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ABSTRACT 

A method has been designed and implemented to describe the optical properties of lossy materials as a continuous func- 
tions of a finite wave length spectrum, needed in analysis of the Maxwell-Material equations. Measurements of the in- 
dex of refraction (N) and the absorption coefficient (K) over a limited spectral range are used as input data. The (com- 
plex) permittivity function is then represented as a sum of five types of terms: a plasma term, a conductivity term, sev- 
eral Debye poles, several symmetric Lorentz poles as well as several asymmetric extended Lorentz (“XLorentz”) poles. 
All these terms are particular solutions of the Lifshitz integral equation describing the dispersion relation of a mono- 
chromatic electromagnetic wave. This representation facilitates the numerical solution of broadband direct and the in- 
verse scattering of electromagnetic waves for thin film stacks and composite physical structures, in particular those now 
employed by the microchip industry. 
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1. Introduction 

The Maxwell-Material equations are given in its differ- 
ential form by: 

D ρ                   (1a) 

0B                   (1b) 
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In Expressions (1a)-(1d), D, E, B, H represent the dis- 
placement and electric fields, the inductive and magnetic 
fields and &J   are the current and charge density 
respectively. 

With the continuing decrease in size and increase in 
density of nanodevices, including electronic microchips, 
there are increasing challenges in quality control and 
inspection and for improvements in manufacturing tech- 
nology. Gone are the days when scanning electron mi- 

crographs (SEMs) could be routinely used in non-de- 
structive and non-invasive ways to inspect structures 
built as part of manufacturing processes. Now it is nec- 
essary to develop methods which are far less intrusive, 
can be used on-line during the nanoscale manufacturing 
itself. An attractive technique to address these issues is 
the use of broad-band electromagnetic wave scattering by 
nanostructures. On one hand, if the wavelength of the 
electromagnetic waves is substantially larger than the 
structural scales of the device then such radiation is 
likely to be non-destructive. Yet, if the scattering of these 
waves is (nearly) uniquely determined by the structures 
and vice versa then scattering results can be used as a 
diagnostic tool to discern geometric details.  

The goal of this paper is to provide a framework in 
which to compute both the direct and the inverse scatter- 
ing of broad-band waves when propagating through 
complex lossy media. These computational methods and 
resulting simulations can then be used both to determine 
the scattering of waves by known structures (viz., direct 
scattering) and to infer the geometric structures and 
properties of devices known to produce a given (typically 
measured) spectrum (viz., inverse scattering). This is the 
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first of a series of two papers to describe this new com- 
putational methodology in detail.  

In this first paper, the goal is to introduce powerful 
methods to characterize the optical properties of lossy 
materials, a critical first step in formulating the Maxwell 
equations for wave propagation in such media. In the 
second paper, the computational methodology for direct 
scattering is described and applied to a variety of nanos- 
tructures. An efficient solution of the inverse problem is 
also given. In this latter problem, the scattering data is 
given and used to infer the geometric structures that 
produce it.  

The focus here is on materials employed by the mi- 
crochip industry, which include Si, SiO2, TiO2, Si3N4 etc. 
It must be emphasized that the direct and quite simple 
approach of passing cubic-splines through the measured 
values of the actual material refractive index N and ab- 
sorption coefficient K is not effective since it lends itself 
to create wildly incorrect values outside the measurement 
domain. These incorrect values of N and K outside the 
measurement matrix have an overwhelming influence on 
both the direct and inverse scattering leading to quite 
poor results. The spurious results so produced are often a 
consequence of a pole in frequency space similar to the 
pole produced by perfectly absorbing layers (for the lat- 
ter, see [1]).  

Traditionally, N for a given wavelength is expressed in 
terms of a principal-value integral of K over the entire 
spectrum and vice-versa. These equations are known as 
the Kramers-Kronig [3] relations and are derived from 
the analyticity of N + iK. Explicitly, the Kramers-Kronig 
relations are given as: 

     T ot N iK     

   1
=
π

K
N P


d 

 








           (2a) 

   1
=

π

N
K P


d 

 








         (2b) 

However, it is highly impractical to perform measure- 
ments over the entire spectrum, due to the limited capa-
bility of measuring instruments at widely different wave- 
lengths. In practice a relatively narrow spectrum is mea- 
sured, necessitating simultaneous determinations of both 
the refractive and absorption indices. As such, the data so 
obtained is discrete in nature, rendering limited validity 
to broad band scattering, since the permittivity is ex- 
pressed as a continuous function in the Fourier trans- 
formed Maxwell-Material (MM) equations. 

