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ABSTRACT 
Some important insights into the electron-states-architecture (ESA) and its dimensionality (from 3 to 0) in a semicon-
ductor (or generally crystalline) material are obtained. The self-consistency of the set of density of states (DOS) expres-
sions with different dimensionalities is remediated through the clarification and rearrangement of the wave-function 
boundary conditions for working out the eigenvalues in the wave vector space. The actually too roughly observed and 
theoretically unpredicted critical points for the dimensionality transitions referring to the integer ones are revealed upon 
an unusual assumption of the intrinsic energy-level dispersion (ELD). The ELD based quantitative physical model had 
been established on an immediate instinct at the very beginning and has been properly modified afterwards. The uncer-
tainty regarding the relationship between the de Broglie wavelength of electrons and the dimensionality transitions, 
seeming somewhat mysterious before, is consequentially eliminated. The effect of the material dimensions on the ELD 
width is also predicted and has been included in the model. The continuous evolution of the ESA dimensionality is con-
vincingly and comprehensively interpreted and thus the area of the fractional ESA dimensionalities is opened. Another 
new assumption of the spatial extension shrinkage (SES) closely related to the ELD has also been made and thus the 
understanding of the behavior of an electron or, in a general sense, a particle has become more comprehensive. This 
work would manifest itself a new basis for further development of nanoheterostructures (or low dimensional hetero-
structures including the quantum wells, quantum wires, quantum dots and especially the hetero-dimensional structures). 
Expected should also be the possible inventions of some novel electronic and optoelectronic devices. More basically, it 
leads to a new quantum mechanical picture, the essential modifications of Schrödinger equation and Newtonian equa-
tion that give rise to a full cosmic-scope picture, and a super-low-speed relativity assumption. 
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1. Introduction 
Both the classical and the nano- heterostructures of semi-
conductors have developed dramatically based on the 
well-recognized theories, especially the theory on the 
density of states (DOS) of electrons in a semiconductor 
(or generally crystalline) material and the relevant elec-
tron-states-architecture (ESA) dimensionality [1]. However, 
some problems exist in the previous theory and it had 
been suspected that some fundamental theoretical 
changes would be needed for the improvement. Both 
unusual assumptions of the energy-level dispersion (ELD) 
[2-3] and the spatial extension shrinkage (SES) have 
been proposed and it is shown that they have acted quite 
well for the improvement. And, in proceeding with this 
investigation, the quantum mechanical picture and the 
relevant fundamental theories have really been changed. 

2. Important Insights into the Previous  
Theory and a Summary of the Problems 

In this paper, without the loss of generality, the investi-
gations on the ESA and its dimensionality will be re-
stricted only on the case of a conduction band (or a band 
with a lowest minimum). The DOS expressions given by 
the previous theory in this case for a bulk material (3D), 
a quantum well (2D), a quantum wire (1D) and a quan-
tum dot (0D) are as follows, respectively: 
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It is noted that all the material structures under the in-

vestigations here are assumed of the cuboidal shapes. 
The material sizes in the three directions are denoted by 
Lx, Ly, and Lz, respectively. In addition, the symbols E , 

cE  and nm∗  are the electron energy with an arbitrary 
value, the electron energy at the bottom of the conduc-
tion band (or at the minimum of a specified band) and the   

effective mass of an electron in the band, respectively; 

2
h
π

=  is a quantity related uniquely to the Planck 

constant h; and, ( ) 1 0
0 0

x
xx ≥
<Θ = {    is a Heaviside function. 

Although almost every one of us is quite familiar with 
these expressions, it is still necessary for us to gain some 
essential insights into them:  

1) In a rigorous sense, Eq. (1), the so-called “3D ex-
pression”, is true only when Lx, Ly, and Lz are all infi-
nitely long. Otherwise, the value of the k



-space volume 
occupied by a single state cannot be identical everywhere 
and the derivation of this equation cannot be rigorously 
valid. So, at the most, it could be applicable only ap-
proximately to the case of a large enough material vo-
lume. 

