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ABSTRACT 

We propose a mathematic model of muscle cell membrane based on thin-walled elastic rod theory. A deformation oc- 
curs in rodents’ skeletal and cardiac cells during a period of antiorthostatic suspension. We carried out a quantitative 
evaluation of the deformation using this model. The calculations showed the deformation in cardiac cells to be greater 
than in skeletal ones. This data corresponds to experimental results of cell response that appears intense in cardiomyo-
cytes than in skeletal muscle cells. Moreover, the deformation in skeletal and heart muscle cells has a different direction 
(stretching vs. compression), corresponding to experimental data of different adaptive response generation pathways in 
cells because of external mechanical condition changes. 
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1. Introduction 

Every mechanical system, including living cells, in an 
external mechanical field is exposed to forces intrinsic to 
this field. The action of these forces results in mechanical 
tension that appears in cells. An external influence change 
(in direction or magnitude) leads to mechanical tension 
changes in cells and to deformation. The significance of 
the deformation for the cell depends on its inherent me- 
chanical characteristics and the sensitivity of its mech- 
anosensors. 

An external physical signal transformation results in 
proper cell response generation. At the same time, the 
clue is the magnitude of the applied force that is able to 
induce cell response. 

All living cells can be divided into two groups: cells 
that form internal tension only against external influence 
and cells that can additionally generate force themselves 
—muscle cells. Muscle cells have a specific structure, a 
developed cytoskeleton, which occupies most of the cell 
volume and forms a contractile apparatus. Taking these 
features into account, one can suppose that a muscle cell 
mechanosensor is connected to the contractile apparatus, 
for example with the M-line [1]. 

However, the muscle cell submembrane cytoskeleton 
is quite similar to that in non-muscle cells except for cer- 
tain areas (particularly in areas of M-line and Z-disk pro- 
jections on the membrane). Hence, cell formation takes 
place under constant external force action, so one can 
assume that the first mechanoreception acts to connect 
with the cell compartment, typical for every living cell. 
This compartment appears to comprise a membrane and a 
cortical (submembrane) cytoskeleton. Therefore, the ques- 
tion is what deformations emerge in the muscle fiber 
membrane after the gravity vector or the fiber contraction 
rate changes and whether these changes can result in mus- 
cle fiber mechanical characteristic change and cell re- 
sponse initiation. 

To answer these questions, we need a numerical evalua- 
tion of deformations that arise in the sarcolemma after 
external mechanical conditions change. Such an evalua- 
tion requires data about longitudinal and transversal stiff-
ness because muscle cells appear to have a three-dimen- 
sional structure [2]. However, this problem turns out to 
be hard to solve because the contractile apparatus con- 
tribution to linear stiffness is several orders greater than 
the contribution of the sarcolemma. Previously, we suc- 
ceeded in determining the transversal stiffness of the sar- 
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colemma using atomic force microscopy [3], changing 
mechanical conditions for both skeletal and cardiac mus- 
cles in rodents (Figure 1) [4]. 

An external mechanical condition change was imple- 
mented through the common animal antiorthostatic sus- 
pension method by tail at an angle of 30˚ respective to 
the cage floor (the Ilyin-Novikov method with the Morey- 
Holton modification is widely used in space physiology 
to model microgravity effects on a surface [5]). Animal 
suspension resulted, on the one hand, in a reduction of 
the external mechanical field on the hind limbs and, on 
the other hand, in increased mechanical tension in car-
diomyocytes. The orientation of the muscle cells (muscle 
fibers) in the gravity field changed, too. 

Nevertheless, the data for only the transversal stiffness 
of the membrane and cortical cytoskeleton do not afford 
us the influence of the gravity vector change on the mus- 
cle cell membrane and its probable involvement in pri- 
mary mechanoreception acts. All of the above indicates 
the necessity of developing a membrane mathematical 
model. 

2. Mathematical Model 

2.1. Statement of the Problem 

Let δ define the thickness of the membrane and cortical 
cytoskeleton, d is the muscle fiber diameter, and l is its 
length. Then, we can write the following relations: 

0.1
d


 , 0.1

d

l
  

This enables us to consider the fiber a long, cylindrical 
envelope called a thin-walled rod [6]. 

