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ABSTRACT

We consider the initial-boundary value problem for a nonlinear wave equation with strong structural damping and
nonlinear source terms in IR. We prove the global existence and uniqueness of weak solutions of the problem and then

we will study the determining modes on the phase space H#(0,1)VH, (0,1) by using energy methods and the concept

of the completeness defect.
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1. Introduction

In this paper we study the initial-boundary value problem
for the following nonlinear wave equation

u, —ou,  —au,, -|-|u|2 u —,u( u, : uX)X = f(x), (L)
xXe (0,1), te [0,00)
with boundary conditions
u(O,t)zu(l,t)zO,t>0 (1.2)

and initial conditions
u(x,O):uo(x),ut(x,O):ul(x),xe(O,l) (1.3)
where o >1 constant, u,  is a strong structural damp-

. 2 . . 2
ing term, |u| u is nonlinear source term and (|MY| ”x)

X

is a nonlinear strain term.
An other version of problems (1.1)-(1.3) was studied
in [1-4]. In [1] Chen et al worked that the following ini-

tial boundary value problem
u, =au,, +G(ux )x —f(u)+g(x),

1.4
xe(O,l),te[O,oo) (14)

u(O) =1u, (x),u[ (O) =u, (x), X 6(0,1) (1.5)
u(0,¢)=u(1,/)=0,1>0 (1.6)
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has a global solution and there exists a compact global
attractor with finite dimension. In [2] Karachalios and
Staurakalis studied the local existence for (1.1) with
#=0, u, is a damping term and without nonlinear
source term. In [3] Celebi and Ugurlu gave the existence
of a wide collection of finite sets of functionals on the
phase space H?(0,1)VH,(0,1) that completely deter-
mines asymptotic behavior of solutions to the strongly
damped nonlinear wave equations. In [4] Chueshov pre-
sented the approach of a set of determining functionals
containing determining modes and nodes that completely
determines the long-time behavior of some first and sec-
ond order evolution equations.

Similar results of determining modes for similar equa-
tions have been obtained in [5-7].

In this article, we take the problem defined by (1.1)-
(1.3) which was not investigated in above mentioned
articles. Our problem has nonlinear strain and source
terms. The control of long time behavior is achieved due

to the presence of restoring forces (|th|2 ux) . In Section

2 under conditions

(ug,u,) e H*(0,1)NH, (0,1)x L (0,1),  f(x)eL*(0,1)
and a>1, we prove the global existence and unique-
ness of a weak solution u of the problems (1.1)-(1.3). In
Section 3 we study determining modes on the phase
space H*(0,1)NH,(0,1) by using energy methods and
the concept of the completeness defect.
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2. The Global Existence and Uniqueness of
Weak Solutions

Let I*(0,1) be the usual Hilbert space of square inte-

grable functions with the standard I* norm |||| and
2

inner product (.,.). Denote A:—a—

pRex the Laplacian
e

operator on L* with domain D (4)=H"(0,1)N H, (0,1).
A is a sectorial operator and that 4™ is a bounded lin-
car operator defined in L*(0,1) see [8]. The nonlinear
source term g (u)= |u|2 u satisfies the following condi-
tions

G(s) >0,

lim inf S

S‘A):X) S

there exists a constant 0 <w such that

fim ing 28 (8) =G (s)

Js]—>o s

20,

where G(s) = j g(t)dt. Finally we denote
0
Y =D(A4)xL*(0,1) with the standard product norm
1
[(esv), = (4wl +[M7)* - Define 4, in ¥y

A, (u,v)=(v,—~adv-adu),

2.1
(u,v)eD(4,)=D(A)xD(A). @D
Then the following Lemmal is valid [9].
Lemmal 4, is a sectorial operator on Y.
We defineamap G, from D(4,) toYby
G, () =0, fuf* w4 3, [ e, + £ (x)), o

for (u,v)e D(4,)

where f e L*(0,1).

Using the Sobolev embedding theorem, we can see
that G, is locally Lipschitz continuous. Thus we apply
the existence theorem in [8] to get the solutions of initial
value problem for the following system in Y-

Z,=4,72+G,Z, Zz(u,v)eY (2.3)
when

=V

2.4
v, =av, +au, —|u|2 u +3,u|ux|2 U, +f(x). 24

Now, we have the following theorem.

