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ABSTRACT 

Optimal detection of liquid ionization calorimeter signal in experimental particle physics is considered. A few linear 
and nonlinear approaches for amplitude and arrival time estimation based on the χ2 function are compared in simulation 
considering the noise sample correlation introduced by the analog pulse shaper. The estimation bias of the first-order 
approximation, a.k.a linear optimal filtering, is studied and contrasted to those of the second-order as well as the ex-
haustive search. A gradient-descent technique is presented as an alternative to the exhaustive search with significantly 
reduced search time and computation complexity. Results from various pulse shapers including the CR-RC2, CR-RC3, 
and CR2-RC2 are also compared. 
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1. Introduction 

In particle physics experiment, it is common to measure 
the small charge signal collected by the detector in pres-
ence of electronic noise. A collection of data acquisition 
and signal processing techniques are well developed to 
optimize the singal-to-noise ratio (SNR) in such systems 
[1]. Due to the recent development of optical transmis-
sion techniques, a trend in detector readout system design 
is to continuously digitize the detector signal and con-
tinuously transmit the data out of the front-end to the 
control room, in which complex signal processing can be 
imposed to improve the overall detector system per-
formance [2]. This paper reviews several of such signal 
processing techniques for liquid ionization calorimeters 
and compares their performance in simulation. A novel 
accurate, fast, and low-cost gradient-descent technique is 
also introduced in the paper.  

2. Liquid Ionization Calorimeter 

Liquid ionization calorimeter is an energy-measurement 
detector widely deployed in many particle physics ex- 
periments [3-6]. Since the liquid gap between the elec-
trode plates is narrow, e.g., about 2 mm in ATLAS liquid 
argon calorimeter, the ionization triggered by the    

electromagnetic shower is instantaneous and the process 
is followed by a drift of the electrons towards the anode 
plate. Thus, the detector output signal is modeled as a tri-
angular current pulse. Liquid ionization calorimeter usu-
ally exhibit so long drift time, dependent on the drift ve-
locity and the gap size [7]. For example, the drift time in 
AT- LAS liquid argon calorimeter is about 450 ns, much 
longer than the bunch crossing time which is 25 ns. To 
avoid long dead time and to reduce noise in the meas- 
urement, a CRm-RCn pulse shaper – a chain of integrator 
(RC) and differentiator (CR) circuits – is always employed 
in the analog front-end before digitalization [8]. The gen-
eral transfer function of a CRm-RCn shaper is given as 
follows. 
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where τs is the time constant of the shaper. An intuitive 
way of understanding the functionality of the shaper is 
that the integrator limits the input bandwidth and slows 
down the rising edge of the current pulse for analog- 
to-digital conversion (ADC) while the differentiator re- 
stores the baseline quickly by removing the long tail of 
the pulse to reduce the possibility of signal pileup. Care- 
fully choosing the time constant τs gives a smooth shaper 
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output waveform with minimal pedestal recovering time, 
which can largely relax the ADC sample rate while re-
taining sufficient samples for post-processing. 

Figure 1 sketches the shaped waveform as well as the 
triangular current pulse from the detector. The parame-
ters used for modeling waveforms in Figure 1 are ex-
tracted from [9] for ATLAS liquid argon calorimeter, e.g., 
a CR-RC2 shaper with τs set to 13 ns, and the output 
peaking time is approximately 50 ns. 

3. Detection and Signal Processing 

While detection is a general signal-processing topic that 
has been well studied, what we are most interested in par-
ticle physics experiments is how to precisely measure the 
amplitude and timing information of the sampled wave- 
form of the detector output – the amplitude A represents 
the energy of the incident particle shower and the timing 
signifies the arrival time τ of the particle thus our ability 
to correlate signals and events in time. 

