .f L
Using the Sobolev embedding theorem, we can see 

that G  is locally Lipschitz continuous. Thus we apply 
the existence theorem in [8] to get the solutions of initial 
value problem for the following system in Y: 

 , ,tZ A Z G Z Z u v Y            (2.3) 

when 

 22
3

t

t xx xx x xx

u v

v v u u u u u f x  



     .
  (2.4) 

Now, we have the following theorem. 
Theorem 2 (Local existence) For  0 1,u u Y  and 

 there exists  such that 0 < < 1,w
 

0 0 0 ,t t u 1 > 0u
  00, ;t Y,u u C ,t   2 0,1u Ltt  and  0,12

txxu L



 
for a.e.  and u satisfies (1.1)-(1.3). Moreover, 
if 0  is maximal, then either  or 

 00,t t
t 0t   ,

Y
u v  is 

unbounded on   00, .t
Now for the proof of the Theorem 4 (Global Existence) 

we give the following Lemma 3. In the proofs of Lemma 
3 and Theorem 4 (Global Existence) we repeat a similar 
technique used in [1]. 

Lemma 3 For  0 1,u u Y  and 0 <  there exist  < 1,w

constants  , ,w     2 2

0 1, , ,u u K    

 2
 such that for   00,t tK , ,w f  

2 2 2
e w t

t xu u u            (2.5) 

where u is the solution of (1.1)-(1.3). 
Proof. Let tv u u   where   is a constant to be 

determined. Thus (1.1) becomes 

 

   

2

22

1t xx

x x
x

v v v u u

u u u u f x

    



    

  

xx

     (2.6) 

Taking the inner product of both sides of (2.6) with v 
and integrating the resulting equation, we have 

   1 1

d
, ,

d
A u v B u v

t
0            (2.7) 

where 

   

 

2
22 2

1

44

4 4

11
,

2 2 2
1

, ,
4 4

x

x

A u v v u u

u u f u

 




  

  
   (2.8) 

and 

   
 

2 22 23
1

44

4 4

, 1

, .

x x

x

B u v v v u u

u u f u

    

  

    

  
(2.9) 

Now we will estimate 1 ,A u v  and  1 ,B u v . Choose 
  such that 

 
1 1 1

2
1 1

< min , ,
1 2 11

2

w w

  


 

 
 
 

   
 

   (2.10) 

where 1 > 0  is first eigenvalue of the following prob- 
lem 

 0 in 0,1u u    

   0 1u u 0.   

From (2.8) and (2.9) with , we get 0 < < 1w

   

 

  

1 1

22

1

2 43

4

4

4

, ,

1 1
2 2

1 1
2 4

1 1 , .
4

x

x

B u v wA u v

w w
v u

w w
u u

u w f u



   

 

 



             
    

         
   
     
 

1

(2.11) 
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We use Young inequality, Poincaré inequality and (2.10) 
in (2.11) we find 

    2

1 1

1
, ,

4
B u v wA u v f   .       (2.12) 

Similarly, we obtain 

 
2

2 2

1

2 2

1

1
,

2 2

1 1
1 1

2 x

A u v v u

u f



 
 

 

  
        

.

 (2.13) 

Then (2.7), (2.12) and (2.13) yield 

    2

1 1

d 1
, ,

d 4
.A u v wA u v f

t
      (2.14) 

Using Gronwall’s inequality, we have 

    2

1 1 0 1

1
, , e 1 e

4
wt wtA u v A u u f

w
 


      (2.15) 

Since  we can find that    2 1
0 00,1 0,1 ,u H H 

   2 2 1 0 1 0 1, , ,A u u C u u   by using the Sobolev em- 

bedding theorem. Thus using (2.13) in (2.15) we obtain 

2
22 2

1

2

1 1
1 1

2 2 2

1 1 1
e .