2) Attention should also be paid to another issue re-
garding the derivation of Eq. (1). In the derivation, the 
number of states per unit k



-space volume is actually (or 
should be) taken as 
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where, the intervals between the adjacent wave-vector 
eigenvalues corresponding to the specified pairs of the 

wave-function solutions are taken as 2lim
xL

xL
π

→∞
， 2lim

yL
yL
π

→∞
 

and 2lim
zL

zL
π

→∞
 in the three directions, kx, ky, and kz, re-

spectively, by adopting the periodic boundary conditions. 
This kind of conditions are truly valid upon a homogen-
ous-material assumption which means that the materials 
within and outside the volume defined by Lx, Ly, and Lz 
are exactly the same. This is an absolutely-homogenous 
ideal (infinite) 3D model and thus, in principle, the use of 
Eq. (1) should be excluded from the modeling of a hete-
rostructure system. 

For the completeness of description, it should be stated 
here additionally that, based on this ideal 3D model with 
the homogenous-material assumption, Eq. (1) can be 
immediately obtained by using the three more equations 
as follows (the material volume, the number of states per 
unit k



-space volume and per unit material volume, and 
the k



-space volume per unit energy interval, respec-
tively): 
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However, a heterogenous-interface between the mate-
rials within and outside the volume defined by Lx, Ly, and 
Lz is a more suitable assumption for the DOS modeling 
because most cases we are interested in refer to hetero- 
structure systems. With this assumption, we can imme-
diately get another ideal (infinite) 3D model which is 
applicable to the heterostructure systems with infinite or 
at least large enough material dimensions. 

Nevertheless, it should be noted at the moment that 
this heterogenous-interface assumption has not been 
completely excluded in the previous theory. Actually, it 
has been adopted partially in the derivations of both Eq. 
(2) and Eq.(3) and even completely in obtaining Eq.(4). 

With this assumption, the intervals between the adja- 

cent wave-vector eigenvalues may become lim
xL

xL
π

→∞
, 

lim
yL

yL
π

→∞
 and lim

zL
zL

π
→∞

 in the three directions, respec- 

tively, by adopting a commonly used typical boundary 
condition called “a potential well of infinite depth” or 
briefly “an infinite well”. Then, Eq.(1) should be re-
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If adopted are a set of hybrid boundary conditions, say, 
in the kx and ky directions using the periodic boundary 
conditions and in the kz direction using the one of “an 
infinite-well”, Eq.(1) should be replaced by another one 
as follows: 
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These clarifications are very essential for ensuring the 
self-consistency of the DOS expressions as a whole set 
for different ESA dimensionalities. Actually and unfor-
tunately, due to improper adoptions of the boundary con-
ditions, the equations from Eq.(1) to Eq.(4) in their well- 
known current forms cannot rigorously meet the re-
quirement of the self-consistency. This observation will 
be further discussed in the following text. 

3) Similarly, Eq. (2), the so-called “2D expression”, is 
true only when Lx and Ly are infinitely long. Moreover, as 
to Lz, as long as it is of a finite value, Eq.(2) is always 
obviously valid, even when Lz is very large and the 
structure cannot be regarded as a “well”; when Lz reaches 
its upward limit, i.e. the infinity, Eq.(2) cannot be dege-
nerated to Eq.(1) due to the mismatch in the boundary 
condition choices, but can be degenerated to Eq. (1′ ) 
with a perfect consistency owing to the modification of 
the boundary conditions made hereinabove. 

4) Also, Eq. (3), the so-called “1D expression”, is true 
only when Lx is infinitely long. As to Ly and Lz, as long as 
they are of finite values, Eq. (3) is always obviously va-
lid, even when Ly and Lz are (or, when each of them is) 
very large and the structure cannot be regarded as a 
“wire”, or even neither as a “well”. When Ly becomes 
infinity, it can also not be degenerated to Eq. (2) but can 
be degenerated to a new equation as follows: 
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The modification adopted for the derivation of Eq.( 2′ ) 
refers to a set of hybrid boundary conditions including 
the periodic boundary condition in the kx direction and 
the “infinite-well” conditions in the ky and kz directions. 

