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ABSTRACT 

The inverse problem of seismology for media with attenuation is considered in this paper. Generalized Standard Linear 
Solid is used to describe viscoelastic media. In the numerical solution certain parameterizations can be coupled, it 
means that true heterogeneity of the only one of parameters can be restored only as a perturbation of another. This is 
why important to investigate reliability of parameters recovery. By using method based on diffraction patterns it is pos-
sible to see whether the parameters are coupled. Singular value decomposition was used to study the possibility of re-
covering the parameters in practice. It was investigated the possibility of reconstructing of the density, impedances and 
attenuation properties. Coupling appears on the attenuation properties and impedances separately corresponding to the 
P-wave and S-wave. It is also should be noted that coupling decreases with increasing frequency range and the condi-
tion number. 
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1. Introduction 

The main theme of the work is recovery of characteristics 
of viscoelastic media. For this purpose was considered 
numerical solution of two-dimensional inverse problem 
of seismology using the information recorded in the re-
ceivers located on the surface of the Earth. It is known 
that a numerical model of viscoelastic media describes 
the geological structures, in particular hydrocarbon res-
ervoirs. And the attenuation properties depend on the 
composition of the fluid. 

But there appears coupling of parameters of the me-
dium in the numerical formulation of the problem that 
will be discussed in this article. Coupling of parameters 
means that the true heterogeneity of only one parameter 
would restore as a perturbation of other in the numerical 
solution. So if you use coupled parameters, your solution 
will be incorrect. Therefore, we need to find uncoupled 
set of parameters before developing and implementation 
of the algorithm. 

Determination the possibility of uncoupled reconstruc-
tion of the parameters of a viscoelastic medium, such as 
density, elastic impedances and attenuation properties is 
the subject of this research. 

 This problem was considered in other papers, in par-
ticular, in [1], the problem was solved for the case of 
media with a velocity close to a constant value. There 

was also shown the inability simultaneous recovery of 
the velocity and attenuation properties in viscoelastic 
media without additional conditions [2]. 

2. Numerical Description of Viscoelastic  
Media 

State equation provides the relationship between stresses 
and strains at the same time for ideal elastic media. But 
this is not true in viscoelastic media, which possess at-
tenuation that caused by memory of the material. For 
such media stress state depends on all past states of 
strains and the state equation can be expressed with the 
use of the generalized Hooke's law. Media with attenua-
tion mathematically can be described by the system of 
equations: 
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2.1. Generalized Standard Linear Solid 

Numerical resolution of such integral-differential system 
is very troublesome, so it is proposed to use Standard 

Copyright © 2013 SciRes.                                                                               OJAppS 



E. EFIMOVA, V. CHEVERDA 85

Linear Solid (SLS) – superposition of Maxwell medium 
and Kelvin-Voigt medium, to represent state equation in 
a differential form. The degree of attenuation(see in [3]) 
of a viscoelastic material is given by a Quality Factor Q 
(QF). Quality factor - the number of wavelengths a wave 
can propagate through a medium before its amplitude 
was decreased in  times. exp( )

It is known that a model that describes real geologic 
medium has constant quality factor in dependence of 
time frequency over the frequency range [4]. As one can 
see SLS does not satisfy this condition, in contrast to the 
further considered Generalized Standard Linear Solid 
(GSLS) [5] – a combination of several SLSs. Hooke's 
law in GSLS rewrites in the form of equations: 
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where L – is a number of SLS (further L=2);  
,l l    - constants, that are called relaxation times of 

stresses and strains respectively; 2RM      
 - deformation modulus, 

where 

for
P-wave, 

,
 for S-wave,RM 

 - Lame parameters.   
Using GSLS model quality factor in the frequency 

domain can be rewritten as the equation (see [6]): 
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where the   is a frequency . 
To determine the relaxation times in [6] it is proposed 

to use    method by introducing the parameters of 
attenuation - variables , sp   P, S (corresponding to P-, 
S-waves), that describe the level of attenuation in the 
medium. It should be noted that if we know the parame-
ters of attenuation we have the only way to determine the 
quality factor: 
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So in further considerations we will use the parameters 
of attenuation rather than Quality Factor because of sev-
eral advantages of the    method that is listed in [6]. 

2.2. Linearization 

After application of GSLS and the   

m


(DB

 method system 
of equations (1) can be regarded as a nonlinear opera-
tional equation: , where  - the parame-
ters of the medium,  - observation data,  is an 
operator from the space of models to the data space. It is 
suggested to use Newton's method: 
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 where  ia a - Frechet derivative of 

the operator ,  is model of the medium on the 

k-th step.  
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We mean that the parameters of the medium can be 
expressed as the sum of the constant components 0m


 

and small perturbations m  : 0m m m 
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; then the 

total wave field will be presented as 0 u 
  

, where 

0u


 - propagating in a homogeneous medium wave, and 
u  - component generated by small perturbations of pa-

rameters. Small quantities of the second order are ig-
nored in the linearization. 

3. Coupling Parameters 

Coupling between parameters means that in solution of 
the problem true heterogeneity of one parameter can be 
mistakenly identified as heterogeneity of another pa-
rameter [7]. The presence of coupling indicates wrong 
solution. Therefore, we will focus on methods identifying 
coupling sets of parameters. 

3.1. Diffraction Patterns 

To determine the coupling was studied the method of 
Tarantola [1986], based on the diffraction patterns [8]. 
Diffraction patterns show the amplitude of the wave, 
scattered from a point target area, as a function of the 
scattering angle. If diffraction patterns for different pa-
rameters has similar form it means coupling between 
parameters. A good choice of parameters will give dif-
fraction patterns which are as different as possible.  

