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ABSTRACT 

This paper explores the role of population in empirical studies. While panel estimation should control for differences 
across countries as more populated countries should pollute more, more pollution may not lead to more pollution per 
capita. Two models are estimated each of which control for population in different ways. One model accounts for 
population by expressing BOD in per capita terms and the second model regresses BOD on population using the resid- 
ual in the EKC regression. The Akaike Information Criterion (AIC) reveals the second model is preferred to the first 
model. In addition, although both models reveal an EKC, the turning points are vastly different. Future EKC studies can 
benefit by testing EKC models that control for population in different ways. 
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1. Introduction 

This paper takes a look at the role of population in an 
Environmental Kuznets Curve (EKC) model which de- 
scribes the relationship between economic growth and 
pollution as an inverted u-shape. The data concerns water 
pollution, but the role of population in an empirical EKC 
model can be extended to various pollutants. The major- 
ity of EKC empirical studies utilize panel data [1]. In air 
pollution studies and water pollution studies, pollution 
indicators are measured either in total emissions [2-4] or 
concentrations [5]. If measured in total emissions, air and 
water pollution indicators are usually expressed in per 
capita terms [6,7]. In EKC studies where the pollution is 
measured in concentrations, population density is some- 
times included as an explanatory variable [8,9]. 

This paper does not argue the merits between pollution 
expressed in total emissions compared to concentration. 
For a discussion, various published critiques of the EKC 
are available [7,10].This paper focuses on the studies that 
express pollution in per capita terms, and offers an alter- 
native method for controlling for population that could 
be useful in future studies. 

Because the majority of EKC studies employ panel 
data analysis, it is important to control for population 
across countries. Higher populated countries experience 
more pollution in total. However, higher population does 
not necessarily lead to higher pollution per capita. If 
population increases faster than pollution, increases in 

population will be associated with lower pollution per 
capita. Theoretically, the EKC describes the relationship 
between economic growth and pollution, not economic 
growth and pollution per capita. Therefore, this paper 
seeks to reconcile the empirical desire to control for 
population across panel EKC studies with the theoretical 
model describing the relationship between pollution and 
economic growth. 

This paper introduces a new way to control for popu- 
lation in EKC studies. Two models are estimated, each of 
which control for population in different a manner. Esti- 
mates are then compared across models. In Model 1, the 
water pollution indicator biochemical oxygen demand 
(BOD) is measured in kilograms per day per person. This 
method is typical in EKC studies. In Model 2, the new 
method for controlling for population, BOD (measured in 
kilograms per day) is regressed on population, 

0 1P Pop     , where  is BOD measured in P

kilograms per day. The residual from this regression, ε, 
represents the pollution not explained by population. 
This residual is then used as the dependent variable BOD 
in the EKC regression. By Method 2, it is possible to 
control for population differences across countries in the 
first step while depicting the EKC relationship between 
pollution and economic growth in the second step. 

The results reveal that estimates and EKC turning 
points vary greatly depending on how population enters 
into the EKC model. The Akaike Information Criteria 
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(AIC) indicates which model is preferred and results 
show that Model 2 is preferred to Model 1. This suggests 
empirical EKC studies should consider other ways to 
control for population. 

2. Data 

The dataset includes a balanced panel of 37 countries 
from 1980 to 2000. BOD data comes from [11]. BOD 
measures the amount of oxygen required to break down 
bacteria by organisms. A higher BOD level is equivalent 
to higher pollution. Income per capita and population 
data are from [12]. All variables are in natural loga- 
rithms.  

3. Methods 

Evidence of an inverted u-shaped relationship between 
pollution and income may vary by country, so in empiri- 
cal EKC studies it may be useful to employ some tech- 
nique that allows for slope heterogeneity across countries. 
A recently developed panel estimation technique, pooled 
mean group (PMG) estimation, is used in this study. 
PMG is a dynamic panel estimation technique that is 
more flexible than the panel fixed effects model, allow- 
ing short run coefficients to vary across countries and 
constraining long run coefficients to be the same across 
countries This method has been employed only recently 
in EKC studies [1,13-15].  

The long run EKC model is 
2

0 2BOD = + +it i it it i itβ β Y β Y           (1) 

Following [13], the autoregressive distributive lag mo- 
del (ARDL) follows 

2
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It is assumed variables are I(1) and cointegrated within 
countries. A one period lagged explanatory variable is 
included in the model.  

PMG estimation combines the long run EKC relation- 
ship from (1) with the short run ARDL model (2) in the 
following equation 
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The error corrected coefficients (in parenthesis) represent 
long run coefficients that are pooled and constrained to 

be equal across countries. The differenced coefficients 
represent short run coefficients and are allowed to vary 
across countries.  

Before PMG estimation, the Im, Pesaran, Shin (IPS) 
panel unit root test tests variables for a unit root because 
PMG estimation requires variables to be I(1) [16]. The 
IPS panel unit root test is based on the Dickey-Fuller unit 
root tests applied in time series studies. Following [17], 
to perform the IPS test, the following augmented Dickey- 
Fuller (ADF) regression is applied to each cross sectional 
unit 
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where x  is the vector of variables ( ),  

are different lag lengths,  is a time trend, and 

, ,BOD Y W ip

t

0 , ,i i 2 ,i ij     are coefficients to be estimated. The null  

hypothesis of a unit root for each individual time series is  

2 0i i ij      so that Δ it itx  . The t-statistic for  

the IPS panel unit root test t* takes the individual t-sta- 
tistic for each series ti and forms the sample mean in the  

following equation, 
1

1 n*
ii

t
n 

   
 

 t . Results from the  

panel unit root test reported in Table 1 indicate all vari- 
ables are I(1).  