In addition, when the “infinite-well” boundary condi-
tions are adopted in all the three directions, both Eq.(2) 
and Eq. ( 2′ ) are no longer valid and should be replaced 
by the following expression: 
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5) Finally, Eq.(4), the so-called “0D expression”, is 

always obviously true as long as Lx, Ly, and Lz are of fi-
nite values, even when Lx, Ly, and Lz (or, when each two 
or each one of them) are (or, is) very large and the struc-
ture cannot be regarded as a “dot” (actually, it could be a 
wire, a well, or even a bulk one). When Lx becomes in-
finity, the degeneration from Eq.(4) to Eq.(3) fails unex-
ceptionally but to a new one, as shown below, it works: 
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In the derivation of Eq.(  *3′ ), a modification on the 
boundary conditions has been done: the “infinite-well” 
boundary condition is also adopted in the kx direction and 
consequently the same kind of conditions has been 
adopted in all the three directions. 

It is noted that the boundary conditions in all-direc- 
tions adopted in the derivation of Eq.(4) are straightfor-
wardly those of the “infinite-wells”. So, for the conveni-
ence of descriptions hereinafter, Eq.(4) can be directly 
re-denoted as Eq.( *4 ). 

In summary, two conclusions can be reached. First, the 
true significations of all these expressions do not exactly 
match with what they are called by names and, also un-
fortunately, we cannot find any accurate criterion from 
the expressions themselves to define the critical midway 
points (either Lx, Ly, or Lz with a certain finite value) for 
the transitions between different dimensionality regions, 
although such transitions actually happen as a fact of our 
common knowledge. These transitions cannot be convin-
cingly interpreted even with the help of the concept of de 
Broglie wavelength of electrons which lacks an objective 
tie to the transition phenomena for doing a scientific 
reasoning other than a mysterious one. In addition and 
more basically, it is surely unsatisfactory to explain the 
formation of energy bands in such a way: the adjacent 
levels are so near that they can be treated APPROX-
IMATELY as a continuous band. This explanation works 
as merely a mathematical trick other than an intrinsic 
physical settlement. So, the previous theory looks quite 
casual and the truthfulness of the dispersion-free picture 
of the energy level in the previous theory has to be sus-
pected. The author believes that something actually hap-
pens to originate a dimensionality transition. Secondly, to 
make the theory validly applicable to the heterostructure 
systems and ensuring the self-consistency of the whole 
set of DOS expressions for different ESA dimensionali-
ties, the heterogeneous-interface assumption should be 
followed for all the cases and in all the directions unex-
ceptionally. In this paper, the boundary conditions of the 
“infinite-wells” are adopted due to its typicality and thus 
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a consistent group of equations consisting of Eqs. ( *1 ), 
( *2 ), ( *3 ) and ( *4 , identical to 4), as a whole, becomes 
the basis for the modeling and discussions throughout the 
text hereinafter. 

3. The Concepts of the ELD and the SES 
To solve the above mentioned problems regarding the 
ESA dimensionality transitions and evolutions, the con-
cept of ELD was proposed [2] and it is regarded as an 
“intrinsic” effect. It is believed that, in general, any elec-
tron energy level could not be an ideal line with ze-
ro-linewidth. Instead, all the energy levels might be dis-
persive, at least slightly sometime but unexceptionally. 
The position of each level in an energy band defined by 
the previous theory can be regarded as the peak of a cer-
tain energy distribution (so it will be referred to as “peak 
energy level” hereinafter). It is this kind of dispersion 
that makes different energy levels merging together and 
TRULY (not APPROXIMATELY) form a continuous 
energy band when the intervals between adjacent energy 
levels are sufficiently small. A preliminary model had 
been established in [2] where the ELD and the associated 
wave vector dispersion (WVD) were related by the orig-
inal dependence of electron energy versus wave vector, 
which itself did not take into account the ELD effect. 
Quite soon afterwards，it was found that such a model 
needs to be modified. The biggest problem of the model 
is that it does not permit any energy level either in the 
conduction band or in the valence band to disperse to the 
energy region of the forbidden band, otherwise the wave 
vector should have to take imaginary values. To over-
come this theoretical discomfiture, a better model was 
proposed [3] except that the normalization condition was 
not fully proper yet. In the model, the ELD is expressed 
as a function of the continuous independent variable E, 
by using a symmetric decayed exponential lineshape with 
its peak at each of the peak energy levels *E . Now, a 

proper normalization condition ( ) 2*, 1DF E E dE
∞

−∞

=∫  is 

adopted and then a new normalized ELD function of this 
type can be defined more rigorously as follows: 
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where, D is the width of the ELD which is surely a pa-
rameter of the most importance in this model. 

