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ABSTRACT 

Biomechanics is a wide interdisciplinary field, which includes all mechanical aspects from living organisms. As tra- 
ditional erythrocytes viscoelastic analysis is mostly qualitative, the development of new quantitative methods capable of 
analyzing at the same time biological and mechanical aspects of the cells in flow, when changing from healthy controls 
to glucose incubated at different concentrations, is crucial for restricting the subjectivity in the study of the cell behav-
iour. On the other hand, it is important to appreciate the role of mathematics in the analysis of tissues and cells. Recent 
developed non linear mathematical methods are particularly fruitful when they are strongly correlated with cells sensi-
tivity to initial conditions. An optic system called Erythrodeformeter has been developed and constructed in our labora-
tory, in order to evaluate the erythrocytes viscoelastic properties. To analyze the erythrocytes viscoelastic dynamics we 
used the technique of Time Delay Coordinates suggested by Takens, False Nearest Neighbours proposed by Abarbanel 
and co-workers, and the forecasting procedure proposed by Sugihara and May, the so called Correlation Coefficient. 
The results suggest that through this random walk analysis, apparent noise associated with deterministic chaos can be 
used not only to distinguish but also to characterize at the same time biological and mechanical aspects of the cells in 
flow, when changing from healthy controls to glucose incubated at different concentrations. 
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1. Introduction 

The approach in this paper is based almost solely on the 
analysis of system trajectories in phase space; this is 
completely different from approaches based more di- 
rectly on series analysis. We have tried to tie together 
tools and techniques that have proven most useful to date, 
and to present the results in a way that emphasize the 
deformability of the erythrocyte membrane, instead of 
the mathematical tools used.  

We combine some new ideas with previously develop- 
ped techniques, to make short term predictions on a li- 
brary of past patterns in the photometrically recorded 
time series. By comparing the predicted and actual tra- 
jectories, we could make distinctions between a dynami- 
cal deterministic process and white noise. While for a 
chaotic time series, the accuracy of the nonlinear forecast 
falls off with increasing prediction time interval, for un- 

correlated noise, the forecasting accuracy is roughly in- 
dependent of the prediction interval.  

The method proposed by Sugihara and May [1], also 
provides an estimate of the number of degrees of free- 
dom, of the photometric time series attractor when is 
identified as chaotic.  

Unlike many current approaches, this method does not 
require a large number of data points, instead seems to be 
useful when the observed process has relative few points, 
as happens in our erythrocytes photometric time series 
recorded under shear stress.  

Erythrocytes of patients with diabetes mellitus have a 
shorter than normal life span, as a result of both intrinsic 
and extrinsic factors [2] such as: 1) elevated levels of 
glucose in blood, which is frequently observed in diabe- 
tes mellitus, are known to cause damage and death of 
erythrocytes [3]; 2) modification in the hemorheological 
properties of cells, which may be associated with glucose 
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induced auto oxidation and glucosylation of erythrocytes 
proteins in hyperglycemia, can adversely affect the fluid- 
ity and oxygen delivery function of the erythrocytes [4,5]; 
3) even though the biomechanical mechanisms of dam-  
age of cell membrane at elevated levels of glucose are 
not fully understood, evidence of molecular changes in 
erythrocytes constituents, resulting in increased calcium 
concentration and therefore altered erythrocyte viscoe- 
lasticity, have been extensively studied [6].  

Our preliminary study on red blood cells (RBCs) com- 
plex behaviour, when is incubated in glucose medium [7], 
has shown the competition of Wavelet based Information 
Theory quantifiers: the Relative Wavelet Energy (RWE), 
the Normalized Total Shannon Entropy (NTWS), and in 
particular the entropy-complexity the MPR-Statistical 
Complexity Measure (SCM) when the erythrocytes are 
subjected to shear stress.  