Theorem 2 (Local existence) For (u,,u,)eY and
0<w<l1, there exists 1, =t,(uy,u;)>0 such that
(uu,)€C([0,,):Y), u,eL*(0,1) and u,, €L’(0,1)

forae. te (0, to) and u satisfies (1.1)-(1.3). Moreover,
if t, is maximal, then either ty=o or |((u,v) , s
unbounded on [0,1,).

Now for the proof of the Theorem 4 (Global Existence)
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we give the following Lemma 3. In the proofs of Lemma
3 and Theorem 4 (Global Existence) we repeat a similar
technique used in [1].

Lemma 3 For (uy,u;)€Y and 0<w<1, there exist

constants p = p(a,w), Y= ‘P("uo ’ R u1||2 ,K),
[0S Q(K,w, f||2) such that for te (O,IO)
| + [, [P + [l < e + @ (2.5)

where u is the solution of (1.1)-(1.3).
Proof. Let v=u,+pu where p is a constant to be
determined. Thus (1.1) becomes

v, —avﬂ—pv+p2u+a(p—l)un
“u,) =/(x)

Taking the inner product of both sides of (2.6) with v
and integrating the resulting equation, we have

2.6)

2
= g,

%A, (u,v)+B1 (u,v) =0 2.7)
where
| 2 a(p-1
A ) =+ -2 e
1 y7, .
el e = (),
and
B ws)=alo b+ Wl -l )
+plll;+ ol [ - p(1o0).

Now we will estimate 4, («,v) and B, (u,v). Choose
p such that

w4 a
1+%’1+ﬂ1 ’ﬂla+2(1—w)2

£ <min (2.10)

where A, >0 is first eigenvalue of the following prob-
lem

Au+Au=0 in (0,1)
u(O)zu(l)zO.
From (2.8) and (2.9) with 0 <w <1, we get
B, (u,v)—pr1 (u,v)

Z(aﬂl—p(l+%D"v"z+pa(p—l)[%—lj u

(12l + 1%l
+,up(1—%j j—p(l—w)(f,u).

2

x

2.11)

uX

APM



U. DINLEMEZ 453

We use Young inequality, Poincaré inequality and (2.10)
in (2.11) we find

B, (u,v)— pw4, (u,v)z—%"f"z. (2.12)

Similarly, we obtain

1 2
A )2 L+ 2

(2.13)
+g[l—p[1+in u, 2| ’
2 A po

Then (2.7), (2.12) and (2.13) yield

diA (u v)+pr u, v —||f|| (2.14)
Using Gronwall’s 1nequa11ty, we have
4 (.)€ A4 (g, )€ 4 ||f|| (1-e) (2.15)

Since u, € H*(0,1)N H, (0,1), we can find that
|A1 (19,1 )| < C(""‘O"2 e
bedding theorem. Thus using (2.13) in (2.15) we obtain

LN PR
L RCa TR ]

scer eI
w o

Taking

2
K=min]~ 2= Z1_ 1+ L
27272 A4

and choosing p we get (2.5).m

Now we can prove the global existence of the pro-
blems (1.1)-(1.3).

Theorem 4 (Global Existence) For (uy,u)e?,
there exists a global solution u of problems (1.1)-(1.3)
satisfying (u,u,) € C([O,oo);Y) .

Proof. In Theorem 2 (Local Existence) we know that
(u,u,)eY for t€[0,1,) and u,eL’(0,1), u, L’(0,1)
for a.c. te(Ot ) In Lemma 3 we find that ||u
J«.| and |u| are uniformly bounded for all £>0.
Now we prove the global existence of the solution u. To
do this we need to show that |ju || is uniformly bound-
ed for ¢>0.