Generally speaking, to use this type of expression is 
just a probing choice and there might be some other op-
tional lineshapes such as a Lorentzian one. However, 
recent advancement of the investigations related to the 
modification of Schrödinger equation which will be 

briefly mentioned hereinafter has made the author more 
convincing for the choice of the exponential one. 

To make a further introduction to the ELD concept, it 
needs to be noted that, for a material with finite volume, 
the envelope of the dependence of the discrete peak energy 
levels E* on the wave vector eigenvalues *k



 along a 
specified k



-space direction can be approximately re-
garded as a parabolic curve either at the bottom of con-
duction band or at the top of valence band. Here, as a 
reminder, it should be repeated that our investigations 
will be restricted only on the case of a conduction band. 
Being aware of the fact that the dispersions happen to all 
the peak energy levels “located” within such an envelope, 
and as shown in the figure of -E k



 curves (Figure 1, 
the electron energy versus the wave vector), a series of 
(actually an infinite series of) dispersion-resulted new 
“envelopes” appear and all look similar to the original 
one. In an ideal case with infinitely long material size(s), 
each of the above mentioned discrete -E k



 dependences 
becomes a continuous curve while all the other stories 
are the same. 

Consequentially, the associated WVD can be observed 
by referring to the ELD-resulted shifts of the specified 

-E k


 envelope or curve (also shown in Figure 1). 
In an essential point of view, the ELD function 
( )*,DF E E  shows a spectrally varied intrinsic permissi-

bility for a continuous energy deviation E∆  from *E  
( *E E E∆ = − ) caused by possible external forces (in-
cluding all kinds of completely deterministic forces and 
the thermo effect, etc.), while D implies a permitted 

*E -centric energy scope in which the continuous energy 
deviation mentioned above could manifestly happen. 

The ELD actually leads to an essential change regard-
ing the wave function in Schrödinger equation. The 
original wave function Ψ  should be replaced by a re-
defined one, i.e. 

( )*,D DF E EΨ = Ψ            (10) 

which is no longer a function with a fixed *E E= , but  
a wave-spectrum function varying continuously with E. 
However, it can be easily found that the well-known 
Schrödinger equation is still valid for this new wave 
function, i.e. 

 
Figure 1. 
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where, t  is time, µ  is the electron mass, ( )U r  is the 
potential energy of an electron at a specified location r , 
and 1i = −  is the imaginary unit. 

In crystalline materials, it is assumed that the intrinsic 
D  could be extended temperature-dependently and di-
mension-dependently to extD  due to the lattice-vibration 
and the multi-electrons effects, respectively. The expres-
sion of extD  can be written as 
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ext T l LVD D D D D D e α−= + + = + −             

( , , ) 1M l x y zD M L L L + −  ,     bT T<    (12) 

where, TD  plus lD  forms the extended portion of 
extD ; LVD , Tα  and MD  are three assumed constant 

coefficients; bT  is the material-broken temperature; and 
( , , ) 1l x y zM L L L −   is an assumed dimension-dependent 

factor (please ignore the corresponding formulation 
( , , )l x y z eD M L L L D=  in [3]). 

When the material dimensions are not too small, 
( , , )l x y zM L L L  could be assumed almost as a constant (a 

saturated value). Otherwise, in case of the sufficiently 
small dimensions, it is assumed to firstly increase with 
the enlargement of each of the three dimensions xL , yL  
and zL  remarkably and then get to becoming saturated. 
Furthermore, ( , , )l x y zM L L L  can be expressed as a 
product of three individual factors, ( )lx xM L , ( )ly yM L  
and ( )lz zM L , referring to the dimensions xL , yL  and 

zL , respectively, i.e., 
( , , ) ( ) ( ) ( )l x y z lx x ly y lz zM L L L M L M L M L=       (13) 

Each of the factors, in turn, can be initially assumed as 
follows: 
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where, ,  ,  j x y z=  again, and tL  is the turning point 
where ( )lj jM L  begins to approach the saturation limit 

lsM which as well as tL ,  respectively, are identical for 
all the three factors. Obviously, we have 31 l lsM M≤ ≤ . 