2 2

x

wt

v u u

C f
w



  


 


  
        

    
 

   (2.16) 

Taking  

2

1

1 1
min , , 1 1

2 2 2
K

  


             
  

and choosing   we get (2.5).■ 
Now we can prove the global existence of the pro- 

blems (1.1)-(1.3). 
Theorem 4 (Global Existence) For  0 1, ,u u Y  

there exists a global solution u of problems (1.1)-(1.3) 
satisfying .     , 0,tu u C Y  ;

Proof. In Theorem 2 (Local Existence) we know that 
 for  and ,  , tu u Y  00,t t  2 0,1ttu L  2 0,1txxu L  

for a.e. t  In Lemma 3 we find that  00, .t ,xu  

tu  and u  are uniformly bounded for all  
Now we prove the global existence of the solution u. To 
do this we need to show that 

> 0.t

xxu  is uniformly bound- 
ed for  > 0.t

Now, taking the inner product of both sides (1.1) in 
 with  2 0,1L xxu , we have 

 

 

1
2 2 2

0

1
2 2 2

0

d
, 3

d 2

3 d , 0

xx t xx tx x

x xx xx xx

u u u u u u
t

u u x u f u



 

    
 

  





2
d

.

x



 (2.17) 

Then we multiply both sides of (2.17) by   and add 
to (2.7) to obtain 

   

 

   

2
2

1

2

0

1
2 2 2 2 23

0

2 44

4 4

d
, ,

d 2

d

3 d

1 , 0.

xx t xx

x xx x

x x

u u u A u v
t

u u x v v u

u u u f u

 

   

    

 
  

 



   

1
2 2 22 , 3xx tx xx xu u f u u u x     

     



(2.18) 

Using Poincaré inequality and (2.10) in (2.18), we h



ave 

   2 2

d
, ,

d t tA u u B u u
t

0          (2.19) 

where 

     
2

2

2 1, , ,
2t xx t xxA u u u u u A u v     (2.20)


 

and 

   

 
 

1
2 222

2B u
0

1
2 2 2

0

2 2 23

44

4 4

, , 3 d

3 d

1

, .

t xx xx x

x xx t

x x

x

u u f u u u x

u u x u

u u u

u u f u

  

 

   

  

  

 

  

  





Then thanks to Young inequality we obtain 

(2.21) 

   2 2

3
2 22 2

, ,

3 .
2

t t

x t

B u u A u u

f u u u



 



    
   (2.22) 

Taking 
3

3 max 1, ,3 ,C
2

 
 

    in (2.22)
 

 we get 

   

 
2 2

2 22 2

3

, ,

.

t t

x t

B u u A u u

C f u u u



    
    

.19), (2.23) and Gronwall t 

   (2.23) 

Using (2 ’s inequality we ge

      

 
2 2

2 22 2( )
3

0

, 0 , 0 e

e d .u s
 (2.24) 

t
t t

t
t s

x t

A u u A u u

C f u u







 



   
Thus (2.24) and Lemma 3 imply that  2 , tA u u  is uni- 

formly bounded in  0, ,  because of 
    2 40 , 0t ,A u u 

   
C  for some constant  

 4 4 t Y
 and we have 0 , 0C C u u

 

 
2

2
2 2 22

, tA u u

u C u u


   
 (2.25) 

2

54 xx u
 

x tf 
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5 2

1
max 1, .


  Finally, uswhere 

4
C




 
 

ing Sobolev em-  

bedding theorem and Lemma 3 we obtain that xxu  is 
uniformly bounded in ■ 

Theorem 5 (Unique  of weak solution) A weak 
 of (1.1)-(1.3) is un
f. Let u and v be t

e def
e l  T

 0, .
ness

solution ique. 
Proo wo distinct solutions to (1.1)- 

(1.3) for the same initial and boundary data. W ine 
the difference of thes  so utions as w u v  hen 
fro

.
m (1.1)-(1.3), w satisfies 

 
    
  