On this basis we applied another concept in the study 
of the manifestation of this behaviour. We introduce the 
technique of Time Delay Coordinates suggested by Ta-
kens, False Nearest Neighbours proposed by Abarbanel 
and co-workers, and the forecasting procedure proposed 
by Sugihara and May, the so called Correlation Coeffi-
cient, to find out the evident manifestation of a random 
process on red blood cell samples of healthy individuals 
(without treatment samples), and its sharp reduction of 
randomness on analyzing the in vitro effects on erythro-
cytes incubated in glucose medium. 

2. Materials and Methods  

2.1. Samples Preparation  

Human venous blood samples from 8 healthy volunteers, 
red cell type 0, were anticoagulated with EDTA NA2 and 
maintained at 4˚C until they were processed. Whole 
blood was centrifuged at 800 × g during 10 min, plasma 
and buffer coat were then removed. The remaining RBCs 
were washed three times with phosphate buffer saline 
(PBS: pH 7.4) at 25˚C. Each packet of RBCs was divided 
into four aliquots. One aliquot was left untreated (w.t.) as 
a control sample. The other three aliquots were incubated 
in vitro with three glucose concentrations solutions at 37 
˚C during 2 hs. The hematocrit during incubation was 
40%. These glucose incubating media were prepared by 
solving 2%, 5%, and 10% (w/v) of glucose in PBS, cor- 
responding to 20, 50 and 100 g/L as recommended by 
Bourdon et al. [8].  

An in vitro non physiological glucose concentration 
was chosen to accelerate the non enzymatic glycosylation 
that is known to depend on time and exposure to glucose 
[9]. After that, the cells were washed three times with 
PBS at 25˚C to remove any remnants of glucose. Each 
aliquot of RBCs was resuspended in autologous plasma 
to obtain the required hematocrit for each rheological 

determination [10,11]. The erythrocytes suspensions we- 
re obtained according to the experimental procedure de- 
scribed above and following the International Committee 
for Standardization on Hematology [12]. 

We could observe the presence of haemolysis during 
the post glucose washing with PBS at higher glucose 
concentration than 10%. The erythrocyte osmotic resis- 
tance and the erythrocytes viscoelastic parameters were 
measured in a previous work [13], evaluating the in- 
creasing in the fragility and rheological alterations of red 
blood cells with glucose level in the incubating media.  

2.2. Data Acquisition  

The time series were obtained measuring the fluctuations 
of the longitudinal axe fluctuations from the elliptical 
diffraction pattern corresponding to erythrocytes sub- 
jected to shear stress measured with the “Erythrodefor-
meter”, which has been completely described on previ- 
ous works [14-16]. In this device, the RBCs suspension 
is sheared between two parallel concentric disks, an up- 
per fixed disk and a lower rotating one. An adjustable 
power source supplies the motor with stationary voltage 
at constant speed, and can start and stop in less than 1 
msec. A laser beam traverses perpendicularly the suspen- 
sion of sheared erythrocytes producing a diffraction pat- 
tern, which is circular when the suspension is at rest and 
elliptical when the suspension undergo shear stress. Pho-
tometric readings performed along the longitudinal axe 
of the elliptical diffraction pattern are used to record the 
time series, see Figure 1, which are averaged over sev-
eral millions of cells. The first 56 data points were re-
moved because they are recorded when the lower disk of 
the Erythrodeformeter does not move, the method is ap-
plied to the recorded series corresponding to the cells 
subjected to well-controlled shear stress. 

3. Data Analysis  

3.1. Shuffle Surrogate Data 

In order to investigate irregular fluctuations, and to be 
able to analyze whether the data can be fully described  
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Figure 1. Typical creep process and zoom for 56 < t < 256. 
X(t) measure of the longitudinal axe from the elliptical dif-
fraction pattern, when the erythrocytes are subjected to 
shear strees. 
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by independent and identically distributed random vari- 

we randomly rear- 
ra

y to 
ve

3.2. The Percentage of False Nearest Neighbours  

bours in this 
ph

l and co-workers [18] examined this question 
w

3.3 Time Delay Coordinates 

mbedding dimension in 

ables, we apply the random shuffle surrogate to all the 
recorded series, which is effective for time series (as the 
photometrically corresponding to creep and recovery 
processes), with no periodicities where we want to de- 
stroy local structures on short term variability and to 
preserve the global behaviours.  