The main numerical scheme employed in the current 
approach is based on a combination of the Powell and 
Brent methods for optimization (see [2]) in which the 

assignment of the order of the parameters is correlated to 
their relative significance. Once one iteration is com- 
pleted on all parameters, a vector is created and a direc- 
tion of parameter movement is obtained. In this scheme, 
two controlling accuracy tolerances are employed to in- 
sure optimal results within a short computational time. 
The restriction on the ranges of the parameters imposed 
by physical principles, prohibits the use of a free-range 
optimization, and a standard map from infinite range to a 
finite domain is not practical. Therefore, the adopted 
method prevents the parameters to exit the allowed range 
by forcing the optimization scheme to rescale itself and 
stay within the physically acceptable domain. A particu- 
larly important restriction is that on the parameters of the 
plasma term. The plasma term can be easily decomposed 
into two partial fractions, one resembling a Debye pole 
and the other resembling a conductivity term. The term 
resembling a Debye term is subtracted from the conduc- 
tivity term, and if one has not restricted the plasma pa- 
rameters properly, one may end up with an unphysical 
negative conductivity. 

Section 2 of this paper presents the basic material 
analysis of silicon and the approach to represent electri- 
cal properties of various materials employed in the inte- 
grated circuit (IC) industry. Section 3 discusses the re- 
sults of several other essential materials used in the IC 
industry which can be very different in nature from sili- 
con. For example, while PolySilicon is rather similar to 
crystalline silicon, it has quite different conductivity 
properties. In Paper II [3], numerical and computational 
considerations are discussed. 

2. Material Analysis 

The task of solving the Maxwell-Material equations is 
complicated by the fact that the displacement vector is 
proportional to the electric field, and the proportionaly 
function is a very complicated function of N and K. Since 
the equations are continuous one must have a continuous 
representation of the permitivity function.  

A typical material-file is normally expressed as a table 
of wavelength, N, and K. The material properties of sig- 
nificance here are the real and imaginary parts of the 
permittivity, the real and imaginary parts of the mate- 
rial-reflectivity and the efficiency spectrum (i.e., reflec- 
tivity) of a flat material. To obtain these properties for a 
given wavelength is straightforward, so if one wishes to 
develop numerical solutions for the so-called MM equa- 
tions [3] in the frequency domain a standard input file is 
sufficient. However, the cost associated with the MM 
equation per wavelength is immense. If 200 spectral 
points are needed, the equations must be solved 200 
times regardless of dimensions.  

Since the numerical accuracy of the algorithms for so- 
lution of the Maxwell-Material equations is a direct func-  
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tion of the wavelength, all equations are solved on the 
same grid, resulting in a very cumbersome and inefficient 
algorithm. On the other hand, the spatio-temporal MM 
equations provide the mechanism to obtain the scattered 
wave as a function of time and space, affording the 
computation of the scattered fields for all wavelengths 
using a sophisticated non-uniform grid fast Fourier trans- 
form (FFT).  

The development and implementation of the spatio- 
temporal MM equations require more delicate analysis. 
The material response to an external electromagnetic 
field is usually expressed in terms of the material polari- 
zation vector, which appears as a nonlinear convolution 
term with the electric field. If the material is also mag- 
netic, a similar convolution is required of the magnetic 
permittivity with the magnetic field. In other words, the 
price to be paid for the benefit of scattering results for 
arbitrarily dense spectra is dealing with considerably 
more complicated equations whose coefficients are not 
easily available. 

What is necessary is the expression of the permittivity 
function as a continuous and differentiable function of 
the frequency. This task is performed routinely in the IC 
and material-science literature. One way to perform this 
task is to use Pade approximants and express the permit- 
tivity function as a rational function of the frequency. 
However, in most cases, even this method is not adequate. 
The fitted function must make physical sense as well as 
being computationally useful. Therefore, it must satisfy 
the Kramers-Kronig analytical relations and possess a 
Fourier transform that exists for all relevant frequencies 
and does not violate causality!  

The safest way to proceed is to use the “Lifshitz Inte- 
gral” [4] which contains the permittivity function inside 
its complicated dispersion relations. However, this is 
easier said than done. Analytic expressions of the “Lif- 
shitz Integral” have eluded researchers for many years; 
this is discussed in detail in [5] who unfortunately used 
complex coefficients consistent with non-causal time 
domain permittivity. Accordingly, the availability of ap- 
proximate solutions to the “Lifshitz Integral” for specific 
resonance frequencies suggests can be made by express- 
ing the permittivity function of each material as a sum of 
all known approximate solutions. Each term satisfies all 
of the strict criteria discussed above. Explicitly the per- 
mittivity terms are given by: 
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where  Tot   represents the total permittivity, and 
 Lk  ,  Dj  ,  p  ,  XLi   represent the 

Lorentz, Debye, plasma and soc-called linear “XLorentz 
terms” respectively,   is the electrical conductivity in 
a scalar form and   is its corresponding frequency. 

