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Abstract 
 
In recent years а significant number of both theoretical and experimental works devoted to the influence of 
external electromagnetic fields and ionization on the probability of beta decays have been published. The 
present work investigates the feasibility of using this physical effect as the main mechanism for controlling 
the reactor. In this paper a system of equations is written and studied that allows one to describe the work of 
a nuclear reactor in the case where the probability of beta decay and, therefore, the fraction of delayed neu-
trons is a function of time. It is shown that in the case of a constant fraction of delayed neutrons, the pro-
posed system of equations is identical to the known system. As can be seen from analysis of a solution of the 
new system of equations for the proposed method of reactor control, acceleration by instantaneous neutrons 
is impossible even theoretically. 
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1. Introduction 
 
During recent years, our understanding has been that the 
impact of atomic electron shell disturbances on the peri-
ods of nuclear decay caused by weak electromagnetic 
interactions could be quite significant. For example, the 
163Dy, 193Ir, 205Tl nuclei, which are absolutely stable in 
neutral atoms, become -active under full atom ioniza-
tion [1], while complete ionization of 187Re increases the 
possibility of -decay by a factor of 109 [2]. The prob-
abilities for β-decay increase not only under ionization 
but when an atom is exposed to a superstrong magnetic 
field [3]. Since the physical mechanism of the production 
of delayed neutrons (DN) from nuclear emitters is di-
rectly connected to β-decay processes, the question was 
reasonably raised [4] of whether it is possible to change 
the DN fraction. [5,6], it was proved quite convincingly 
that the DN fraction definitely increased under ionization 
of atoms. 

The appearance of DN during uranium fission is a ba-
sic physical effect making it possible to create a nuclear 
reactor and underlying the operation control for reactors 
of any type. Particularly significant in this respect is the 

influence of DN on the behavior of the reactor with cir-
culating fuel [7]. Although at present the possibility of 
changing the DN fraction through external impacts 
causes no doubts when describing the atomic reactor 
kinetics, it is nevertheless considered that the DN frac-
tion of each particular nuclear emitter does not depend 
on external conditions. This discrepancy can be ex-
plained by the fact that the theoretical foundations of 
reactor operation had been developed long before they 
received reliable experimental data witnessing the influ-
ence of external physical impacts on the probability of 
nuclear processes that involve weak interactions. At pre-
sent, when describing the reactor kinetics, consideration 
is taken only of the variation of the average DN fraction 
during the reactor process due to a different chemical 
composition of the active zone. This work is aimed at 
qualitative analysis of whether the method based on 
changing the DN fraction could form (at least theoreti-
cally) the basis for regulating the said nuclear reactor. 

The classical equations of reactor kinetics [7] were ba-
sically written under invariable DN fraction conditions. 
Hence, analyzing them in the framework of the variable 
DN fraction would not be quite correct. This work for-
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mulates the reactor kinetics equations as based on the 
whole quantity of the DN nuclear emitters (including 
those whose decays do not result in forming neutrons). 
These equations are analyzed in the case of a change in 
the fraction of DN. It is shown that when using external 
impacts (e.g. superpowerful magnetic field) to change 
the fraction of DN, then theoretically, in a way it is pos-
sible to regulate the power of the reactor. 
 
2. Effect of Bound-State Beta-Decay on the  

Fraction of Delayed Neutrons 
 
A theory of bound-state β–-decay, in which the beta elec-
tron does not leave the atom but occupies a free orbit, 
was constructed in [8-11]. The ratios of the decay con-
stants (ratios of the β–-decay probabilities) for transitions 
to bound and free states (λb and λc, respectively) were 
calculated in [9-11]. For β−-decays of low energy in fully 
ionized heavy atoms, the ratio λb/λc may be as large as 
103-104. Thus, we see that, in the presence of free elec-
tron orbits, the probability of the β−-decay of nuclei may 
increase by three orders of magnitude or more. The the-
ory of bound-state β−-decay was experimentally con-
firmed in [1,2].  