Now, taking the inner product of both sides (1.1) in
(0,1) with —u,, we have

d |« 2
b )| -
i 2 2

ol +(foy) =

’ s p) by using the Sobolev em-

2

u

X

(2.16)

u

23

1
y 3J.|u|2 |th|2 dx
0 (2.17)
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Then we multiply both sides of (2.17) by « and add
to (2.7) to obtain

d 2

5{% U, g —Ot(u,,uu)+Al (u,v)}

+a2||un||2—a u, 2+a(f,uxx) @.18)
oM+ fulf

=pa(p=1)u[ +plul;+ uolu|; - p(fu)=0

Using Poincaré inequality and (2.10) in (2.18), we have

%Az(u,u,)+32(u,u,)30 (2.19)
where
2
A, (uu,) = % uy || —er(u,u, )+ 4 (u,v)  (2.20)
and
B, (u,u,)= 2||uxx|| +a(f.u,)
0
t”2 (2.21)
—pa(p Pl
+p||u||4 —P(f,u)-
Then thanks to Young inequality we obtain
B, (u,u,)— pA; (u,u,)
(2.22)

3
P24

3
Taking C, = max {1,,00:,3,0,%} in (2.22) we get

>-|7f

B, (u,u,)—,oA2 (u,u,)
2T+l + e -
Using (2.19), (2.23) and Gronwall’s inequality we get
Ay (u,u,) < 4, (u(0),u,(0))e™
t
+C e A o+l o s
0

Thus (2.24) and Lemma 3 imply that 4, (u,ut) is uni-
formly bounded in [0,%0), because of

(2.23)

u

X

2.24)

u

X

4, (u(0),u,(0))<C,, for some constant
C,=C, ("u(O) u, (O)Hy) and we have
A4, (u,ut)
(2.25)
Cl I+l + el
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where C; = max {1,4—12}. Finally, using Sobolev em-
P

bedding theorem and Lemma 3 we obtain that ||un|| is
uniformly bounded in [0,0).m

Theorem 5 (Uniqueness of weak solution) 4 weak
solution of (1.1)-(1.3) is unique.

Proof. Let u and v be two distinct solutions to (1.1)-
(1.3) for the same initial and boundary data. We define
the difference of these solutions as w=u—v. Then
from (1.1)-(1.3), w satisfies

W, —aw, amu+@mu_prﬁ
,u(( x 2y )) -0, (2.26)
xe(0,1),r€ [ )
w(0,t)=w(1,¢)=0,>0 (2.27)
w(x,O)zO, w,(x,O)zO,xe(O,l) (2.28)

Taking the inner product of (2.26) by w, in L*(0,1)
and integrating by parts gives

1d
2d{ w, '+ e,
Aw, [dx (2.29)
0
1
b [ o= of? o] .
0

By means of the inequality

-2
e

which holds for all x,ye[-R,R],
it follows from (2.29) that

Y (r-DR -y, (2.30)

R>0 and 72>2,

.%{ "} alw,
2.31)
< (ﬁqrﬂ} w [ +3R? ||wt||2.
4 a '
Thus we get
d
E{ °) “<nffw )+l @32

2 2 p4
3R 9'” Uy 3R } Consequently the

where 7= max{
a

differential form of Gronwall’s inequality implies to give
w()=0 on [0,7].m

3. Existence of Deter mining Functionals

Now we give some definitions, theorems and corollary
for proving existence of determining functionals.

Copyright © 2013 SciRes.

Definition 6 [4] Let I={¢,:j=1,-,
set of linear continuous functionals on
H?(0,1)NH, (0,1). We will say that 3 is a set of de-
termining functionals for (1.1)-(1.3) when for any two
solutions u,v e C([O,oo),H2 (0,1)nH, (O,l)) with u,

and v, € C([O,oo),L2 (0,1)), the conditions

n} be a finite

}EETVJ.(u(k)—v(k))rdk:O,j:1,2,-~~,n 3.1)
imply
tim| e (1) v, () +e, ()0, () |0 32

Definition 7 [4] Let V and H be the reflexive Banach
spaces and V be continuously and densely embedded into
H. Let 3= {Ei e 1,---,n} be a set of linear function-
als on V. We define the completeness defect
Bs = Ps (V,H) of the set 3 with respect to the pair of
the spaces V and H by the formula

B (V.H)

3.3
= sup{”u"H uel,l,; (u) =0,0, € S,"u”V < 1}. 33)

The following assertion gives the spectral characteri-
zation of the completeness defect in the case when V" and
H are the Hilbert spaces.