So, in crystalline materials, the normalized ELD func-
tion can be redefined with the extended width extD  as 
follows: 
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To see how a dimensionality transition happens with 
the existence of the ELD, we may take the case of the 

dimensionality transition from the ideal 2D ( ,xL = ∞   
; =0)y zL L= ∞  to the ideal 3D ( , ; = )x y zL L L= ∞ = ∞ ∞  

as an example. As a reasonable approximation when the 
material dimensions are not too small, it can be assumed 
that lD  takes its saturated value and extD  becomes 
dimension-independent. The derivations and discussions 
hereinafter regarding the dimensionality transitions will 
be made with this assumption. It is believed that at a cer-
tain big value of zL , the energy intervals between the 
adjacent separated -E k



 surfaces will be so small that at 
least some of the surfaces will get to merging together 
remarkably duo to ELD. It seems quite reasonable to 
designate the critical energy interval for such a merging 
probingly as the full width at half maximum of the rede-
fined ELD function Eq. (15), which can be calculated as 

2 ln 2 extE D∆ = × ×              (16) 

The bottoms of the separated -E k


 surfaces can be 
expressed as: 
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By taking the criterion of * *
, 1c n cnE E E+ − = ∆ , we can 

determine the critical value of zL = 2 3( )z nL →，  for the 
merging of the two peak energy levels, *

cnE  and *
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as follows: 
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In the above equations, deλ  is the well-known de 
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Broglie wavelength with *
deE  and *

,k deE  being the av-
erage total energy and the average kinetic energy of an 
electron, respectively, in a specified system, while 

,de ELDλ  is such a “golden quantity” that it times a fixed 
proportional constant ( 0.736 ) simply equals the critical 
size 2 3( 1)z nL → =， . We may name ,de ELDλ  as “the nominal 
de Broglie wavelength” referring to the dimensionality 
transition due to its above mentioned feature as well as 
its similarity to deλ  in mathematical expression. 

We may also make 2 3( 1)z nL → =，  explicitly related with 
deλ  by writing it as follows: 

*
,

2 3( 1) 0.736 k de
z n de

n ext

E
L

m D
µ

λ→ = ∗= ⋅，       (24) 

In this equation, it has been shown so clearly how the 
extended ELD width extD  serves as an objective tie 
between de Broglie wavelength and the critical point of 
the dimensionality transition and how de Broglie wave-
length plays its role in the quantum size effect. 

Relevant experiments are needed to judge the truth-
fulness of the above mentioned theoretical assumptions 
and predictions both qualitatively and quantitatively. 

In addition, owing to the above described effort of in-
quiring into the relationship between the concept of de 
Broglie wavelength of electrons and the dimensionality 
transition phenomena, the author has been further sus-
pecting the possibility if D would increase somehow with 
the increasing of the peak energy level *E . If this as-
sumption would be true, it might be found that we had 
approached the bridge between the microcosm and the 
macrocosm. Actually, if we deal with not only an elec-
tron but also a bigger particle or an object in a general 
sense with arbitrary mass and energy, we may do a fur-
ther reasoning to assume the increasing of D with the 
increases of both the mass and the  energy  of  the 
object, for  example, *( )nD Eµ∝  with n  being a pos-
itive rational number. Then, as a result, an object with a 
big enough mass and a high enough energy would ma-
nifest a huge ELD and there no longer exists a 
states-architecture of discrete energy levels. Instead, the 
states-architecture of this kind of objects should be al-
ways continuous. It refers therefore to a non-quantum 
world or a Newtonian world. 

Even more additionally, as we comprehensively think 
about the difference between the mechanical behaviors of 
an object in the quantum regime and in the Newtonian 
regime, it seems that another assumption in association 
with the ELD should also be made: there might exist an 
effect of SES, i.e. the spatial extension shrinkage as men-
tioned hereinabove. As we know, the Newtonian me-
chanics is deterministic while the quantum mechanics is 
statistic. Therefore, the confinement tendency of the spa-
tial extension of an object should be enhanced during the 
evolution from the quantum mechanics to the Newtonian 

mechanics. Similarly to the above given descriptions of 
( )*,DF E E  and D , the nomorlized SES function could 

be assumed as 

( )
2*3

4
2

3
2

* 2
( )

r r

S
SF r r e

S

π
−

−
− =

 

          (25) 

and the SES parameter S  as the measure of the con-
fined extension could also be conceived as a function of  

*Eµ and probingly could be *( ) nS Eµ −∝ . Where, *r  
is the spatial position with the peak probability of ap-
pearance. 