However, the allowance for bound-state beta-decay 
may prove to be of importance not only in the case where 
the nucleus involved has an anomalously low boundary 
energy for beta decay, 187Re, for example, possesses this 
property [2]; but also in the case where the decay process 
being considered proceeds via various channels, includ-
ing those of decay to highly excited levels of the daugh-
ter nucleus. In the former case, the decay half-life 
changes, while, in the latter case, the change in the decay 
half-life is small, but the ratio of the intensities of decays 
through different channels may undergo a substantial 
redistribution. This effect will lead to a change in the 
relationship between the intensities of the lines of 
gamma radiation from the daughter nucleus. If, in addi-
tion, an emitter of DN appears as the initial beta-decay- 
ing nucleus, the DN fraction will change.  

The ratio of the probabilities of bound-state β−-decay 
to free states can be calculated by a method similar to the 
classic method for calculating the ratio of the К-capture 
to the β+-decay probability [12]. In the following, we will 
use the system of units in which e . For 
allowed beta decays, the decay constants for transitions 
to a bound and a free state are proportional to the same 
matrix elements and differ only in phase spaces of elec-
tron–neutrino final states. From [11,12], it is well known 
that, for beta decay to a free state, the phase space is 
proportional to the integral Fermi function: 

c m 1  

     22

1

, ,ε ε 1 ε ε ε
E
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(E is the beta-transition energy) and is the sum of all 
possible energies and momentum directions for the elec-
tron (neutrino). The Fermi function in (1) grows with 
energy faster than in proportion to E2. 

For bound-state beta-decay the neutrino spectrum is 
concentrated at a single energy value, since the energy of 
an electron moving along an orbit is fixed, and the phase 
space is determined by a possible arbitrary direction of 
the neutrino momentum. The phase space is then propor-
tional to the product of the square of the neutrino mo-
mentum, 

 22
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1
1 εp E

c
    

(ε is the energy of the electron moving in the respective 
orbit) and the probability of the intersection of the free 
electron orbit and the nucleus involved. In turn, the in-
tersection probability is proportional to |Ψe(R)|2, where 
Ψe(R) is the density of the electron wave function in the 
region occupied by the nucleus. For hydrogen-like orbit: 
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where α = 1/137 is the fine structure constant, Z is the 
charge number of the nucleus and m is the quantum 
number of state. 

It follows that the appearance of a free electron orbit 
enhances the decay constant for the allowed beta transi-
tion of energy E (0) by the quantity λ, 
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Since, with increasing energy E, the Fermi function (1) 
grows faster than in proportion to E2, the ratio λ/λ0 de-
creases as the energy increases, 

0

1
,  0

λ E 
  .           (4) 

Thus, the lower the decay energy E, the more pro-
nounced the increase in the decay constant because of 
decay to a bound state. It is noteworthy that the energy 
dependence of the decay constant takes the same form, 
irrespective of which electron orbit is free, since it is the 
factor |Ψe(R)|2 that absorbs the effect of the distinction 
between the orbits. In order to derive the estimate in (3), 
we only employed the fact that the neutrinos accompa-
nying bound-state beta-decay are monoenergetic. 

In the particular case where a hydrogen-like orbit of 
the atom being considered is free (the case of a fully 
ionized atom), we find from (2) and (3) that 
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We note that the ratio λ/λ0 is greater for forbidden 
than for allowed transitions since, in expression (5), the 
numerator features the beta-decay form factor at the 
maximum neutrino energy, while the denominator is 
equal to the same form factor averaged over all neutrino 
energies according to (1). For uniquely forbidden transi-
tions, the ratio λ/λ0 was considered in [11]. 

The fission of 235U leads to the formation of a large 
number of fragments whose atomic weights range be-
tween A = 72 and A = 160. The mass and charge distri-
butions of fission fragments have been well understood. 
The majority of the fragments are unstable neutron-rich 
nuclei [13]. Among these, about 50 nuclei are sources of 
DN and decay according to the scheme in the Figure 1. 