Theorem 8 [4] Let V and H be the separable Hilbert
spaces such that V is compactly and densely embedded
into H. Let K be the self-adjoint, positive and compact
operator in the space V defined by the equality

(Kuv), =(uv),

for u,veV. Then the completeness defect px (V,H )
of a set 3 of linear functionals on V can be evaluated
by the formula

ﬁS(V’H)Z

is the orthoprojector in the space V on the

ymax (})SKP3 )

where Py
annihilator

3 ={ueV:l(v)=0,le3},

¥ max (S ) is the maximal eigenvalue of the operator S.

Corollary 9 [4] Let the conditions of Theorem 8 be
hold and let us denote by {e,} the orthonormal basis in
the space V that consists of the eigenvectors of the
operator K:

i’

Ke =ye, (el.,ej )V =9, 3.4)

Vy2y, 2, limy, =0.

Then the completeness defect of the set of functionals,

Sz{éj eV’ :Z,(u)=(u,ej)y,j:1,2,...,n}
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can be evaluated by the formula

ﬂS(V’H):\/a'

The following theorem establishes a relation between
the completeness defect and the set 3.

Theorem 10 [4] Let fy=p+(V,H) be the com-
pleteness defect of a set 3 of linear functionals on V
with respect to H. Then there exists a positive constant

C such that

||u||H <C, sup{|€(u)

(. <1f+ By ul,

for any ueV, where 3 is the closed linear span of
the set 3 in V", the dual space of V and |||L is the
normin V",
The following version of Gronwall’s lemma is also
needed to determine behavior of solutions as ¢ — .
Lemma 11 [4] Let & be a locally integrable real
valued function on (0,00), satisfying for some
0<T <oo the following conditions

3.5)

t+T

11m1nf_[§ dz=6’>0,

t—o

(3.6)

t+T

limsup I {

t—®0

z)dz=T <00, 3.7)

where ¢~ =max{-¢,0}. Further, let x be a real valued
locally integrable function defined on (0,%0) such that

t+T
lim I K"

>0

(z)dz=0, (3.8)

where k' =max{k,0}. Suppose that & is an abso-
lutely continuous non-negative function on (0,oo) such
that

dg
dt

Then f(t)—)O as t— oo,

Now we can prove the main result concerning exis-
tence of a set of determining functionals of solutions to
problems (1.1)-(1.3).

Theorem 12 Let J—{Z cj=1,- n} be a set of lin-
ear continuous functionals on the space H* (O l)ﬂ

Hy(0,1) and let By = p(H? (0,1)NH, (0.1),L7(0,1))

be a positive number satisfying

A:%—2(9R§+18R§)ﬂ§>0 where o >1, Rs, Rs posi-

+¢¢ <k, ae.on(0,). (3.9)

tive constants. Then, 3 is a set of determining func-
tionals for (1.1)-(1.3).

Proof. Let u and v be two solutions of problems (1.1)-
(1.3). Let w=u—v be the difference of these solutions.
Thus w satisfies (2.26)-(2.28). Now taking the L*(0,1)
inner product of (2.26) by w, we get

Copyright © 2013 SciRes.

2

Sacllel vl

- af{( )~
—.:[(|u|2 u —|v|2 v) w,dx

Using (2.30) and Young inequality in right hand side
of (3.10) we obtain

bl b

<18’ + 3w+

X

t

u, vv) )w,xdx (3.10)

3.11)

1182 R |w, |

On the other hand, the L’ inner product of (2.26) by
-w,, and integration by parts over (0,1) yields

d
a{% " 2‘<W~W”)}‘

—ﬂg«u:ux);(

We assume that for some p>2 and any small v, vy,
v, € R, the nonlinear function f eC' (R) satisfies

|f(v)|SC|v|p,|f'(v
|f'(vl)—f'(v2)|SC(|VI|1"2 +|\;2|p-2)|vl —v2|,

where C is independent of v, v;, v, [10]. Using (2.30) and
(3.13) in (3.12) we have

;‘t{—n " 2—<w,,m}—|

2
w,

29

(3.12)

v, ? x)x)wxxdx.