If this assumption of SES would be true, the wave 
function should be changed further and, eventually, 
Schrödinger equation should no longer be kept un-
changed; instead, it should have to be modified. At the 
same time, Newtonian equation surely also needs to be 
modified. Actually, the author has fulfilled both modifi-
cations and the relevant details will be described later. 

Here given are the modified Schrödinger-Newtonian 
equations themselves as follows:  

( ) ( )2 1 1M M
DSi DC E E

t E
∂Ψ ∂Ψ − Θ − − Θ − ∂ ∂

   





       (26-a) 
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 (26-b) 

where, MΨ  is the modified wave function; *E E E=  

the normalized energy; p


  the unit vector along the do-

minant momentum direction; ( )F r


 the field of force; 

v  the velocity vector; ( )xΘ  a modified Heaviside 
function of x  with ( )0 1 2+Θ = ; DSC  and EC  are 
two constants; and, 1,  0,  1γ = −  (case-dependent). 

As a fully natural consequence of the formulation of 
the modified Schrödinger equation, i.e. Eq.(26-a), one 
essential relation, * 1 *= =S DSS C E C Eµ µ−

 , has 

been obtained and the other one, *
DD C Eµ= , has also 

been assumed tentatively (both SC  and DC  are con-
stants). The two relations make the concepts of ELD/SES 
quantitatively defined and lead to an important idea that 

*Eµ  could be taken as the measure of the cosmo-level 
(the author suggests to call it the “cosmicality”). 

The above given modified Schrödinger-Newtonian 
equations should be well valid in the mid-cosmic regime 
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(between the microcosm and the macrocosm) where no 
relativistic effect would need to be taken into account. 
However, in the super-high speed regime, Einstein’s 
theory of relativity featuring an upper limit of velocity c  
should be adopted to make further modification of this 
pair of equations. In association with this consideration, a 
more unusual idea came out and had greatly surprised the 
author: there must appear a similar theory of relativity for 
super-low speed regime featuring a lower limit of veloc-
ity (LLV) ĉ ! This idea is necessary not only for the fur-
ther modification of the equations in the super-low speed 
regime and the unveiling of a philosophical beauty of the 
cosmic symmetry but also for the essential causal inter-
pretation of the statistical spatial extension of a particle, 
or the so-called “probability wave” phenomenon. It 
might be this lower-limit effect that intrinsically makes 
any particle keeping un-static or in continuous motion 
directed randomly. The author suggests to call the matter 
moving with the velocity ĉ , if it would exist, as “sy-
might” (it is similar to “light” but the first three letters 
are newly introduced to replace “l” and to signalize that 
it is a symmetrical existence for “light”; and, the word 
regarding its particle-property corresponding to “photon” 
could be “symiton”) and to call ĉ  itself the velocity of 
symight. Consequentially, Einstein’s theory of relativity 
can be reasonably modified with an extended Lorentz 
transformation as follows: 

( )

2

2

ˆ
1

1

c
vx x vt
v
c

 −  
 ′ = −
 −  
 

        (27-a) 

2 22

2 2 2
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1

ˆ1 1 1

x v cc
v c vvt t

v v c
c c v

      −    −          ′ = −
     − − ⋅ −          

   (27-b) 

And then, the mass µ  should be expressed as: 

2

mi 2

ˆ
1

1
d

c
v
v
c

µ µ

 −  
 =
 −  
 

            (28) 

In these relativistic equations, v  is the velocity and 
midµ  is the mass at the critical mid-cosmic velocity 

ˆmidv cc=  and is used to replace the static mass 0µ  
(or 0m ) in Einstein’s theory of relativity. 

As we can imagine, it should be difficult to directly 
determine the lower limit velocity ĉ . However, an indi-
rect method for the determination of ĉ  with assistance 
of the critical mid-cosmic velocity midv  could be 

somewhat easy. Actually, ĉ  can be determined from 

( )21ˆ midc c v−=  when midv  is known. In turn, midv  can 
be determined by measuring S  or D  as precisely as 
possible in a certain range of v  around midv . 