To generate a shuffle surrogate, 
nge the values in the signal. The null hypothesis is that 

the signal is a set of values in no apparent order drawn 
from a finite population. An important role of surrogates 
is a numerical control of the results obtained for the pho- 
tometrically time series [17]. The surrogates in this case 
are shuffle surrogates, generated by dividing all the series 
of 200 data points, in 20 series of 10 data consecutive 
points each, and concatenating them at random, to gener- 
ate new and different time series of 200 data points. 

This surrogate may seem trivial, but it is a good wa
rify that some specific aspect of the distribution of 

values in the signal is not fooling the correlation coeffi- 
cient algorithm. On our hypotheses surrogates are gener- 
ated obtaining completely different time series which 
share the power spectrum with the original one.  

A particular set of points can be connected in time lea- 
ding to an orbit or trajectory that represents the evolution 
of the system. The set of orbits starting from all possible 
initial conditions generates a flow in the state space and 
can be used to visualise the system’s attractor. However, 
limitations of such representation of the system include 
the conditions that every trajectory must be non-inter- 
secting and that different trajectories originating from 
different initial conditions must not overlap or occupy 
the same space. This arises from the fact that a point in 
phase space representing the state of the system is con- 
sidered to encode all the information about the system, 
including both its past and future history, which in a de- 
terministic system must be unique.  

Then, the points of an orbit acquire neigh
ase space. These neighbours, among other things, pro- 

vide the information on how phase space neighbourhoods 
evolve in time. In an embedding dimension, that is too 
small to unfold the attractor, not all the points that are 
close one to another will be neighbours due to the dy- 
namics. Some will actually be far from each other, and 
simply appear as neighbours because the geometric 
structure of the attractor has been projected onto a small- 
ler space.  

Abarbane
ith increasing dimensions, until no false neighbours 

remained. They developed a method for geometrical 
considerations alone, known as false nearest neighbours 
(FNN), to find a value for the minimum embedding di- 

mension to correctly analyze the process dynamics. This 
could be checked for increasing embedding dimensions 
for which noise signal ratios that is %FNN is less than 
5%. The method of FNN, could be used as a test on 
measurements from dynamical system that have been  
corrupted with noise, when the contamination level is 
low, the residual percentage of FNN gives an indicator of 
the noise level. 

Specifically, we first choose an e
which every trajectory must be non-intersecting. A very 
convenient way to reconstruct the dynamics of the proc- 
ess is to unfold the time series by successively higher 
shifts defined as integer multiples of a fixed lag τ, (τ = m· 
∆t, where m is an integer number), and taking N equi- 
distant point for creep and recovery process, we are able 
to define the phase space of all the possible states of the 
system variables under study. We used the technique of 
time delay coordinates suggested by Takens and co-wor- 
kers [19]. For our time series, each sequence for which 
we wish to make a prediction is now to be regarded as an 
E-dimensional point, comprising the present value and 
the E − 1 previous values each separated by one lag time. 
We now locate all nearby E-dimensional points in the 
state space, as proposed by May & Sugihara [1] and 
choose a minimal neighbourhood defined to be such that 
the predict one is contained within the smallest simplex, 
that is the simplex with minimum diameter, formed with 
its E + 1 closest neighbours, a simplex containing E + 1 
vertices is the smallest simplex that can contain an 
E-dimensional point as an interior one, it was also used 
for points on the boundary a lower dimensional simplex 
of nearest neighbours. The prediction is now obtained by 
projecting the domain of the simplex into its range, that 
is, by keeping track of where the points in the simplex 
end up after s time steps. To obtain the predicted value, 
we compute where the original predict one has moved 
within the range of this simplex, giving exponential 
weight to its original distances from the relevant nei- 
ghbours. This is a nonparametric method, which uses no 
prior information about the model use to generate the 
series; the only information is the output itself. It should 
apply to any stationary or quasi ergodic dynamic process, 
including chaos. Plotting the conventional statistical co- 
efficient correlation, C(s), between predicted and ob- 
served values as a function of s, such decrease in the 
correlation coefficient with increasing prediction time is 
a characteristic feature of chaos (equivalent of the pres- 
ence of a positive Ljapunov exponent). This property is 
noteworthy because it indicates a simple way to differen- 
tiate additive noise that is uncorrelated, regardless of how 
far, or close, into the future one tries to project, whereas 
predictions with deterministic chaos will tend to deterio- 
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rate as one tries to forecast further into the future. We 
generated our predictions by using the first half: 200 
points, avoiding the first 56 data points corresponding to 
the stationary process to construct an ensemble of points 
in an E-dimensional state space that is to construct a li- 
brary of past patterns. The resulting information was then 