2 2
0,

0,1 , 0,

tt xx txx

x x x x



2 2

x x

u v vw w w u   

u u v v

x t

  

  

     (2.26) 

   0, 1, 0, > 0w t w t t           (2.27) 


Taking the inner product of (2.26) by  in 

    ,0 0, ,0 0, 0,1tw x w x x         (2.28) 

tw  2 0,1L  
and integrating by parts gives 

 2 2 2
w

1

2 2

0

1 d

2 d

d .

t x tx

t

w w
t

u u v v w x

  

 

 (2.29

By means of the inequality 

2 2

0

1

dx x x x txu u v v w x      ) 

 2 2 21 ,x x y y R x y
           (2.30) 

which holds for all  , , ,x y R R   > 0R  and 2,   
it follows from (2.29) that 

 2 2d 2

2 2 4
2 22

d

3 .

t x tx

x t

w w w
t

w R w

  



    

Thus we get 

21
1

1

3 9R R
 

 
 
 

 (2.31) 

   2 2 2 2 2

tw  (2.32) 
d

d t x tx xw w w w
t

    

where 
2 2 4

21 2
1

1

3 9
max ,3 .

R R
R


 

 
  

 
  Consequently the 

differential form of Gronwall’s inequality implies to give 
 on   0w t   0, .T ■ 

Now we give some definitions, theorems and corollary 

Defini  [4] L  be a finite 
set of linear continuou

3. Existence of Determining Functionals 

for proving existence of determining functionals. 

tion 6 et  : 1, ,j j n   
s functionals on  

   2 1
00,1 0,1 .H H  We will say that   is a set of de- 

termining functionals for (1.1)-(1.3) when for any two  

solutions       2 1
0, 0, , 0,1 0,1u v C H H    with   tu

and     1 ,20, , 0,tv C L   the conditions 

   
1t

2
d 0, 1, 2, ,j

t
t

v k k j n


     (3.1) lim u k   

imply 

       2 2
lim 0.xx xx
t

u t v t


 
t tu t v t   

   (3.2) 

Definition 7 [4] Let V and H be the reflexive
spaces and V be continuously and densely embedded into 

 

 Banach 

H. Let  : 1, ,j j n    
V. We define the compl

be a set of linear function- 
als on eteness defect 

 ,V H   of the set  
the s

 with respect to the pair of 
paces V and H by the formula 

 
  

,

sup : , 0, , 1 .j jH

V H

u u V u u



V
     

 (3.3) 

ves the spectral characteri- 
zation of the completeness defect in

The following assertion gi
 the case when V and 

H are the Hilbert spaces. 
Theorem 8 [4] Let V and H be the separable H

spaces such that V is compactly and densely embedded 
in

ilbert 

to H. Let K be the self-adjoint, positive and compact 
operator in the space V defined by the equality 

   ,,
V H

Ku v u v  

for , .u v V  Then the completeness defect  ,V H  
of a set   of linear functionals on V can be evaluated 
by the formula 

   max,V H P KP     

where P  
r

i  V on thes the orthoprojector in the space  
annihilato  

  : 0,u V v ,       

 max S  
lla

is the maximal eigenvalue of the operator S. 
Coro ry 9 [4] Let the conditions of Theorem 8 be 

hold and let us denote by   the orthonormal basis in 
the space V

ie  
of that consists  the eigenvectors of the 

operator K: 

 , , ,i i i i j ijKe e e e

1 2 0.
V

n, lim
n

  

  


  
          (3.4) 

Then the completeness defect of the set of functionals, 



    : , , 1, 2,j j j V
V u u e j        , n
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can be evaluated by the formula 

  1, .nV H    

The following theorem establishes a relation between 
the completeness defect and the set 

Theorem 10 [4] Let  be the com- 
ctionals on V 

sitive constant 
 such that 

.  
 ,V H  

linear fun
ists a po

pleteness defect of a set   of 
with respect to H. Then there ex
C

  sup : , 1
H V

u C u u 
        (3.5) 

for any ,u V  where   is the c elos d 
al

linear span of 
the set   in ,V   the du  space of V and .