It is typical for transversal sections of this kind of ob- 
jects to initially be plane distorted on a surface: W(x, z). 
W(x, z) is usually called a sectional warping. For closed 
envelope rods, including muscle fibers, axial uniform 
warping is also typical, so we can rewrite W(x, z) as W(x). 
We have    W x x k     in Saint-Venant’s prob- 

 

 

Figure 1. Scheme of muscle fiber with indicated measure-
ment points. Using the AFM surface images, we were able 
to measure the transverse stiffness of all specific regions of 
the fiber, such as the contractile apparatus and membrane 
at different points. For this study, the main parameter is the 
membrane stiffness between the Z-disk and M-line projec-
tions. The structure of this region is universal for all cell 
types (not just muscle cells). 

lem, where Ф is the Prandtl function (underlining indi- 
cates that the underlined value is a vector). We can take a 
sectorial area as W for a thin section. Then, for the part of 
membrane between the Z-disk and M-line to be consid- 
ered, we use the thin-walled theory statements. We will 
consider the cylindrical rod with thin simply connected 
section F and with volume load f. For simplicity, we 
suppose the 0z z  end to be fixed, and we have the 
surface load  p x , which is a net load between the Z- 
disk and M-line (to be determined later) on the other end 
 1z z . We describe this three-dimensional case using 
the method of variations [7]: 

   
1

0

3 1d d ,
z

z F F

z f u F p u x z F   d 0      ,   (1) 

 0, 0u x z  ,  2

3 1 2
tr

   


      
, 

where u  is the translation vector,  is the volumet- 
ric energy, 

3
  is the Lamé constant,   is the Poisson 

ratio,   is the deformation tensor, and tr  is the trace 
of deformation tensor, the first invariant (double under-
lining indicates tensors). 

To derive equations from the variation principle, we 
approximate the translation as: 

         , zu x z u k u U z z x z W x k       , (2) 

where  U z  is the linear translation,  z  is the rota-
tion vector,  z  is the rotation angle per unit length, 
and  W x  is the warping function: 

0W  , Fl k W l x    , 

l  is the basis vector of the Lagrangian coordinate. 
Let us suppose that there is a lack of transversal shifts; 

then:  

 , zU k z      .           (3) 

Taking into account Equation (3), approximation (2) 
becomes:  

     , z z zu x z U U x W k U k x         ,  (4) 

That is:  

,z z z zu U U x W u U k x         .     (5) 

From the classical theory of elasticity, we know that: 
Su   ,                  (6) 

where S is the symmetrization symbol.  
Using (4), Equation (6) can be rewritten: 

 
 

z z z z

s

z z

U kk U xkk W kk W kk k x k

kk kk

   

 

          

  
, 

(7) 
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where W k x k      and  

z z zU U x W       . 
Then: 

 
2

22 2 ,
2

2
z z ztr     


          (8) 

Substituting (8) into (1), we obtain a new volumetrical 
energy density: 

2

2 2
3

22 2

2 1 2

1

1 2 2

z z z

z z

   


   


 
    

  

   


 

Since 
 2 1

E





: 

 22 2
3

1 ˆ
2 z zE      ,         (9) 

where 
  

1ˆ
1 1 2

E E


 



 

, and  is Young’s  E

modulus. 
Taking into account (7), (9) becomes: 

 

  



22 2
3

2 2 2

22

ˆ

2 2

ˆ
2

2

2 2
2

z z z

z z

z z z

E
U U x W

E
U U x U x W U W

U U x U x W

 



 



 

 

        

         

       

z z .  (10) 

Integrating (10) in the section: 

 

1 3d
F

2 2 2

22

2 2 2
0

ˆ
d d d

2

2 d 2 d 2 d

d
2

ˆ
2

2 2

z z
F F F

z z z z
F F F

z
F

z z z z

E
U F U xx F U W F

U W F U U x F U xW F

F

E
FU U JU I U J C



 

 



F

   

 

 

  

  
       

  


       

  




 

          

  

  





, (11) 

where d
F

J xx F  , 2d
F

I W F  d 0
F

W F , ,  

d
F

J Wx F   , 
2

d 2 d
F F

C F     F . 

Let us now determine the work of volume loads: 

 

 

d d

d d

d d

z z
F F

z z z
F F F

z
F F

z z z z

f u F f U k x xk U Wk F

U f F U f dF k x f F

k U f x F f kW F

q U q U m k U k b

    

  

 
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

 



  

     

   

    

      

 

  

 

F



, 

(12) 

where , dz z
F

q f  d
F

q f   F , d
F

m x f F  , 

dW Fz
F

b f   is the distributed bimoment per unit length. 