 

3.4. Random Walk Approach: Correlation  

Than intuition, the phenomenon observed 

ge

used to depict the remaining 200 values in the series. This 
collection of information has been little analyzed, when 
studying erythrocytes viscoelasticity and not at all in the 
light of contemporary notions about non linear dynamics.  

Coefficient  

ks to Einstein’s 
by the Scottish botanist Robert Brown in 1827, becomes 
the keystone of a fully probabilistic formulation of statis- 
tical mechanisms and a well established subject of bio- 
logical investigations. There is also an ongoing debate in 
the true origin of irregularity that makes the stochastic, 
random character of Brownian trajectories. This discussion 
on Brownian motion also inspired mathematicians like 
Cauchy, Lévy, Mandelbrot and many physicists and en-
gineers to go beyond Einstein’s formulation. Nondiffer-
entiable Brownian trajectories in modern language are 
called fractal and statistically self similar on all scales [20]. 

In a classical non differentiable trajectory or more 
nerally, ordinary Brownian motion (OBM), past in- 

crements in displacement are uncorrelated with future 
increments, that is, the system has no memory. In such 
cases, the mean square displacement is linearly related to 
the time interval ∆t by the expression: 

2
j 2 Kj t,     

where: 
2

j  is the mean square displacement and Kj is 
nt, w

 the stochastic 
ac

a consta hich depends on the process. 
The constant K is an average measure of
tivity. In a correlated random walk, or more generally, 

fractional Brownian motion (FBM), past increments in 
displacement are correlated with future increments, hence 
the system has memory. In such cases, the mean square 
displacement is generalized by the following scaling law: 

2 2Hjj  t    

where: 
2

j  is the mean square displacement  Hj Hj s  
y, and 0 <is the scaling exponent for creep and recover  

Hj < 1. 
This scaling exponent quantifies the correlation in 

fu

where:  

nction of the steps increments making up the trajectory 
of a random walker. This is best illustrated by consider- 
ing the correlation coefficient for Brownian motion, pro-
posed by Feder (1996), which is given by the expression: 

   2Hj 1C s   2 2 1     

   Hj 1 2 C s 0 OBM    

   0 Hj 1 2  or 1 2 Hj 1 C s 0 FBM       

In order to obtain the correlation coefficient C(s) bet-  
ween the photometric time series of the recovery process, 
Y

 quantifier is not int- 
to provide 

whiten the series, 
th

ted by Takens 
an

ed data points 
in

(t) and the theoretical Y*(t), we applied May and Sugi- 
hara algorithm. We correlated Y*(t), obtained from the 
series corresponding to the creep process, X(t), with Y(t) 
which is the recorded recovery one, for the different 
steps increments. For details see Ref [20,21].  

4. Results and Discussion  

Certainly, the use of a nonlinear
ended to replace conventional analysis, but 
further insights into the underlying erythrocytes defor- 
mation mechanisms. Understanding a system’s behaviour 
and how it is altered under pathological conditions is on 
one hand a way of diagnosis, and on the other hand it is 
effectively just another word for treatment [21]. Random 
behaviour is as one might expect unpredictable. Thus the 
question of randomness in a data series is a relative one, 
and more a question of mixtures of determinism and 
randomness. Since noise is present in all physical meas- 
urements, determining if randomness is inherent in the 
system dynamics or in the measurement process is not 
always straightforward. This is an active work trying to 
connect photometrically recorded time series of erythro- 
cytes subjected to well control shear stress, with nonlin- 
ear correlation quantifier to understand the changes on 
the different erythrocytes populations. 