 is the 

norm in .V   
The following version of Gronwall’s lemma is also 
ded to determnee ine behavior of solutions as 

Lemma 11 [4] Let 
.t   

  be a locally integrab
valued function on satisfying for some 

the

        (3.6) 

where 

le real 
  ,0,  

0 < <T   following conditions 

t T

 

 liminf d > 0,z z   
t

t




 limsup d < ,
t T

t
z z


           (3.7) 

t



 max ,0   
locally integrable 

. Further, let κ be a real valued 
function defined on  0,  such that 

 lim d 0,
t T

t
t

z z





            (3.8) 

where  Suppose that  max ,0 .     is an abso- 
lutely c gative function on  0,ontinuous non-ne   such 
that 

 d
, a.e. on 0, .

dt

             (3.9) 

Then as 
 ve on

soluti

 Let be a set of lin- 
ear continuous fu

  0t   
we can pro

.t   
thNow e main result c cerning exis- 

tence of a set of determining functionals of ons to 
problems (1.1)-(1.3). 

Theorem 12  : 1, ,j j n     
nctionals on the space  2 0,1H   

 1
0 0,1H  and let       ,1 , 0,1L  2 1

00,1H H   
number satisfying 

20
be a positive 

 4 4 2
5 32 9 18 > 0

2
A R R

     where > 1,  R3, R5 posi-  

tive constants. Then,   is a set of determining func- 
tio ). 

lems (1.1)-
(1.3). Le be the difference of these solutions

ing the 

nals for (1.1)-(1.3
Proof. Let u and v be two solutions of prob  

t w u v  . 
Thus w satisfies (2.26)-(2.28). Now tak

 
 2 0,1L  

 
    

inner prod 6) by  we get uct of (2.2 tw



2 2 2

2

1 d

2 d t x tx

x x x tx

w w
t

u

 

 in n right hand side 
of (3.10) we obtain 


0

1
2 2

0

d .

x x

tu u v v w x 
Using (2.30) and Young equality i

1
2

dxu v v w x      (3.10) 

w

 2 2 2

2 224 2
3 2

d
2

d
1 1

18 18 .
2 2

t x tx

t x tx

w w w
t

R w w w R w

 



 

    24

On the other hand, the inner product of (2.26) by 

 (3.11) 

2L  

xxw  and integration by parts over  0,1  yields 

 

 

    2 2

0

d .x x x x xx
x x

u u v w x 

2d  2 2

1
2 2

0

1

,
d 2

d

xx t xx tx xx

xx

w w w w w
t

u u v v w x

v

   
 

   

We assume that for some and any small v, v1, 

 (3.12) 

 2p   

2 ,v   the nonlinear function  satisfies  1f C 

   

     
1p p

2 2

1 2 1 2 1 2

,

,
p p

f v C v f v C v

f v f v C v v v v
 

 

    

where C is independent of v, v1, v2 [10]. Using (2.30) and 
(3.13) in (3.12) we have 



 (3.13) 

 2 2 2d
,xx t xx tw w w w

  

 
1 1

2
5

0 0

d 2

3 d d

x xx

xx x x x xx

w
t

R w w x C u v w w x






 

   
  (3.14) 

Using the Hölder, Young and Sobolev inequalities in 
right hand side of (3.14) we obtain the estimate 

 

 

2 2

2 224 2
5

d
,

d 2

1
9

4

xx t xx tx xx

xx xx xx xx

w w w w w
t

R w w CS u v w

 



    
 

   

2

where is the constant in the Sobolev inequality. 
Si

 (3.15) 

S  
nce    2 1

00,1 0,1 ,u H H   there exists a positive 
constant D such that .xxu D  Then we get 

 2 2

224 2
5

d
,

d 2

1
9 2 .