Similarly, a work of the volume load on the end: 

 

1 1

1 1

d z z
F

z z

p u F Q U Q U

M k U k B

  

  

 



 

     


,      (13) 

where , 1 dz z
F

Q p F  1 d
F

Q p F   , 1 d
F

M x p F  , 

1 dzB p W F
F

   is the bimoment on the end. 

Taking into account Equations (12) and (13), the varia-
tional equation becomes: 

 

 1 1 1 1 0z z z zQ U Q U M k U k B       

1

0

1

0

1 1 1 1

d

d

z

z z z z
z

z

z z z
z z zz

q U q U m k U k b z

U U z
U U

    

   
 

  




        

                  

      



 . 

(14) 

From (14), we obtain differential equations and limits: 

0,z zQ q    1 ˆ
z z

z

Q E
U

  


FU , 

1z : 1z zQ Q , 0Q q    , 0M k Q m       , 

1 ˆ zM k Ek J U
U

 


      


,     (15) 

1z : 1Q Q  , 1M M   

0z zM m   , z zM C B b      , 

 1 ˆ
z

z

B E I U J 
 

    


, 

1z 1: z zM M , 1B B ,  , 0 0u x z    

The set of equations derived in (15) gives us a chance 
to completely describe muscle fiber membrane behavior 
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as a long cylindrical envelope and to find the potential 
energy  in the case described.  3

Let us assume that there is no external moment influ- 
ence and that section warping and transversal shift con- 
tribution are negligible in comparison with the longitu- 
dinal component. This assumption is justified because of 
the specific muscle cell structure. Then, solving (15), we 
can find 



zU : 

1

0

1
d d d d

ˆ

d d d

z z z
F F

z z z
F F

U f F z f F
EF

z f F z p F






  




 

z

z

z


 
 

   

  


,   (16) 

where zf  is the volume load, zp  is the surface load, F 
is the section area,  is the adduced Young’s modulus, 
and 

Ê
  is the Poisson ratio.  

2.2. External Mechanical Loading 

An external mechanical field acts on the whole organism 
and launches a number of processes, leading to nervous 
activation change in skeletal muscles, a liquid shift in the 
cranial direction, and, as a result, to a volume load change 
in the heart. 

These processes results in the muscle fiber membrane 
becoming subjected to the following forces: caf  by the 
contractile apparatus as a result of nervous activation, 

, hydrostatic pressure (only for cardiomyocytes), and hyp

grf , the gravity. Nervous activation by intracellular sig-
nal mechanisms launch results in mechanical tension that 
arises in a muscle fiber because of myosin head and actin 
filament interaction, which is transmitted into the sar-
colemma by the cortical cytoskeleton. Let us suppose 
that this interaction is uniform distributed over the length 
of the contractile apparatus. Therefore, it can be repre-
sented as a periodical function with the period of Т, which 
equals the distance between two successive myosin heads.  

Then 0

2
sincaf f n z

T

 
 


 , where 0f  is the force gen- 

erated by the single bridge, approximately 3 - 5 pN, n 
represents a number of bridges, which can be determined 
as the ratio of the fiber length (l) to the distance between 
two successive bridges, approximately 43 nm, per fiber 
volume. Gravity also acts on a muscle cell depending on 
the cell orientation. The specific volumetric force in this  

case may be represented as 
1

cosgr

z
f g

z
   , where  

  is the angle between the gravity vector and the fiber 
longitudinal axis direction, g  is the free-fall accelera-
tion, and   is the liquid density. The surface load on 
the end is a net load of gravity and hydrostatic pressure; 

sinz hyp d pg   , where d is the fiber diameter. 

Then, the external forces become: 

0 2
1

4 2
sin cosz ca gr

z
f f f f z g

T zd T
         

, 

sinz hyp dg p   .         (17) 

3. Numerical Examples 

As an experimental model, we use a rodent’s antior-
thostatic suspension (Figure 2). 

We have determined in previous experiments Young’s 
modulus of the sarcolemma of different skeletal muscles 
[4] and a rat’s left ventricle [8,9]. Moreover, the intro-
duction of the nifedipin system into rats resulted in in-
creased sarcolemma transversal stiffness in skeletal mus-
cles [10]. We have also determined the muscle fiber di-
ameter. Based both on these data and ratio (16), we can 
find characteristic longitudinal deformations of M. soleus 
fibers and cardiomyocytes (Table 1). 