By the very beginning, we apply to all the series the 
first differences: x  − x , in order to t+1 t

at is, to reduce the autocorrelation, and also to diminish 
any signals associated with simple cycles. 

In order to reconstruct the process dynamics we use 
the technique of delay coordinates sugges

d co-workers. The phase space dimension was chosen 
applying Abarbanel method of false nearest neighbours. 
Thus, we obtained for five different and increasing em- 
bedding dimensions, the %FNN, and it was found that 
when m = 7, the system’s attractor would be completely 
unfold, so was chosen this embedding for our analysis. 
The results obtained are shown in Table 1. 

In order to improve the results, we concatenate on 
each 200 data series, individuals 25 correlat

to a long data set of 10 of the 25 data trials and com- 
pute the test statistic correlation on the entire set. Then, 
this new series are shuffled and we have generated a 
surrogate data set. As a consequence, the number of sur- 
rogate data sets that can be generated is considerably 
increased, because any perturbation of the trial segments 
yields new surrogates. However, one should be careful,  
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Table 1. Embedding dimension m vs. %FNN. 

m 7 3 4 5 6 

%FNN 19. 14. 9. 6. 4.74 19 08 17 09 

because if two differ rmu s m  giv al 
segment into the same location, the terms of the test sta- 

eries of shuffle surro- 
ga

ig- 
ur

s no correlation at the entire signal with any 
sh

nd different per- 
ce

 (oBm), 
w

r quanti- 
ta

ility of studying the interactions among  

ent pe tation ove a en tri

tistic will be the same for both permutations, in our shuf- 
fle surrogates, this has been avoid. 

So, for testing the method and the proposed algorithm 
we contrasted it with all the time s

tes as long as the one which corresponds to the photo- 
metric time series and it was found to be white noise. 

This is a random process in which the values at each 
time are statistical independent from each other. In F

e 2, we show the grand average of all the shuffle sur- 
rogates.  

There is a perfect correlation of the signal with itself; 
and there i

ifted version. The process has no memory; past values 
have no impact in subsequent values as it is expected on 
a shuffle surrogate (noisy) time series. 

The results were very different comparing samples 
without treatment (healthy controls) a

ntage of glucose incubated samples. As a preliminary 
indication of the possible clinical utility of this technique 
we have included the linear-linear plots of the correlation 
coefficient when the diffractometric data belongs to sam- 
ples without treatment. This independence between the 
correlation and the step process could appear because we 
are dealing with uncorrelated additive noise, and such 
uncorrelated noise could be due sampling variations. 
Also the accuracy of the prediction, as measured by C(s), 
shows no systematic dependence on s, between experi- 
mental and theoretical ones, remains independent. By 
contrast, in glucose incubated, it does show the decrease 
in C(s) with increasing s, as illustrated in Figure 3, 
which is characteristic of a chaotic sequence. 

On samples without treatment (healthy controls), see 
Figure 4, it could be ordinary Brownian motion

here statistical properties such as invariance or range 
are not related at all. On the other hand on glucose incu- 
bated samples, it would be fractional Brownian motion 
(fBm), it is fractal in the sense that self-similar, in a sta-
tistical sense, that is statistical properties are related over 
different time scales by a way of a power law. In other 
words, the stress process gives us some special informa-
tion of the relaxation one in a short time and the series 
exhibit a great sensitivity to initial conditions.  

There are many descriptions of the typical activity that 
accompanies the deformation but few detailed o

tive analysis. 
Moreover, the quantification of the recorded signals 

gives the possib

 

Figure 2. Grand average of the correlation of surrogates 
samples vs. S (step). 
 

 

Figure 3. Correlation of Glucosylated samples: a) 5% Glu-
cose incubated (star); b) 2% Glucose incubated (square); c) 
1% Glucose incubated (triangle) vs. S (step). 
 

