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ABSTRACT 

In this article, we construct a triangle-growing network with tunable clusters and study the social balance dynamics in 
this network. The built network, which could reflect more features of real communities, has more triangle relations than 
the ordinary random-growing network. Then we apply the local triad social dynamics to the built network. The effects 
of the different cluster coefficients and the initial states to the final stationary states are discussed. Some new features of 
the sparse networks are found as well. 
 
Keywords: Networks; Social Balance; Dynamics 

1. Introduction 

Since balance theory was first proposed by Heider [1], 
lots of researchers have been interested in this field and 
many important contributions were made [2-5]. Antal et 
al. [6] studied the balance dynamics on the social net-
works based on the notion of the balance theory. In their 
network, each node is connected to all the others, repre-
senting each person knows all the others in the society. 
Each edge in the network has two values, +1 and −1. If 
the edge sij is +1, it means the persons i and j are friendly 
with each other. If the edge sij is −1, it means the two 
persons are hostile towards each other. At every step, 
they choose a triangle randomly from the network. If the 
product of the three edges is +1, the triangle is stable. 
Otherwise, if the product is −1, the triangle is unstable. 
For the stable triangle, it satisfies 1) the friend of my 
friend being my friend; 2) the enemy of my friend being 
my enemy; 3) the friend of my enemy being my enemy; 
and 4) the enemy of my enemy being my friend. The 
unstable triangles always try to become stable, but the 
final state of the network depends on the edge flipping 
probability p, which is set manually. If p > 1/2, the net-
work will reach the state of “paradise”, with all relations 
being friendly. Several studies around the balance dy-
namics have been carried out, including the studies of the 
university class of triad dynamics [7] and the satisfiabi- 
lity problem of computer science [8], etc.  

The researches on the dynamics of balance [6-8], 
which were based on the complete graph or the regular 
lattice, have revealed some interesting and important 

phenomena in the certain networks. Antal et al. [6] stu- 
died the local triad dynamics on the complete network 
and found the dynamical phase transition in this system. 
Apart from this dynamics, they also considered the con- 
strained triad dynamics in which the number of imbal- 
anced triads cannot increase in an update event, and the 
final state can either be balanced or jammed. They ar-
gued that the constrained triad dynamics can be applied 
to international relations. Radicchi et al. [7,8] genera- 
lized the topology from all-to-all to a regular one of a 
two-dimensional triangular lattice and generalized the 
triad dynamics to k-cycle dynamics for arbitrary integer 
k. From a finite-size scaling analysis they determined the 
critical exponents for triad dynamics. Meanwhile, they 
pointed out, the diluted k-cycle dynamics can be mapped 
on a certain satisfiability problem in computer science, 
the so-called k-XOR-SAT problem. 

Although the significant contributions have been made 
in the work mentioned above, the social balance dyna- 
mics in some real communities has seldom been consid-
ered. Real communities have the features as follows, 
firstly, not all the people know each other, secondly, the 
person will know more and more people as he/she is 
growing, finally, most of the real networks are not com-
pletely connected. The aim of us is to study the social 
balance behavior closed to the reality. In article [9], we 
studied the dynamics and generalized it to ternary rela-
tionships on the small-world networks. We found that the 
system shows the behavior of the self-organized critica- 
lity. If there is a small disturbance, it will result in an 
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avalanche. However, these studies were preparatory, real 
networks are more complicated. So the further researches 
are needed to capture the effect of the topology of the 
network to the social dynamics.  

In this article, we construct a random network with 
tunable clusters to reflect the features of the real commu-
nities mentioned above. Then we study the social balance 
dynamics in the network. In the first part of the article, 
the statistical properties of the network are studied. We 
focus on the difference between the network and E-R 
random network. The degree distribution and cluster co-
efficient are discussed, and we find the network con-
structed in the paper is suitable for the issue of the dy-
namics of the social balance. Based on the network, the 
dynamics is studied, and some interesting results are 
found. 

2. The Triangle-Growing Networks 

An important aspect which is always present in social 
dynamics is the topology of the network. When applying 
social balance dynamics on specific topologies several 
nontrivial effects may arise [10]. In our work, we will 
discuss the effect of the topology to the dynamics. Up to 
now, lots of network models, such as small-world net-
work, BA network, and some extension of them, were 
proposed to explain the features of the topologies [11], 
but most of them, which have small fraction triangles in 
the networks, can not reflect the growing features of the 
social networks. So we need to construct a network 
which can show the growing features of social communi-
ties. 