To test the long run relationship between the variables, 
the panel cointegration test developed by [18] is imple- 
mented. Many popular cointegration tests such as the [19] 
test for panel data or the Engle Granger test for time se- 
ries data are residual based. A shortcoming of residual 
based cointegration tests are that long run error cointe- 
gration and short run dynamics are constrained to be 
equal [18] referred to as the common factor restriction 
[20].  

The Westerlund panel cointegration technique is struc- 
tural rather than residual based and does not have a com- 
mon factor restriction. The Westerlund test calculates 
four test statistics: Gt, Ga, Pt, and Pa. The first two are 
group mean statistics the second two are panel statistics. 
The group mean statistics have a null hypothesis of no 

 
Table 1. Panel unit root tests. 

Unit Root Test BOD GDP 

Level   

IPS test −1.27 −1.17 

P-value 0.95 0.99 

First Difference   

IPS test −4.35 −3.73 

P-value 0.00 0.00 
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cointegration for all countries against the alternative of 
cointegration for at least one series. The panel statistics 
have a null hypothesis of no cointegration for all coun-
tries against the alternative of cointegration for the entire 
panel. Results reported in Table 2 indicate the null of no 
cointegration can be rejected in the Gt statistic, evidence 
of cointegration for some series.  

 
1

1
2

exp
2





 

    
 

in Model 1 and 
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    
 

in Model 2. 4. Results 
Results suggest an EKC for the panel of countries with 

a turning point of $1408 annual per capita income in 
model 1 and $2631 annual per capita income in Model 2.  

Results from the two models are in Table 3. Results in-
dicate that the manner in which population is controlled 
for greatly affects the EKC turning point. From two EKC 
models, the AIC criterion determines which is preferred. 
The first model is 

The Akaike Information Criterion (AIC) determines 
which of the two models is preferred. The AIC is based  
on the log likelihood and follows  AIC 2ln 2L q     

2
0 1 2BODPC Y Y      where q is the number of parameters and L is the log 

likelihood. The lowest AIC is the preferred model. The 
results for AIC are reported in Table 3 and show that 
Model 2 is preferred to Model 1.  

where BODPC is biochemical oxygen demand per capita, 
Y is income per capita, and α’s are estimated coefficients. 
Model 2 includes the OLS regression 

Because the models are estimated in natural loga- 
0 1PopP       

rithms, the value and standard error of 
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are included in Table 3 (in the column that  

where P is biochemical oxygen demand expressed in 
cubic kilometers per day,  is the yearly population 
estimates for given countries, δ’s represent coefficients to 
be estimated, and ε is the error term. The error term ε 
represents the pollution not explained population, and 
henceforth is called.  

Pop

begins “Value of X”). Statistical significance of these 
expressions would indicate statistically significant turn- BOD enters the following second stage regression, 

ing points in 
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where γ’s are coefficients to be estimated. All variables 
are expressed in natural logarithms in both models. In the 
presence of an EKC we should expect a positive α1 and a 
negative α2 in model 1. In model 2, an EKC would be 
indicated by a positive γ1 and a negative γ2. 
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appear to be significant indicating the  
Turning points are 
 

turning points are statistically significant. 95% Confi- 
dence intervals, 

Table 2. Panel cointegration. 

Statistic Value Z-value P-value 

Gt −1.71 −1.89 0.03 

Ga −4.26 1.72 0.96 

Pt −4.63 0.75 0.77 

Pa −1.74 0.93 0.83 

    1 96C.I . X i . s tan dard error X i    

for 1, 2iX i   are constructed for both models. It cannot  

be rejected that the turning points are equal to each other 
as the confidence intervals overlap. Confidence intervals 
are reported in Table 3. 

 
Table 3. Controlling for population Model 1 vs. Model 2. 

MODEL Y Y2 Turning Point AIC Log Likelihood 
Value of X: 

Turning point = exp(X) 
Confidence Intervals

(LL, UL) 

MODEL 1 0.87*** (0.25) −0.06*** (0.02) $1382.44 −2181.97 1096.99 7.25*** (3.19) (1.00, 13.50) 

MODEL 2 1.26*** (0.24) −0.08*** (0.02) $3135.97 −2184.51 1098.26 7.88*** (2.48) (3.02, 12.73) 
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5. Conclusions 

This paper points out the care required in EKC studies to 
control for population. The majority of EKC studies con- 
trol for population by expressing the pollution indicator 
in per capita terms. While controlling for population may 
be necessary, it may not be theoretically consistent. While 
more populated countries may pollute more, this does not 
necessarily translate into higher pollution per capita if 
population is growing faster than pollution.  

Two models are estimated, each controlling for popu- 
lation differently. One model includes BOD in per capita 
terms and the other model employs a two stage regres- 
sion where population is initially controlled before the 
EKC model is estimated. Results indicate EKCs for both 
models but with very different turning points. The turn- 
ing point in the two stage model is nearly twice as large 
as the turning point in the per capita model; $2631 an- 
nual per capita income compared to $1408 annual per 
capita income.  

Despite both turning points being relatively low, the 
GDP per capita of three countries including India, Kenya 
and Senegal fall between these two turning points for the 
year 2000 (the last year in the dataset). None of the coun- 
tries’ GDP per capita is below $1408 annual per capita 
income in the year 2000. Therefore, if the per capita 
model was chosen over the two stage model, one would 
conclude all countries are past the turning point and are 
experiencing decreasing pollution with economic growth, 
when India, Kenya, and Senegal would still be facing 
increasing pollution with economic growth. Although the 
turning points are not significantly different from each 
other, the AIC criterion indicates the two stage model is 
preferred to a BOD per capita model. Future EKC studies 
may benefit by being wary of how population enters their 
models, as the present paper indicates the differences in 
results that may occur. 
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