Combining this essentially extended theory of relativ-
ity, or more explicitly the full velocity-scope theory of 
relativity, with the modified Schrödinger-Newtonian 
equations given as Eq.(26) is so perfective and enligh-
tening that it makes the latter (a) being more rigorously 
valid for all the possible cases especially in the su-
per-high and super-low speed regimes regarding the par-
ticles or objects in a common sense, and (b) probably 
even being valid in the velocity regimes upwards beyond 
c  and downwards beyond ĉ  where, as the author sus-
pected, a new matter featuring an imaginary mass might 
exist in a certain variety of intriguing forms. The proper-
ties and behaviors of the new matter could be interpreted 
with the aid of properly modified ELD and SES func-
tions and we may find that the imaginary mass could 
actually make sense. This “new-matter” prediction could 
hopefully conclude or at least share the century-long 
challenges to Einstein’s prediction regarding the up-
per-limit velocity. It is believed that any common particle 
or object cannot surpass or just reach the velocity limits 
c  and ĉ  indeed, while for the new matter, it is no 
problem at all to manifest a velocity beyond c  or ĉ , or 
furthermore, there are actually no other choices for the 
new matter except moving essentially with a velocity 
either higher than c  or lower than ĉ . The key point 
here is that different matters behave differently. 

4. The DOS Expressions in the Dispersive 
Cases 

To make it convenient, we may refer the two cases, be-
fore and after the introduction of ELD model, as “the dis-
persion-free case” and “the dispersive case”, respectively. 
And, the values of the electron energy in the two cases 
need to be denoted with different symbols, E* and E, also 
respectively. Then, in the dispersive case, Eqs. ( *1 ), ( *2 ), 
( *3 ) and ( *4 , identical to 4) should be replaced respec-
tively by the following new expressions (just taking 

( )2 *
, ,D extF E E as the typical convolute integration factor): 

( ) ( ) ( )
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Among all these four expressions, Eq.(32) is uniquely 
a general one which is applicable to all the cases includ-
ing the bulk, quantum well, wire and dot materials; while, 
the others, in a rigorous sense, are applicable only to 
those specified ideal cases where there should be three 
dimensions, two dimensions or at least one dimension 
reaching infinity (please ignore Eqs.(6) and (7) in [3]). 

5. The Accurate and Comprehensive  
Understanding of the Dimensionality 
Evolution 

1) In the ideal 3D case corresponding to Eq.(29), the size 
of the material along each direction reaches its upward 

limit, so the individual contribution from each of the 
three sizes to the identification number of the dimensio-
nality (dimensionality ID-number) should be unity and 
thus the dimensionality ID-number itself as the sum of 
those contributions is “3”. As an alternative denotation, 
we may also define a triplet of dimensionality indices 
(DI-triplet) as [1,1,1] to separately specify the 3 fold 
contributions. 

2) As to Eq.(30), it is the case that the dimensionality 
ID-number varies from 2 (the ideal 2D, 0zL = ) to 3 (the 
ideal 3D, zL = ∞ ). A rigorous critical point 2 3zL →， , 
which should be near but not exactly identical to the val-
ue of 2 3( 1)z nL → =，  given in Section 3, can be determined 
by a method of similarity calculation [2-3]. The defini-
tion of the Similarity Function for ( ), ,c D zE Lρ  is given as: 
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−∞

=
∫

∫
(33) 

where, ( )r Eρ  is a proper reference function case by 
case. 

Then, the criterion for the rigorous determination of 
2 3zL →，  should be as 
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c D z c z

c D z c

S E L E L

S E L E
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   (34) 

A fractional dimensionality ID-number corresponding 
to the critical point 2 3zL →，  should be naturally the mid-
point between the numbers of 2 and 3, i.e. should be 
equal to 2.5. Then, the dimensionality ID-numbers within 
the 2D and 3D regions should be (2 - 2.5) and (2.5 - 3), 
respectively. We can also use the relevant DI-triplets, 
written as [1,1, zd ], to denote the dimensionalities men-
tioned above, where zd  has been defined in [3] as fol-
lows: 
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where, 

( ) ( ),0 , 2 3 ,I  z c D z c DE L E dEρ ρ
∞

→
−∞

= ∫ ，，      (37) 