The beta decay of the initial nucleus (DN emitter) 
through a channel characterized by lower beta-transition 
energies leads to the formation of an intermediate nu-
cleus in an excited state. At an excitation energy above 
the neutron binding energy (Qn), the intermediate nu-
cleus emits a neutron. Neutron emission from the inter-
mediate nucleus is virtually prompt, the delay time being 
determined by the lifetime of the initial nucleus. We de-
fine:  as the constant of full decaying DN nuclear emit-
ters and n as the constant of decaying DN nuclear emit-
ters through the β-decay channel with the appearance of 
neutrons. 

As can be seen from Figure 1, the β-decays of DN 
nuclear emitters resulting in the appearance of neutrons 
(taking place on the excited energy levels of intermediate 
nuclei) have significantly lesser decay energies than 
β-decays without the appearance of neutrons [13]. Hence, 
relative changing of n is much greater than relative 
changing of  (4) [3-6]. Let the following changing of 
β-decay take place: 

0 0,  ,n n n           

then 

0 0

λ λ

λ λ
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n

 
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Let us define the fraction of DN η in the following 
way:  

λ

λ
nR  ,                  (7) 

then the said changing of the β-decay probabilities re-
sults in a greater fraction of DN  = 0 +  (0 is the 
unexcited fraction of DN): 
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Therefore, the appearance of a free electron orbit in an 
atom that emits DN leads to an increase in the DN frac- 
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Figure 1. Scheme of the decay of a nucleus emitting delayed 
neutrons (Qβ is the maximum beta-decay energy, while Qn is 
the neutron binding energy in the intermediate nucleus). 
 
tion. In [5,6] the relative increase in the DN fraction of 
nuclei was calculated which originated from the fission 
of uranium and plutonium from the first three groups. 
 
3. Increase in the DN Fraction in a  

Superstrong Magnetic Field 
 
In [14-16] it is shown that upon placing of an atom in an 
external homogeneous constant strong magnetic field 

2 3 3 9
0 2.35 10eH H cm e Gs    , the properties of 

the atom qualitatively change. It follows from [14-16] 
that in such a field the density of electronic states in the 
nucleus increases and changes the ionization energy of 
the atom. In a superstrong magnetic field, the motion of 
atomic electrons in a plane perpendicular to the magnetic 
field occurs on the Landau levels. In the direction along 
the magnetic field the electron moves in one-dimensional 
Coulomb potential, averaged over the cross movement. 
In [3] the density of the electron orbit is calculated in the 
nucleus in a superstrong magnetic field. In contrast to (2) 
in the nucleus the density of electronic states with quan-
tum number m of longitudinal motion is 

  2
0 ~

2He

eH Z

m
 

 

 .            (9) 

Consequently, first, in superstrong magnetic field, the 
density of excited electronic states (m > 1) of the nucleus 
increases so much that bound-state -decay of nuclei 
becomes significant not only for a fully ionized but also 
for a neutral atom (formally the sum m–1 diverges). 
Secondly, in the superstrong field, the density of unoc-
cupied electronic states in the field of the nucleus (9) 
becomes proportional to the magnetic field H. Conse-
quently, the probability of bound-state decay also be-
comes proportional to the strength of the magnetic field 
H. The probability of bound-state decay with complete 
ionization of an atom is limited to the size of the nuclear 
charge Z (2), (3), and in a superstrong magnetic field, the 
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probability of bound-state decay can indefinitely increase 
with a sufficiently large magnetic field (9). 

From (3) and (8) subject to (9) it follows that upon 
placing of an atom with a nucleus of DN emitter into a 
superstrong magnetic field with strength H such that 

 2λ

λ I

eH Z


� ,            (10) 

(where I <<  is an increase of the total permanent 
-decay due to the complete ionization of the atom), the 
increase in the fraction of DN is 

 2
~H I

eH

Z
  .           (11) 

Consequently, for a sufficiently large magnetic field 
eH > (Z)2 the fraction of DN upon placing of an atom 
with a nuclear emitter of DN in a superstrong magnetic 
field grows more strongly than in the case of the full 
ionization of the atom. 