Our inspiration of solving this problem comes from 
the random graph proposed by Eröds and Rényi [11] and 
the random growing network discussed by Barabási and 
Albert [12]. E-R random graph is defined as N labeled 
nodes connected by n edges which are chosen randomly 
from N(N-1)/2 possible edges. The clustering coefficient 
of a random graph is 

randC
k

p
N

 
  , 

where p is connection probability and <k> is the average 
degree. Bollobás [13] derived degree distribution of the 
random networks and get the conclusion that for large N, 
the degree distribution follows the Poisson distribution. 
Moreover, many authors have studied the diameter of a 
random graph [14]. For E-R network, when <k> is larger, 
the cluster becomes larger. However, the number of ad-
jacent triangle clusters is not so giants. 

The random-growing network is the limiting case of 
the scale-free network [12]. This model keeps the grow-
ing character of a network without preferential attach-
ment. A new node connects with equal probability to the 
nodes which are already present in the system. The de-

gree distribution decays exponentially. This network also 
has small fraction triangles. Our aim is to construct a 
network that has more triangles than the models built 
before. We build the graph by growth like random grow-
ing network. But to get more triangles, some new rules 
are introduced. The rules of the construction are as fol-
lows: 

1) To start with, the network consists of m0 vertices 
which are linked completely (This rule represents that all 
people know each other in a small community or a com-
pany). 

2) Every step, one vertex v with 2 edges is added. One 
of the edges is attached to an existing vertex w randomly, 
and the other edge is attached to a neighbor of the vertex 
w: After N-m0 steps, there are N vertices in the network 
(This rule shows that a new individual will know a per-
son randomly and know another person by the acquaint-
ance of the random selected person). 

3) Then we let the existing vertices grow two links 
with pA, the links will find the targets. The finding rule is 
the same as step 2. By repeating this step, we may get a 
network which approximates to the completely graph 
with very large cluster coefficient (This rule means that 
the old members in the company will know others ran-
domly by the acquaintance). 

The 2nd step is the key of the rules. Every added point 
will engender more than one triangle in the graph. In 
sociology the clustering coefficient can be defined as the 
fraction of transitive triples [15]. According to this 
mechanism, the network will have a large number of 
triads and the large cluster coefficient. Figure 1 gives the 
cluster coefficient. After N steps of the second rule, 
compared to the random-growing network, the triangle 
growing one has larger coefficient with the same average 
degree <k> ≈ 3.9. The reason of this phenomenon is that  
 

 

Figure 1. The cluster coefficient of random-growing graph 
and triangle-growing graph with different size of the net-
work. The blue ▲ is triangle-growing case and the red ▼ is 
random-growing case. 
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the triangle-growing network is added triangles in every 
step, while random one is only added links in each step. 

If the edges are added according to the step 3, the 
cluster coefficient and the triangles will vary with the 
increasing average degree. Figure 2 gives the cluster 
coefficient of these two networks, with different average 
degree. Form the figure, we can get the conclusion that 
the triangle growing network’s cluster coefficient is lar-
ger than the random growing one’s, but with the degree’s 
increase, the coefficient is closing to each other. For the 
triangle growing network, the edges are added according 
to the step 3, so the vertices are linked more and more, 
and the triangles increase. Meanwhile, for the random- 
growing network, the vertices are also linked more and 
more as the increasing degree. So the numbers of the 
triads of these two networks get closer, especially at 
large average degree. Because at this moment, these two 
networks both approximate to the completely connected 
graph. 