4. Discussion and Conclusions 

Interaction between a cell and an external mechanical 
field is still an unsolved problem in modern cell bio- 
physics. A case of gravity vector change appears to be  

 

 

Figure 2. The Ilyin-Novikov method with the Morey-Holton 
modification of a rodent’s antiorthostatic suspension [5]. The 
dotted arrows indicate the direction of muscle cells’ domi-
nant axis (z axis) under normal conditions, and the solid ar- 
rows represent the suspension case. 

 
Table 1. Longitudinal absolute and relative deformations of 
different muscle cells after antiorthostatic suspension at an 
angle of 30˚. 

Muscle Object M. soleus Heart 

zU , μm 4.29 9.5 
Rats 

zU l  2.15 × 10−4 6.31 × 10−2

zU , μm 1.98 Rats + nifedipin (10 mg per day 
per 1 kg of animal weight) 

zU l  0.99 × 10−4
- 

Results obtained for the following initial data: δ = 30 nm,  = 103 kg/m3, g = 
9.8 m/s2,  = 30˚, f0 = 4 × 10−12 N, l = 2 × 10−2 m (for m. soleus fibers), and l 
= 1.5 × 10−4 m, d = 2 × 10−5 m, phy = 50 Pa (for cardiomyocytes), Т = 43 × 
10−9 m, z = 2.4 × 10−6 m, z1 = 1.8 × 10−6 m. 
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the most complicated one since its magnitude is directly 
proportional to cell mass, so it is extremely small. Even 
more ambiguous is the situation with changes in the di- 
rection of the gravity vector rather than its magnitude. 
However, for cells in tissue, such a change launches a 
number of other processes connected with the nervous 
activation level (for skeletal muscle fibers) or the redis- 
tribution of hydrostatic pressure (in cardiomyocytes). That 
is why determining the cellular mechanosensor is a rather 
difficult problem. At the same time, a solution to this 
problem is necessary for adequate methods of cell pro- 
tection (from external mechanical condition changes that 
occur during, for example, a space flight) to be devel-
oped. 

We have previously supposed that the submembrane 
cytoskeleton, the most universal compartment for differ- 
ent types of cells, is a mechanosensor [4,9,11,12]. How- 
ever, the question regarding the significance of deforma- 
tions arising in the cortical cytoskeleton still cannot be 
experimentally proved. 

Therefore, in this work, we decided to theoretically 
evaluate deformations that appear due to the effects de- 
scribed above. To obtain a proper estimation, we devel- 
oped a muscle fiber sarcolemma model as a thin-walled 
rod. A series of assumptions enabled us to obtain an 
analytical solution, which makes it possible to estimate 
the deformation to the lower limit. The results showed 
that the absolute deformations in skeletal muscles and in 
the heart are comparable, but the relative deformation of 
the myocardium is dramatically greater. Nifedipin intro- 
duction changes the mechanical properties of muscle cells 
such that the deformations there appear to be minimal. 

The numerical estimation results highly correspond with 
experimental data about the cell response formation speed: 
changes in cardiomyocytes occur more intensely than in 
soleus fibers, and this fact remains unexplained [4,8]. We 
should note the different signs of deformations in the 
heart and in the soleus: one case involved stretching and 
the one compression, which could mean the launching of 
different cell response signal pathways. 

Thus, according to the results of the mathematical 
model developed and numerical experiments, it indicates 
that the external mechanical load change could lead to 
cortical cytoskeleton deformation. The deformation of 
cardiomyocytes is greater than that of soleus muscle fi-
bers. Furthermore, the deformations have different signs 
in the heart and in the soleus: one involves describing 
stretching and the other compression. One can suppose 
that the different signs of deformation result in different 
cell responses, probably due to various proteins dissoci- 
ating from the cortical cytoskeleton in each case. In addi- 
tion, the deformation magnitude may influence the speed 
of the cell response; this fact corresponds to experimental 
data. In total, the results obtained from mathematical 

modeling explain a series of experimental data, particu- 
larly various start-up times of the cell response in the 
heart and soleus muscles, as well as different adaptive 
protein patterns in these cells as a result of external me- 
chanical condition changes and suggest a new approach 
to the search for cellular mechanosensors. 
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