The limiting increase in the fraction of DN in the 
magnetic field, the strength of which satisfies the ine-
quality inverse to (10), is 
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and does not depend on the magnetic field but is deter-
mined only by the ratio of the energy En of -decay to 
give a neutron and the energy E of decay giving no neu-
tron. For the first three groups of nuclear emitters of DN, 
which are the products of uranium fission, (/)max > 
25. 
 
4. Kinetic Equations Taking into  

Consideration Possible Changes  
in the Delayed Neutron Fraction 

 
The power of the reactor is proportional to the neutron 
density n. It is well known [7] that DN impacts on the 
reactor dynamics can be correctly described by kinetic 
equations in the framework of a homogeneous isotropic 
model. For thorough analysis of the reactor behavior 
under changing  (β-decay constants) we will use the 
well accepted approximation of one efficient DN group. 
So let us first define the following variables: n is the 
density of all neutrons in the active reactor zone; Y is the 
density of all DN nuclear emitters in the active zone in-
cluding those whose decay does not result in neutron 
formation. This value significantly differs from the den-
sity of nuclear emitters which is typically used in the 
classic kinetic equations where only nuclei decaying 
along with the appearance of the neutrons are taken into 
account.  

Let us define χ as the prompt neutron cascade multi-
plication coefficient which is the ratio of the rate of the 
appearance of prompt neutrons to the rate of the absorp-
tion of all neutrons (the ratio of the number of instanta-
neous neutrons produced during a unit time in a unit 
volume to the number of all neutrons absorbed during the 
same time and in the same volume); R as the ratio of the 
number of produced nuclear DN emitters to the number 
of produced prompt neutrons; T as the effective life time 
of the generation of prompt neutrons such that nT–1 is, by 
definition, the rate of the appearance of prompt neutrons 
(number of prompt neutrons produced during the unit 
time in the unit volume); n as the constant of decaying 
DN nuclear emitters through the β-decay channel with 
the appearance of neutrons, that is nY is defined as the 
rate of the DN appearance (the number of DN produced 
during the unit time in the unit volume). It is well known 
that a small number of DN nuclear emitters produce 
more than one DN. We will take into account this prop-
erty in n. Finally we define λ as the decay constant of 
DN nuclear emitters through all the β-decay channels 
under which the decay results in a nucleus not being DN 
emitter. It should be noted that β-decays resulting in the 
presence of a new nuclear emitter are usually not taken 
into account here: a nucleus that is a nuclei composition 
is well described by the Y density factor. Taking into 
account the above notations, the equations for neutrons 
and nuclear emitters of DN are as follows: 

1
λn

dn n n
Y

dt T T
  


,           (13) 

dY n
R Y

dt T
  . 

The first term in the right-hand part of the first equa-
tion describes the appearance of instantaneous neutrons, 
the second term describes the absorption of neutrons and 
the third one characterizes the DN appearance. The first 
term in the right-hand part of the second equation de-
scribes the formation and the second term describes the 
disappearance of DN nuclear emitters. 

Now let us suppose that some impact is imposed on 
the reactor active zone that slightly affects the process of 
enforced fission and absorption of neutrons but increases 
the probability of the β-decay (e.g. ionization or an in-
tensive magnetic field). In such a case, n and  ratios 
are changed in Equations (13) while the other remain the 
same. Relative changing of  and n (6) results in a 
greater fraction of DN (8). 

Further we will introduce the reactivity of nuclear re-
actor : 

0

1 
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
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System (13) can be represented as  

0 λn

dn
n

dt Τ


  Y ,          (15) 

dY n
R Y

dt Τ
  . 

Now let us consider the behavior of the reactor which, 
being unexcited, operated in the stationary regime, that is 
 = 0. We are primarily interested in solutions satisfying 
the following initial conditions: 

     0

0 0

0 0
0

n

Y n
n

R R T


 

  T
.          (16) 

We will take into account the fact that changes  and 
n occur instantly (during the time  ). Let us exam-
ine the behavior of the reactor with new time-independ- 
ent  = 0 + , n = n0 + n, and  = 0. Then from 
(15), taking into account (8), we obtain the following 
equation: 

2
0

2

λ
λ 0

d n dn
n

dt Τ Τdt

      
 ,        (17) 

which describes the reactor behavior when it deviates 
from equilibrium. Should such be reached under certain 
impact on the active zone (with excited values of  and ) 
then the deviation may occur in the case of the impact 
cut off (disturbance). Thus we can, generally speaking, 
consider  and  in (17) both positive when putting 
on the impact and negative when taking it off. 