The scattering diagrams were constructed for the sets 
of parameters: 

1) Density, Lamé parameters, parameters of attenua-
tion , ,{ , , }p s     ; 

2) Density, velocities, parameters of attenuation 
{ , , }, ,p s p sVV   ; 

3) Density, impedances, parameters of attenuation 
{ }, ,, ,p s p sI I   .   

The best results were obtained for parameterization 
{ }, ,, ,p s p sI I   . 

On Figure 1 are presented diffraction patterns for 
parameterization { , ,, , }p s p sI I    in the case of inci-
dent P-wave and reflected P-,S-wawes. Diffraction pat-
terns for the parameters of attenuation and impedances 
corresponding to P-or S-wave are similar in shape, that 
indicates their coupling. Coupling may decrease when 
considering frequency range, as there is different de-
pendence amplitude of the frequency for various pa-
rameters (Figure 1). 

3.2. Singular Value Decomposition 

To study the coupling and the possibility of recovery 
parameters is also used a method based on singular value 
decomposition (SVD) of a compact operator of the prob-
lem. Computation of singular value decomposition for an 
arbitrary environment is very complicated and expensive 
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(in terms of computer resources) problem. Considering of larger frequency range allows minimize 
coupling. As well as increase of the condition number 
reduces coupling (Figures 4-6). 

SVD analysis was performed for the environment 
model, which allows to determine the coupling between 
parameters (Figure 2). To construct the matrix represen-
tation of the operator target area was covered with a grid. 
Frequency range and positions of the receivers also were 
divided into finite segments. As the basis were used 
functions equal to one in the cell and zero outside. As a 
result, finite sums approach the integrals in the operator, 
that allows to get matrix approximation. 

 

 

Because of the compactness of the operator it is pro-
posed to consider the properties of solutions, using the 
truncated singular value decomposition [9]: it is consid-
ered r-solutions which are projections of the desired so-
lution to the linear combination to the right singular vec-
tors. The number of r involved singular vectors controls 
conditionality of the problem and allows you to build a 
solution with acceptable accuracy. Figure 1. Diffraction patterns for the incident P-wave for 

frequencies 25 Hz, 15 Hz, 10 Hz (blue, red, black colors). To construct the singular numbers of the operator we have 
been considered different frequency ranges and different 
grid spacing. Convergence to zero of singular values 
(Figure 3) confirms the fact that the matrix is an ap-
proximation of a compact operator. With increasing of 
frequency range curves become flatter as you can see 
from the graphs, presented if the Figure 3. This indicates 
that in the case of a larger frequency range, we will have 
more vectors, to construct r-solutions, and thus increase 
the accuracy of the results. 

 

 

To analyze coupling of parameterization we have con-
structed projection on the singular vectors that corre-
spond to the largest singular numbers. Figures 4-6 show 
that the density couldn’t be recovered, for other parame-
ters only the amplitude of the gap on the boundary of the 
area with the perturbed parameter. Coupling occurs be-
tween the parameters , ppI  , and the parameters ,s sI  .  

Figure 2. Mathematical model of the medium. Target area 
is a square. The red part has perturbation of the S-wave 
impedance, in blue – P-wave impedance; second case: 
S-wave attenuation - in red and P-wave attenuation - in 
blue. 

 

 
Number of singular value, r                    

Figure 3. Singular values in the logarithmic scale for different grids(in metres) and frequency ranges (in Hz). 
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Figure 4. R-solutions for the model shown in Figure 2. In the upper layer - perturbation of dencity, the condition number is 
10000 and a range of frequencies is (5.45) Hz. 
 

 

Figure 5. R-solutions for the model shown in Figure 2. In the upper layer - perturbation of S-wave impedance, in the lower – 
of P-wave impedance. In the first line of the condition number is 100 and the frequency range (5.30) Hz in the second - the 
condition number is 1000 and a frequency range is (5.45) Hz. 
 

 

Figure 6. R-solutions for the model shown in Figure 2. In the upper layer - perturbation of S-wave attenuation, in the lower – 
of P-wave attenuation. In the first line of the condition number is 100 and the frequency range (5.30) Hz in the second - the 
condition number is 1000 and a frequency range is (5.45) Hz. 
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Figure 7. The scaled trace recorded in the first receiver in Fig. 2. Assumed the presence of P-wave attenuation: Q = 200, 60, 
40, 20, and also in the linearized case. Right picture is zoomed rectangle from the left picture. 
 

The presented in Figure 7 seismogram tracks shows 
that the graph for the linearized case with initial ap-
proximation acquisitions 00 ,0p s  0   (the first ap-
proximation step of the viscoelastic medium) is most 
similar to the graph for the quality factor Q = 200. This 
indicates that even a linear formulation gives good results. 

4. Conclusions 

To study the linearized operator of the dynamic theory of 
elasticity for the viscoelastic media were used methods 
based on diffraction patterns [8] and on the SVD-analysis 
[9]. The target area was chosen as a homogeneous me-
dium with two areas, each has perturbation of only one 
parameter. This option provides an obvious determina-
tion of coupling of parameterization. 

Coupling between the elastic impedances and the 
quality factors (corresponding to the P- and S-waves 
separately) was found. 

By using diffraction patterns and singular value de-
composition analysis was shown reducing coupling be-
tween parameters of viscoelastic medium in the case of 
increasing of the frequency range. Also was shown reduc-
ing coupling between parameters in the case of increasing 
of the condition number of the numerical problem. 

It is concluded that the use of high-quality provides 
simultaneous reconstruction of impedances and quality 
factors. Study of an independent recovery of the parame-
ters of viscoelastic medium with use of poor-quality data 
have planned for the future work. 
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