 

Figure 4. W.T.: Without treatment samples vs. S (step). 

 
di c 
roperties of several million of shear elongated cells. 
fferent anatomical structures [22], and the viscoelasti

p
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One important finding relates on the complexity of the 
erythrocytes dynamics, using Sughiara and May’s algo- 
rithm in a rather loose manner, meaning more noise-like 
instead less regular, is to get insight in the process. This 
study found that the correlation coefficient increased 
with disease. In other words, there is such thing as 
healthy variability. A decrease in this variability could 
indicate a decrease in health, and variability can endow a  
system with flexibility and hence the ability to respond 
and adapt to environmental stressors [23]. Whether this 
variability is random or chaotic was a key in this study. 
One of the hopes of the recent application of nonlinear 
dynamical methods to physiology is that they could pro- 
vide a general mathematical framework that has been 
missing from this traditional rather qualitative field. In 
this respect, introducing quantifiers derived from nonlin- 
ear dynamics could help with the description of the dif- 
ferent red cell networks that could put at stake the cyto- 
plasm and membrane interactions. Moreover, the present 
results open the possibility of applying novel techniques, 
to photometrically recorded series from erythrocytes 
subjected to shear stress, for a quantitative characteriza- 
tion of those behaviours. Works in this direction, and 
also further studies with larger and well defined patient 
populations are in process in order to attain a better vali-
dation of the method.  

5. Conclusions  

Randomness and struct
independent aspects 

ural correlations are not totally 
of the accompanying physical and 

th

e results for all the shuffle s
ga

me- 
ch

of
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Way of Distin asurement Error in 

 L. Lehrman, “Reversible Hematologic Sequallae 

biological description of the erythrocytes deformation. 
Ascertaining the degree of unpredictability and random- 
ness of a dynamical biological system is not automati- 
cally to be in a position to capture the relationship be- 
tween the components of the pertinent process. Moreover, 
maximal randomness as well as perfect order has no 
structural correlations. In between these two extremes, a 
wide range of possible degrees of physical structures 
exists on the data that should be found in the behaviour 
of the probability distribution. 

This is active work, trying to use time series analysis 
for practical applications, this includes: identification of 

ose erythrocytes from healthy individuals and allow not 
only the understanding of erythrocytes behaviour of pa- 
tients with severe anomalies and early diagnosis but also 
classification of the disease from the point of view of 
nonlinear dynamics.  

In this work it was first proved the method’s consi- 
stence by means of th urro- 

tes obtained from the recorded time series, which re- 
sults to be non correlated random walk, as it is well 
known for a noisy time series. Second, it applied the me- 
thod for the erythrocytes samples without treatment 
(healthy controls), resulting also ordinary Brownian mo- 

tion and finally we obtained the Correlation Coefficient 
for the series of glucose incubated erythrocytes at differ- 
ent glucose concentrations, and in those cases the results 
have shown that the correlation coefficient for the first 
steps of the process, increased when increasing the per- 
centage of glucose in the samples. Those glucose incu- 
bated samples have lost the viscoelastic properties, prov-
ing there is some fractal like underlying behaviour.  

The mechanisms through which diabetic disease could 
induce vascular damage are both metabolic and 

anical. Hemorheological alterations in diabetes, simu- 
lated in this work by glucose incubated samples, are the 
result of changes affecting both erythrocytes intrinsic 
structure and their interactions with the plasmatic com- 
ponents. Several hemorheological variables could influ- 
ence and produce an impaired erythrocyte deformability 
determining an increased flow resistance in the micro- 
circulation. The glucose-protein interaction can change 
the activity of membrane protein [4]. It was also reported 
that there were some changes in the stiffness and the flu- 
idity of glucose incubated erythrocytes membrane [5]. 
Once we can predict the future, it is natural to try to con- 
trol that future, in order to guide the system to a preferred 
state or keep it away from undesired states. 

These basic goals of understanding, prediction, and 
control are closely related to the practical clinical goals 

 diagnosis and treatment, which underlie much of the 
rationale for research into physiological systems. 
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