The estimation of the parameters of  Tot   in Equa- 
tions (2) is a very elaborate process due to the physical 
restrictions mentioned above and also due to the fact that 
the standard cost (error) function in L2 norm is insu- 
fficient as well as inaccurate. To address these con- 
straints, typically an input file of the three parameters 
wavelength, N, K is first converted to an input file of 
seven parameters: wavelength, N, K, real and imaginary 
parts of the reflected amplitude, efficiency spectrum and 
the corresponding energy in eV. Here the real and 
imaginary parts of the reflected wave are given explicitly 
by: 

Reflected Amplitude:  
1

1

N i

N i

 
 

K

K
 

Reflected real amplitude (Colunm 4):  
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1
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Reflected imaginary amplitude (Colunm 5): 

 2 2

2
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Efficiency Spectrum (Colunm 6):  
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Wave energy (eV) (Column 7): 
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2 2

2 2
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This 7-parameter input file, given partially for titanium 
di-oxide in Table 1, is inserted into optimization 
program, changing the cost function at each iteration. 

he result is a material file specifying the number of T      
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Table 1. Wave-length, N and K, real and imaginary permittivity of the reflected field, efficiency Spectrum and energy (eV) of 
TiO2. 

WV N K Re Refrac Im Refrac Efficiency Energy 

nm      eV 

150 1.3963196 1.289804 0.352866 −0.348316 0.245838 8.26667 

155 1.5010481 1.28182 0.366687 −0.324581 0.239812 8 

160 1.591106 1.253217 0.37446 −0.302549 0.231756 7.75 

165 1.6562853 1.209761 0.376413 −0.284002 0.222344 7.51515 

170 1.697933 1.162129 0.37471 −0.269342 0.212953 7.29412 

175 1.7187971 1.125732 0.372039 −0.26001 0.201655 7.08571 

180 1.7282972 1.102633 0.369865 −0.254667 0.201655 6.88889 

185 1.7331906 1.094197 0.369331 −0.25248 0.200152 6.7027 

190 1.7331001 1.096765 0.369726 −0.252923 0.200667 6.52632 

195 1.7445583 1.106205 0.373123 −0.252665 0.20306 6.35897 

200 1.7511391 1.121965 0.376694 −0.254196 0.206514 6.2 

205 1.7641943 1.144162 0.382294 −0.255682 0.211522 6.04878 

210 1.7820588 1.1710085 0.389304 −0.257051 0.217633 5.90476 

215 1.8099196 1.200139 0.398045 −0.2571 0.22454 5.76744 

220 1.8445988 1.2302417 0.407698 −0.256161 0.231836 5.63636 

225 1.8859383 1.2600557 0.417945 −0.254136 0.239263 5.51111 

230 1.9343952 1.2876282 0.428476 −0.250788 0.246486 5.3913 

235 1.984255 1.3141241 0.438665 −0.247185 0.253527 5.2766 

240 2.0414818 1.3394241 0.44924 −0.242547 0.260645 5.16667 

245 2.1080153 1.3599546 0.459909 −0.236324 0.267336 5.06122 

250 2.1844189 1.3730942 0.470407 −0.228356 0.273429 4.96 

255 2.2674101 1.3787183 0.480408 −0.219247 0.278861 4.86275 

260 2.3548832 1.3745286 0.489541 −0.20914 0.28339 4.76923 

265 2.4463011 1.3564226 0.497509 −0.197774 0.28663 4.67925 

270 2.5374688 1.3235867 0.504055 −0.185564 0.288505 4.59259 

275 2.6276192 1.277309 0.509488 −0.172713 0.289407 4.50909 

280 2.721905 1.2117246 0.514139 −0.15818 0.289359 4.42857 

285 2.8029651 1.1243056 0.516365 −0.142981 0.287077 4.35088 

 
poles in each sum and the values of their corresponding 
parameters. An example of a 7-column file is given in the 
appendix for the crystalline titanium di-oxide file 
employed in this paper. 

As an example, the silicon material file is displayed in 
Figure 1. The real and imaginary components of the 
measured and estimated values are compared with very 
good agreement. In particular, the elaborate structure of 

silicon challenges ones ability to fit it with simple 
elementary functions like the ones given in Equations 
(2). 

In Figure 2, the computed efficiency spectrum of the 
optimized Si parameters is displayed as a function of 
wavelength. Note the complicated structure of this 
efficiency spectrum, particularly in the short wavelength 
domain. In Figure 3, the reflectivity of the optimized  
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Figure 1. Real (A) and Imaginary(B) ( )Tot   using 34 Lo- 

rentz poles, 4 XLorentz poles and 3 Debye poles. 
 

