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ABSTRACT 

A faster numerical method based on FDTD for the four energy level atomic system is present here. The initial condi-
tions for the electrons of each level are achieving while the fields are in steady state. Polarization equation, rate equa-
tions of electronic population and Maxwell’s equations were used to describe the coupling between the atoms and elec-
tromagnetic wave. Numerical simulations, based on a finite-difference time-domain (FDTD) method, were utilized to 
obtain the population inversion and lasing threshold. The validity of the model and its theory is confirmed. The time, 
which we can observe the lasing phenomenon, is much shorter in our new model. Our model can be put into using in 
large scale simulations in mutiphysics to reduce the total simulated time. 
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1. Introduction 

The system is always treated either semi classical or fully 
quantum mechanical [2, 3] while a high-frequency light 
is incident on a medium. Because of metallic nature of 
metamaterials constituent metamolecules, they suffer from 
high dissipative losses in the range of optical frequencies. 
Losses are too large in the real applications. It is better to 
incorporate the gain media into matematerial to compen-
sate the losses. When an electromagnetic wave propa-
gates in a medium, the dipole moment in the individual 
atom changes, in turn changing the total field coupling to 
the medium until a steady state established. A full-vec- 
torial time domain approach is utilized to do self-consistent 
calculations. Finite-difference time-domain (FDTD) method 
[4] is used as a powerful tool in modeling linear disper-
sive media [5, 6]. In an attempt to achieve more realistic 
simulations two-level Maxwell-Bloch equations can be 
solved using iterative predictor-corrector finite difference 
time-domain FDTD methods to demonstrate saturation 
and self-induced transparency [7]. 

To simulate lasing dynamics, we present here a faster 
numerical simulation model for the four energy level 
atomic system. We use the populations of each level 
while the fields are achieving steady state as the initial 
value, in this way, the simulation time will sharply be 
reduced. The electromagnetic fields and atomic energy 
level populations at any time step can be calculated in 
terms of known quantities. Comparing the results of this 
model with those which putting all the electrons on the 

ground state level (E0). We can find that the results of 
two methods are similar. So the validity of the model and 
its theory is confirmed. 

2. Theoretical and Numerical Model 

2.1. Rate Equations 

A simplified four level atomic system with energy levels 
E0, E1, E2, E3 and populations upon each level N0, N1, N2, 
N3 is depicted in Figure 1. 

In our model, the gain atoms are embedded in the each 
level of host medium aforehand. The electrons of the 
ground state level are pumped to the third level by the 
some external pumping mechanism (Pr). After a very 
short time period 32, the electrons of the third level (E3) 
fall into the second level (E2) by a non-radioactively 
transition. A population accumulates in the second level  
 

 

Figure 1. Schematic of the four-level atomic system model. 
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due to the lifetime of the laser transition is longer than 
other lifetime, e.g. 32. The amount of electrons in the 
second level (E2) is larger than the amount of electrons in 
the first level (E1).Then a population inversion is 
achieved. The lasing and optical amplification E2 will 
happen at the frequency of 21 = (E2-E1)/ħ. At last, the 
electrons transfer quickly and non-radiatively from the 
first state level (E1) to the ground state level (E0). 
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In the traditional four-level atomic system model, the 
populations can be modeled by the following rate equa-
tions: 
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We set the right of the equations as zero. The physical 
interpretation of this is owing to the steady state for the 
populations of each level. So the corresponding homo-
geneous equations can be rewritten as follows: 
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2.2. Classical Electron Oscillator Model 

Using the Lorenz Model, the electric polarization in real 
atomic transitions can be described by the following 
equation: 
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where e is the charge of an electron. m is the mass of an 
electron and N = N2  N1. r = 1/21 is the real decay rate 
of the second level. c = 1/21 is the classical rate.0 is 
the total energy decayrate and 0  =  1/21  + 2/T2. T2 is 
the mean time between dephasing events. 