4

xx t xx tx xx

xx

w w w w w
t

R w CS D w

 



    
 

    
 

 

2

 (3.16) 
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Adding (3.16) to (3.11) and using Poincaré inequality 
we obtain 

   

 

2 2

2
 (3.17) 

24 2 2 4
5 3 4

1

2

2 1
d

1
9 18 18

2

1 1

tx xx

tx

E t w w
t

R R w R w

 




  

 
    

 
 

where are positive constants and 

2

1

2
2 4 xxCS D w


   
 

d

3 4 5, , ,R R R  

   2 2 2
,

2t x xx tE t w w w w w
    . xx

Choosing  

4 2 2 4 2
5 3 4

1 1

1 1 1
max 9 18 , 18 , 2

2 2 2 4
R R R CS D

  
 

 



    


 

) leads to in (3.17

 

 

2 2

24 2
5 3

d 3
1

d 2 2

9 18 .

tx xxE t w w
t

R R w

     
 

 
   3.18) 

Let 

 (



0,1
 denote the completeness defect between

  and and that is 
 

  2 1
0 0,1H H    2 0,1L  

  
  

2, 0,1L 

sup : , 0, , 1 .j jw w w w


     
 (3.19) 

From Theorem 10 we have 

 
1,2,...,j n

g both  (3.20) and 

maxxx jw w C w         (3.20) 

for all Squarin sides of using 
Cauchy’s inequality we obtain 

.w  

  222 2 2

=1,2,...,
2 2 maxxx j

j n
w w C w     .

eads to 

 (3.21) 

Combining (3.21) in (3.18) l

 

   

2 2

1,2,...,

d 3
1

d 2 2

max

tx xx

j
j n

E t w w
t

w

 




    
 






Then we choose

224 2 2 2
5 39 18 2 2xxR R w C

   


 (3.22) 

 > 0  as small as possible so that  

 2 4 2
6 5 32 9 18 > 0.

2
R R    HencC


e, from (3.22) we 

have 

 

   

2

6

24 2 2
5 3

1,2, ,

d 3
1

d 2

2 9 18 max

tx xx

j
j n

E t w C w
t

R R C w






    
 

 



 

2

   (3.23) 

and using Poincaré inequality in (3.23) we find 

 

   

2 2 26

d 2 xx

C
w w

t
 6

1 1

24 2 2
5 3

1,2, ,

d 3
1

2 2

2 9 18 max

t x

j
j n

C
E t w

R R C w






    
 

 



(3.24) 

Now we find upper and lower bounds fo
tional 

r the func- 
 E t

n
 owing to the Cauchy-Schwartz and the 

Cauchy i equalities: 

  2 21
, .w w w w


      

4t xx t xx
   (3.25) 

Therefore, using (3.25) and from the definition of 
 E t , we can find that 

 

2 2 21

.
4t x xxw w w





 

 


Hence, from (3.26) we can obtain tha
positive constant  

2 2 2

1
4

1 3
1

t x xxw w w

E t




   
 

   


 (3.26) 

t there exists a 

 
 

1 3 2 2
min

C C 
 6 6

1, ,
2 1 2 3


 

    
  

 

such that 

   

    24 2 2
5 32 9 18 .max jR R C w  

1,2, ,

d

d

j n

E t E t
t









   (3.27) 

Applying Lemma 11 to (3.27) with  

       24 2 2
1,2, ,5 32 9 18 ,max j n jt R R C w t 
      

  ,t   and    t E t   
at if 

and using a result of Lem- 
see th

tends to zero as  then  Thus we 
ob

ma 11 we 

 d
t T

t

z z


  

,t    0.E t 
tain that 
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As a result from Definition 6, the set  defined on 
  is a set of dete g functi (1.1)-(1.3). 
Therefore we complete the proof of 2.■ 

rminin onals f
 Theorem 1
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