 

Figure 2. Efficiency Spectrum of planar Silicon. The graph 
represents the actual percentage of reflection vs. wave- 
length in nm for a pure silicon slab. 
 

 

Figure 3. Real (A) and imaginary (B) coefficients of the 
reflected wave over a thick flat pure silicon. 
 
silicon description is displayed. The two curves represent 
the real and imaginary amplitude of the relative reflected 
wave, given explicitly by  

   1 1Re N iK N iK       and  
  

 

Figure 4. Real (A,D) and imaginary (B,C) coefficients of the 
reflected wave over a thick flat pure silicon: A comparison 
of NIST data and the optimized material file vs. wave 
energy in eV. As can be seen they are nearly indistinguish- 
able. 
 
a comparison is exhibited between estimated reflectivity 
and exact calculation from the data, using analytical 
expression for both real and imaginary components of 
the reflected wave. As can be seen, the comparison of the 
experimental data to the optimized continuous represen- 
tation is very good. If one wishes, the methodology 
introduced here can deliver uniform machine accuracy. 

3. Other Materials Used in Microchip  
Processing 

The microchip industry needs the properties of several 
materials, in addition to crystalline silicon, during the 
photolithography process. The most critical lossy materi- 
als are SiO2 (which determines the transistor gate thick- 
ness), Si3N4, PolySilicon (which is the actual material on 
top of the SiO2 gate) and TiO2. The photolithographic 
process is usually confined to a very narrow band width, 
which requires materials with very tight absorption and 
refraction properties. However, non-invasive investiga- 
tion of the results must be performed with a considerably 
wider bandwidth in order to determine the actual shapes 
obtained from photolithography, thus assuring the fidel- 
ity to the original design. As explained above, the precise 
determination of N and K of materials from narrow band 
response is technically difficult, resulting in limited data 
which causes difficulties during optimization. The simple 
rule of thumb is that the more complicated the N and K 
structure of a material, the easier is to obtain reliable 
dense data vs. wavelength, as seen in the structure of the 
silicon and PolySilicon curves.  

Here we present results for a verification of the mate- 
rials mentioned. In each, the results contain the permit- 
tivity (left), the continuous representation of N(A) and 
K(B), and the real (A) and imaginary (B) part of the ratio 1Im N iK N iK    1   respectively. In Figure 4,  
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of the reflected wave amplitude to the incident wave, 
given explicitly by    1 1Re N iK N iK       and 

   1Im N iK N iK    1   respectively. The mate- 
rial chosen here for a detailed presentation in titanium di- 
oxide, which participate in the structure of every micro- 
chip. Again the N and K are displayed in Figure 5, the 
reflective real and imaginary amplitude in Figure 6 and 
the efficiency spectrum in Figure 7 respectively. 

In Figure 8, the properties of crystalline PolySilicon 
are exhibited. The three graphs are the optimized effi- 
ciency, N and K and the reflectivity’s real and imaginary 
parts. In Figures 9 and 10, the very different material 
properties of SiO2 and Si3N4 are displayed using the 
same order of presentation as in PolySilicon (Figure 8). 

4. Summary 

This paper represents a novel methodology to character- 
ize the optical properties of lossy materials employed in  
 

 

Figure 5. Real (A) and Imaginary (B) ( )Tot   as obtained 

from the initially measured data of N and K of crystalline 
titanium di-oxide using 21 Lorentz poles, 3 XLorentz poles 
and 5 Debye poles. 
 

 

Figure 6. Real (A) and imaginary (B) coefficients of the 
reflected wave over a thick flat crystalline titanium di-oxide. 
The graph represents the actual percentage of reflection vs. 
wave-length in nm for a pure crystalline titanium di-oxide 
slab. 

 

Figure 7. Efficiency Spectrum of planar crystalline titanium 
di-oxide. The graph represents the actual percentage of 
reflection vs. wave-length in nm for a pure crystalline tita- 
nium di-oxide slab. 
 

 

 

 

Figure 8. Efficiency, real and imaginary permittivity and 
reflected field of crystalline PolySilicon. 
 
the microchip and integrated circuit industry. The char- 
acterization of the complex permittivity function is rep- 
resented as sum of terms, each of which preserves cau- 
ality and undergoes an optimization scheme against real  s
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1000 1000  

Figure 9. Efficiency, real and imaginary permittivity and reflected field of crystalline . 2SiO

 
 

1000 1000  

Figure 10. Efficiency, real and imaginary permittivity and reflected field of crystalline . 3 4Si N

 
measurements via a cost function. The scheme is very 
fast and efficient, providing a continuous representation 
of the optical materials outside the range of measurement, 
thus enabling broadband direct and inverse scattering 
calculations and predictions. 
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