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ABSTRACT 

In this paper, we give the Lax pair and construct the Darboux transformation of the Kundu-DNLS equation. Further-
more, the rogue wave solutions of the Kundu-DNLS equation are derived by using the Taylor expansion of the breather 
solution. What's more, the triangular and the circular patterns of the third rouge solution are displayed. 
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1. Introduction 

As one of the most important integrable systems in many 
branches of physics and applied mathematics, the deriva-
tive nonlinear Schr\"{o}dinger (DNLS) equation 
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has been studied in optics, water wave and so on [1,2]. 
Considering the significance of the higher order nonlin- 

earities in physical system, the DNLS equation yields an 
integrable higher nonlinear equation, i.e. Kundu-DNLS 
equation [3,4] 
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by means of a nonlinear transformation of the field 
 with arbitrary gauge function  

iqeQq    . 
For example, setting    xdxQ  

2
 , Kundu-DNLS 

equation implies Eckhaus-Kundu (EK) equation. 
Here  denotes the complex conjugate of Q, and α s 

a real parameter. 
 

*Q

Rogue waves are one of those fascinating destructive 
phenomena in nature that have not been fully explained 
so far. Understanding the initial conditions that foster 
rogue waves could be useful both in attempts to avoid 
them by seafarers and in generating highly energetic 
pulses in optical fibers. There are several method to 
solve the integrable equations, for instance, Hirota 
method [5], inverse scattering transformation [6], bilin-
ear method [7], Darboux transformation [8]. In this paper, 
we have given the rogue waves of the DNLS and the 
coupled system of Hirota and Maxwell-Bloch equations 
[2,9,10]. Inspired by the importance of these recent in-
teresting developments about the analysis of rogue waves 
of the NLS-type equations, we shall construct the rogue 
wave solutions of the Kundu-DNLS equation with the 

help of the Darboux transformation. 

2. Darboux Transformation and Lax Pair 

The Darboux transformation is a powerful method used 
to generate the soliton solutions for integrable equations. 
Inspired by classical Darboux transformation for the DNLS 
equation, we consider the coupled Kundu-DNLS equa-
tion, 
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where   is a arbitrary gauge function. This form of the 
equation is very extensive, which is reduced to the equa-
tion (2) for  with the sign of the nonlinear term 
changed. The Kundu-DNLS equation can be obtained if 
α is a real parameter.  

 *QR 

We first present a general framework for deriving the 
required conservation rule for the DNLS equation. We 
start with the linear set of Lax equations: 

 ,,  VU tx
              (5) 

where U and V depend on the complex constant eigen-
value parameter λ. 
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where λ is the eigenvalue, Φ is the eigenfunction corre-
sponding to λ. 

In general, considering the universality of Darboux 
transformation, according to the Kundu-DNLS equation 
(3) and (4) , we can start from 
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where  are functions 
of 
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From 

   ,1 TUTUTx               (7) 

and 

   ,1 TVTVTt 
 

              (8) 
then the now solutions    11 , RQ  are given by 
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Here 
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So far, we discussed about the determinant construc-

tion of one-fold Darboux transformation of Kundu- 
DNLS equation. As an application of these transforma-
tions of Kundu-DNLS equation, rogue wave solutions 
will be constructed in the next section. 

3. Rogue Wave Solutions 

In this section, we construct the rogue wave solution of 
Kundu-DNLS equation . This kind of solution only ap-
pears in some special region of time and space and then 
drown into a fixed non-vanishing plane. By making use 
of the Taylor expansion for the breather solution, one 
order rogue wave solution of  for the Kundu-DNLS 
equation is obtained 
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The picture of one order rogue wave solution of the 
Kundu-DNLS equation and its corresponding density 
graph are plotted in Figure 1. 

When we take ,1,1,1,2  ca  the picture of 
second rogue wave solution for the Kundu-DNLS equa-
tion is displayed in Figure 2. 

Next, we examine third-order rogue waves. In this 
case, form the figures, We can get third-order rogue 
wave solution with the help of  ,1,1,2  ca  the 
picture of third-order rogue wave solution is displayed in 
Figure 3. 
 

 

Figure 1. The One order rogue wave solution of the Kundu- 
DNLS equation with a = –2, c = 1, ξ = 1, η = 1.  
 

 

Figure 2. The second order rogue wave solution of the Kundu- 
DNLS equation with a = –2, c = 1, ξ = 1, η = 0.8. 
 

 

Figure 3. The third order rogue wave solution |Qr
3|2 f the 

Kundu-DNLS equation with a = –2, c = 1, ξ = 0.8, η = 0.8. 
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(a) 

 
(b) 

Figure 4. The third order rogue wave solution |Qr
3|2 of the 

Kundu-DNLS equation with (a) a = –2, c = 1, S0 = 0, S1 = 
500, S2 = 0; (b) a = –2, c = 1, S0 = 0, S1 = 0, S2 = 1000. 
 

We can split the third order rogue wave solution into 
triangle structure. A particular structure is displayed in 
Figure 4(a). The third-order rogue wave is seen to pos-
sess a regular triangle spatial symmetry structure. 

What's more, we also can split the third order rogue 
wave solution into pentagon structure. A particular struc- 
ture is displayed in Figure 4(b). The third-order rogue 
wave exhibits a regular pentagon spatial symmetry 
structure. 

4. Conclusions 

In this paper, we construct the Darboux transformation 
for the Kundu-DNLS equation. This Darboux transfor-
mation, in particular, allows us to calculate higher order 
rogue wave solutions in a unified way. In this way, we 
can derive the higher order rogue wave solutions for 
Kundu-DNLS equation by making use of the Darboux 
transformation. Particularly, these rogue wave solutions 
possess several free parameters. With the help of these 
parameters, these rogue waves constitute some patterns, 
such as fundamental pattern, triangular pattern, circular  
pattern. 
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