The dimensionality ID-numbers can be derived from 
the corresponding DI-triplets by simply taking the sum of 
the indices, i.e. 2 zd+ . 
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3) As to Eq.(31), it refers to a complicated case. When 
0zL =  and yL  varies, similarly to the discussion re-

garding Eq.(30), the dimensionality ID-number can va-
ries from 1 (the ideal 1D, Ly = 0) to 2 (the ideal 2D, Ly =
∞). The fractional dimensionality ID-number corres-
ponding to the critical point ,1 2 2 3 ( )y zL L→ →= ，  for the 
transition from 1D to 2D regions should be 1.5. Then, the 
dimensionality ID-numbers within the 1D and 2D re-
gions should be (1 - 1.5) and (1.5 - 2), respectively. The 
corresponding DI-triplet should be [1, yd , 0]. If 0zL ≠ , 
the situation is quite different. It is impossible to consis-
tently define a single dimensionality ID-number for an 
arbitrary combination of zL  and yL . So, the DI-trip- 
lets, i.e. [1, yd , zd ] becomes the unique choice for the 
dimensionality denotation. All the possible dimensional-
ity regions can be defined as D1: [1, 0.5yd < , 

0.5zd < ]; D2: [1, 0.5yd > , 0.5zd < ] or [1, 0.5yd < , 
0.5zd > ]; and D3: [1, 0.5yd > , 0.5zd > ]. 

4) Quite similarly but referring to a more complicated 
case, Eq.(32) can be interpreted as follows: When 

0z yL L= = and only xL  varies, the dimensionality 
ID-numbers can varies from 0 (the ideal 0D, Lx = 0) to 1 
(the ideal 1D, Lx = ∞). The fractional dimensionality 
ID-number corresponding to the critical point 0 1  (xL → =，  

1 2 2 3 )y zL L→ →=，，  for the transition from 0D to 1D regions 
should be 0.5. Then, the dimensionality ID-numbers 
within the 0D and 1D regions should be (0 - 0.5) and (0.5 
- 1), respectively. The corresponding DI-triplets should 
be [ xd ,0, 0]. If 0zL ≠  and 0yL ≠ , the dimensionality 
should be denoted only by the DI-triplets, i.e. [ xd , yd , zd ] 
and the dimensionality regions can be defined as D0: 
[ 0.5xd < , 0.5yd < , 0.5zd < ]; D1:[ 0.5xd > , 0.5yd < , 

0.5zd < ], [ 0.5xd < , 0.5yd > , 0.5zd < ] or 
[ 0.5xd < , 0.5yd < , 0.5zd > ]; D2:[ 0.5xd > , 0.5yd > , 

0.5zd < ], [ 0.5xd < , 0.5yd > , 0.5zd > ] or 
[ 0.5xd > , 0.5yd < , 0.5zd > ]; and D3 
[ 0.5xd > , 0.5yd > , 0.5zd > ]. 

6. Discussions and Conclusions 
This work has provided a novel understanding of ESA 
and its dimensionality in semiconductors or crystalline 
materials; has established a more reasonable and con-
vincing basis for further development of nanohetero- 
structure physics, especially the hetero-dimensional 
structure physics; has made three new assumptions of the 
ELD, the SES and the LLV; has led to a new quantum- 
and furthermore a full cosmic-scope mechanical picture, 
a pair of the modified Schrödinger-Newtonian equations 
being valid throughout the evolution from the microcosm 
regime to the macrocosm regime, an idea and the initial 
efforts to establish a theory of super-low-speed relativity, 
and a “new-matter” prediction. Some fundamental phe-
nomena such as the tunneling effect can be modeled 

more accurately and becomes more understandable by 
adopting the ELD assumption. Expected should also be 
the possible inventions of some novel electronic and op-
toelectronic devices. For example, it seems quite reason-
able to predict a DOS gradient caused electron (or more 
generally, carrier) diffusion in a hetero-dimensional 
structure or a structure featuring a gradually changed 
dimensionality. Then a sort of novel semiconductor elec-
tronic devices featuring the mono-carrier transportation 
(recombination free) and the remarkably reduced power 
consumption can be conceived and demonstrated, while 
relevant works have been on its way in the author’s la-
boratory. 
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