2.3. FDTD Formulation 

Presuming a two-dimensional problem of a plane wave 

propagating along +y direction, using spatial and tempo-
ral interleaving of the fields and the central differencing 
scheme. We can write the discretized equations for the 
electric and magnetic fields as follows: 
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The macroscopic polarization has a nonzero compo-
nent in the x direction alone. The polarization equation 
can be discretized as: 
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Similarly, the discrete rate equations are: 
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The initial state is t = 0. So we can embed the gain 
atoms in the each level of host medium aforehand base 
on above equations. There is no polarization at first. 
However, the system begins to evolve while electrons are 
pumped by external pumping into high energy level.  
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3. Numerical Results 
We set parameters as fellows. The slab width is 300 

nm. The gain slab width is 100nm. The discrete time and 
space steps are chosen as ∆t = 1.667 × 10-17 s and ∆x  = 1 
× 10-8  m. The center frequency of the radiation 0 is set 
as 2 × 1014 Hz. ∆ω0 is set as 5THz. The parameters 10, 
21 and32 are chosen as 5 × 10-14  s, 5 × 10-12 s and 5 × 
10-14  s. The total electron density (Nt) is chosen as 6 × 
1023 m-3.The total iterated time step is set as 1.5 × 106. 
The frequency of the CW wave is 250 THz. 

The 2D system incorporated a gain material as showing 
in Figure 2. 

By solving the differential equations (1a)-(1d) the 
amount of electrons of each level in each time step can 
be gotten as (8a)-(8b): 
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       (7b) We first set the pump rate (Pr) as 9 × 107 1/s. A con-

tinuous wave is generated. We then let it propagate 
through the gain slab. We may find from the Figures 3 
(a) and (b) that there is no lasing. As we increase the 
pump rate (Pr), the lasing phenomenon appear, see Fig-
ures 3(c) and (d). With the pump rate increases (Figures 
3(e) and (f)), the peak becomes larger. The Figures 3(a), 
(c) and (e) are the situations when all the electrons are 
embedded on the level (E0). The Figures 3(b), (d) and (f) 
are the situations when electrons are embedded on each 
level base on the equations (7a)-(7d). 
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Figure 2. Schematic of the simulated structure. 

 
 

 

(a)The situation when all the electrons are embedded on the level (E0).The pump rate is 9 × 107 1/s. 
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(b) The situation when electrons are embedded on each level base on the equations (7a) - (7d). The pump rate is 9 × 107 1/s. 

 
(c) The situation when all the electrons are embedded on the level (E0).The pump rate is 9 × 108 1/s. 

 
(d) The situation when electrons are embedded on each level base on the equations (7a) - (7d). The pump rate is 9 × 108 1/s. 
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(e)The situation when all the electrons are embedded on the level (E0).The pump rate is 9 × 109 1/s. 

 
(f) The situation when electrons are embedded on each level base on the equations (7a) - (7d). The pump rate is 9 × 109 1/s. 

Figure 3. The Electric field of the reflected wave, transmitted wave, the Fourier transform results, and the normalized dif-
ference of electron number between the upper level and lower level under different pump rate. 
 

Populations changing can also be observed in the Fig-
ure 4. The Figure 4(a) is the situation when all the elec-
trons are embedded on the ground state level, we may 
record this as case a. The Figure 4(b) is the situation 
when electrons are embedded on each level base on the 
equations (7a)-(7d), namely case b. Here we use the 
pump rate of 9 × 108 1/s. If we increase the pump rate 
further, we may see the populations begin to oscillating 
strongly. It is easy to see that case b has a shorter lasing 
time than the case a does. That means our model costs 

Figure 5 shows the c

less time to start to lase. 

omparisons of the lasing time 
un

4. Conclusions 

umerical model for gain materials 

der two situations, case a and case b, with different 
pumping rates. We may find that the case b needs less 
simulated time to lase than case a. Which means our new 
system takes less time to start to lase than the system 
which all the electrons are embedded on the ground level. 
Furthermore, when the pump rate gets higher the lasing 
time which the system begins to lase is decreasing. 

A modified FDTD n
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Figure 4. The two situations’ populations change in each level with different pump rate. 
 

 

Figure 5. The lasing time of two situations under differen

nd numerical simulations based on the lasing dynamics 
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