Another important statistical feature of networks is 
degree distribution. The random-growing network and 
the triangle-growing one are very different. Especially, 
the triangle-growing network undergoes vary of the to 
pology. If there are only 2 edges of an added node, an 
arbitrary vertex w increases its degree with rate 

   II IIw
R w N w

k
k

t


 


k         (1) 

where IIR(kw) denotes the probability of the random link, 
and IIN(kw) is proportional to the probability that a vertex 
in the neighborhood w is linked in the random link step 
before. So we can get 
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Figure 2. The cluster coefficient of random-growing graph 
and triangle-growing graph with different average degree. 
The black * is triangle growing case and the red + is ran-
dom growing case. 
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Where Γw is the neighborhood of w: We can get the con-
clusion that the degree distribution which is similar with 
the BA network. In Figure 3 the degree distributions of 
triangle-growing and random-growing networks are dis-
played. From the figure, we can see that when <k> is 
small, the triangle growing graph is heterogeneous. 
Moreover, if the edges are added following the step 3, 
the cluster coefficient and the fraction of the triangles get 
larger. And as the links are increasing, the degree distri-
bution will change. 

3. Social Balance in Triangle-Growing  
Networks 

In this section, we will study the local triad dynamics 
(LTD), which has been introduced in article [6]. In each 
update step of LTD, we first choose a triad at random, if 
this triad is balanced (sijsjkski > 0), nothing happens. If the 
selected triad is imbalanced (sijsjkski < 0), one of the links 
of the triad will be changed form s to −s. The rules of the 
evolution are as follows: 

1) If all the links are −1, we choose a link randomly 
and change it. 
 

 

Figure 3. (a) Is the degree distribution of the triangle- 
growing networks and (b) is the distribution of the random- 
growing network. 
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2) If there is only one −1 link, we change the link of 
−1 to 1 with the probability p, or change one of the other 
two links to −1 with the probability 1 − p. 

Antal et al. [6] have studied the dynamics in fully con-
nected graph, and get the conclusion that a finite network 
falls into a socially-balanced state. They also gave the 
results that the density of unfriendly links gradually de-
creases and the network undergoes a dynamical phase 
transition to an absorbing, paradise state for p ≥ 1/2. 
However, many real social networks are not fully con-
nected. So, we construct a triangle growing network 
which is not completely connected in the previous sec-
tion. Our work in this section is to study the dynamics in 
the network. 

The rules of the evolution are the same as in article [6]. 
The completely connected network will fall into the 
paradise state for p ≥ 1/2 which has no enemy relations. 
But for the new topology, does the non-completely con-
nected graph have the same feature? For answering this 
question, we calculate the density of friendly links ρ+, 
which is defined as the ratio of friendly links to all the 
links. First, we let the network have the same quantity of 
the friendly and enemy links. That is the initial state ρ+0 
= 0.5. Then we let the network evolve as the dynamics 
above. After a sufficiently long time, the system will get 
to the stationary state. Our interest is to study the influ-
ence of the topology to the evolution of the dynamics. 
Via increasing the adding probability pA, the networks 
can be changed from sparse heterogeneous network with 
small degree to the homogeneous nearly fully connected 
ones. 

Figure 4 shows the stationary state of the friendly re 
lations ρ+ as a function of p. From the figure, we can see 
that the system never reach the Utopia state without en-
emy relations in any p when the adding probability pA is 
small. However, with the increase of pA, the terminal 
stationary state will have more and more friendly links. 
Especially, when pA is greater than a certain value, the 
system shows the same feature that the network under-
goes a dynamical phase transition to an absorbing, para-
dise state for p ≥ 1/2. This value of pA may be 0.5 from 
our calculations. The results indicate that for a certain 
scale network, the system is easier to get friendly state 
when the average degree is larger. This is because larger 
degree implies a link may belong to quite a number of 
triads. An enemy relation may not lead to imbalance in a 
triad, but other triads, which share this enemy relation, 
may be imbalanced because of the relation. So this re-
sults in a evolution in the whole network and the system 
is stable at the end. The best stationary state likes more 
friendly links. 

Another feature we concern is whether the initial con-
dition affects the result of the evolution. We simulate the 
dynamics in different networks with adding probability 

pA=0.08 and pA=0.5. The different initial conditions are 
considered and the results are drawn in Figures 5 and 6. 
It is found that when pA is small, the final states de pend 
on the initial states. However, when pA is large, the final 
states are the same in different initial states. For pA=0.08, 
the relations between the individuals of the network are 
sparse. The network has lots of independent clusters. 
 

 
Figure 4. The stationary state of the friendly relations ρ+ as 
a function of p with 500 and 300 nodes. 
 

 

Figure 5. The stationary state of the friendly relations 
ρ+ with different initial state ρ+0 in the sparse net-
work. 
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