<™
(3.13)

2 2
W,

24
x)Wx W,

Using the Holder, Young and Sobolev inequalities in
right hand side of (3.14) we obtain the estimate

d |« 2
E{E w _(WI’W‘(}()}—|

b P s (f,

(3.14)

2
w

24

(3.15)

2

<OR!||w|’

+(v

)

where S is the constant in the Sobolev inequality.
Since ue H?(0,1)(1H,(0,1), there exists a positive
constant D such that ||um| < D. Then we get

d |«
gl - -

<OR ||’ {4+2yCSD}|| o -

w

xx

xx

2
w,

x

(3.16)
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Adding (3.16) to (3.11) and using Poincaré inequality
we obtain

d
dr

<{9R! +18R] {w]’ +{ﬁ+18‘u2R:}

2

E(t)+ (2 _1)"sz”2 +a

WXX

> (3.17)

th

1 1
+4 =t —+2uCS* D ||w,. |
24, 4
where R,,R,,R;, are positive constants and

E(t)=||wt||2+a 2—(wt,wﬂ).

2 A
M}x + E"Wxx

Choosing

% _ max{ R} +18R? ——+ 1847 R} ,——+ 14 2405 D
2 2, 23, 4

1

in (3.17) leads to
d 3a
—E S, |
a50(51)
<{9R! +18R} {[n]".

2 (04 2
|

(3.18)

Let p; denote the completeness defect between
I'=H?(0,1)NH,(0,1) and L*(0,1) and thatis

B5(T.27 (0.1))

(3.19)
= sup{"w" we F,éj (w) = O,Zj € S,”w”r < 1}.
From Theorem 10 we have
W] < Bs|w. +C5j31?§n|€ S0 620

for all weTl. Squaring both sides of (3.20) and using
Cauchy’s inequality we obtain

Pl <22 . +2€3 max |1, (w[. G2
J=12,...n
Combining (3.21) in (3.18) leads to
d 3a a
EE(t)+(7—lj ol +Epe |
(3.22)
£{9R54+18R32}{2,B§ we | +2C2 max |¢ j(w)|2}
Jj=12,...n

Then we choose S5 >0 as small as possible so that

C, = %—2ﬁ§ {9R54 +18R32} >0. Hence, from (3.22) we

have
d 3
aE(z){?‘”-ljm 4 Gyl
R EE)
<2{9R} +18R;} sz‘jiﬁf,?‘.,n 05 (w)

Copyright © 2013 SciRes.

and using Poincaré inequality in (3.23) we find
d 3x 2 C C
—E(t)+ 4| =—-1]|w| +=* =
& B0+ a2 ol + S+
<2{9R+18R}C3 max |0 (w)

Now we find upper and lower bounds for the func-

J=1.2,n
tional E (t) owing to the Cauchy-Schwartz and the
Cauchy inequalities:

2 2
+

WX

ey

2

1
(LR [ A N R B

Therefore, using (3.25) and from the definition of
E(t), we can find that

1
(1= +
1
<E(1) s(l+;j||w,||2 .

Hence, from (3.26) we can obtain that there exists a
positive constant

n= min{—ﬂqa(&z ~2) &,11 &}

2 o 2
i+ |
(3.26)
2

Well -

2> 3«
+_
4

WX

2(a+1) "2 "V 3a
such that
S E(0)+nE()
dr REE2)
<2{OR! +18R} | C3 max |¢,(w)) -

J=1.2,0n

Applying Lemma 11 to (3.27) with

K (1) = 2{9RS +18R} | Cimax 12,0

ZJ(W(’))F’

C(t) =7, and f(t) = E(t) and using a result of Lem-
ma 11 we see that if

t+T

.!. k*(z)dz

tends to zero as r—oo, then E(f)—0. Thus we
obtain that
2} -0

? _VM||2} =0.

2

+

w,

. 2
hm{||Wt|| Wy ax
t—o

or

. 2
lim {”u, -V, || +|u, —v,
t—w0

~

As a result from Definition 6, the set 3 defined on
I' is a set of determining functionals for (1.1)-(1.3).
Therefore we complete the proof of Theorem 12.m
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