Equation (17) describes an unstable singular saddle- 
shaped point. It is not difficult to find solutions of the 
equation by solving its characteristic equation and de-
termining the characteristic number :  

 
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1 λ
λ 1 4 1

2 λ

T

T T
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.    (18) 

In the approximation T << 0 we get 

0

0

λ ,  ,
T 


                (19) 

and such solutions (19) are applicable to both cases of 
small  <<  and greater  >  excitations. 

When including ( > 0) the said impact, the density 
of the n neutrons will grow with the value + (19) but 
then it will stop. Since the power in the reactor is propor-
tional to the density of the neutrons n [7] it becomes pos-
sible to change its power by exerting impacts on the ac-
tive reactor zone by means of external fields. Now let us 
compare such a method of regulation with the classical 
one. 

5. Classical Kinetic Equations 
 
To come to the classical equations of kinetics, let us first 
define the text-book [7] value of C as the DN density of 
nuclear emitters which have β-decay through the chan-
nels giving a neutron: 

n Y
C Y

R

 
 


,             (20) 

   . 

In the classical approach to the problem, n, , and 
hence, β are constants, but in this case the substitution of 
(20) into (15) leads to the well known equations [7] 

ρ βdn
n C

dt Τ


   ,             (21) 

β
λ

dC n
C

dt Τ
  . 

Obviously, if β is not a constant then the second equa-
tion in (21) should be different: 

β ln
λ

dC n d
C С

dt Τ dt


    

Thus, the system of Equations (15) seems to be more 
general than (21) because the latter holds only for con-
stant n, , and β. Using the constant reactivity ρ, from 
(21) we get 

2

2
0

d n dn
n

dt T Tdt

        
.      (22) 

It is not difficult to solve this equation by calculating 
the characteristic values  from the following character-
istic equation: 

 2

1 β ρ λ ρ
1 4 1

2 β ρ

T

Τ T


                 
. (23) 

When  <<  and T <<  we find 

λρ
,  ,

T 


    


             (24) 

and when  ~  >> T  we have 

λρ ρ β
,  

Τ 


   


.           (25) 

Equation (22) is similar to (17) and they become coin-
ciding in the first order with respect to the small distur-
bances  << 0 if we set 

   . 

However, in the case of large disturbances  ~ 0, 
these equations are qualitatively different. It is worth 
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noting that Equations (17) and (22) are applicable when 
 > 0 and  > , respectively, while in the superstrong 
magnetic field the fraction of DN can become much lar-
ger than the value (12). 

If in the classical case (22) the reactivity becomes 
greater then the fraction of DN,  > , then the root signs 
of  in (25) become opposite and the larger of them 
which is ~T–1 becomes positive. That is, the reactor starts 
to accelerate prompt neutrons, and thus gets out of con-
trol. In our case (17), we always have  > 0 and the root 
sign of –~T–1 in (18) can never change (19). Hence, in 
the new method of regulating a reactor, it shall never 
accelerate prompt neutrons (with significant κ~T–1) but 
its power will always increase along with the value of κ 
proportional to , i.e. inversely proportional to the life-
time of DN nuclear emitters. 
 
6. Conclusions 
 
Thus, if external impacts (e.g. superpstrong magnetic 
field) change the DN fraction, then the power of the re-
actor can be theoretically regulated. The reactor sets up 
initially subcritical, but it switches on and works under 
an external impact on the active zone. Such method will 
be much safer than the traditional one just because, even 
in the case of significant excitations, the reactor will nei-
ther be accelerated by instantaneous neutrons nor be-
come “uncontrollable”. 

This work was partially supported by the #2.1.1/2840 
grant of The RF Education and Science Agency. 
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