The general approach of determining amplitude and 
timing information from limited number of samples can 
be derived from the theory of optimal filtering [1,10]. 
The technique in the core constitutes a search algorithm 
to project the samples to the known signal space of the 
detector front-end including the preamplifier, the shaper, 
and the analog-to-digital converter to maximize the SNR 
of the detected signal. Two leading noises are typically 
considered in the optimization process, the electronic 
noise and the pileup noise. At their origin, the dominant 
electronic noises, e.g., thermal noise and shot noise, are 
white. Temporal correlation however is introduced by the 
detector front-end processing, particularly the pulse 
shaper, and needs to be considered in the optimization 
procedure. Unlike the stochastic deteriorating effect of 
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Figure 1. The triangular current pulse produced by a liquid 
ionization calorimeter and the output waveform of the 
analog pulse shaper. The five samples (at the sample rate of 
40 MS/s) for post-processing are highlighted. 

the electronic noise, the signal pileup by nature is deter- 
ministic and should be treated as inter-event interference 
(IEI). In particle detectors operating at high luminosity 
levels, many events are produced at each bunch crossing. 
The densely packed calorimeter cells and the long tail of 
the detector current pulse tend to aggravate the IEI prob-
lem, leading to an equivalent model termed pileup noise 
to highlight the statistical property of the effect rather 
than its deterministic physical origin.  

Many works have been reported for detetctor signal 
processing and some are cited as follows. A linear opti- 
mal filtering approach was reported in [10], in which the 
amplitude and arrival time of the incoming pulse are es- 
timated by the weighted sum of a few relevant samples 
of the ADC output. The noise autocorrelation matrix is 
utilized in this technique to improve the estimation accu-
racy. With the continuous data output in the upgraded 
ATLAS liquid argon calorimeter, a Wiener filter ap-
proach was reported to reduce the pileup noise [11]. 

4. Monte Carlo System Model 

A Monte Carlo simulation platform for modeling the ana- 
log front-end of liquid inonization calorimeter is con- 
structed in MATLAB® / SIMULINK®. The model takes 
into account the detector noise and the input-referred 
front-end electronic noise as well as the shaper frequency 
response. Other design parameters are extracted from 
ATLAS calorimeter system [9] – the ionization current 
for EMB (electromagnetic barrel) is approximately 
3μA/GeV, the typical value for charge drift time is 450ns, 
a bipolar CR-RC2 shaper with a time constant τs of 13 ns, 
and a sample rate of 40 MS/s which yields five signal 
samples to be used for estimation. The peaking time at 
the output of the shaper is close to 50 ns due to the con-
tribution from the shaper and the RC delay of the pream-
plifier. The CR-RC2 shaper is a good compromise be-
tween the number of filtering stages, power dissipation, 
and performance. In our model, the ADC quantization 
noise is not included.  

In the simulation, the front-end electronic noise is as-
sumed to be Gaussian distributed with a standard devia-
tion of 10% of the peak value of the current pulse. De-
tector calibration is assumed and the ideal output pulse 
shape is known a priori. 

5. Amplitude and Timing Estimation 

In line with the differing physical origins of the elec-
tronic noise, pileup noise and their effects on the detec-
tion process, we will concentrate on the amplitude and 
timing estimation for liquid ionization calorimeters con-
sidering electronic noise only in the rest of this paper. 
Pileup noise will be reported in a future study. 
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5.1. χ2 Exhaustive Search 

Considering the correlation between the noise samples 
introduced by the shaper, the χ2 function can be defined 
as follows [10]: 

       2 , i i ij j j
i j

A S Ag t V S Ag t         (2) 

whereVij is the weight matrix for the measured samples. 
V is the inverse of the noise autocorrelation matrix R 
with Rij = <ni·nj> and ni is the noise sample. 

The χ2 function defines a non-negative quadratic error 
surface as a function of A and τ between the noisy 
samples Si and the known pulse shape g(ti) as sketched in 
Figure 2. A straightforward approach to determine the 
best estimate for A andτis to perform an exhaustive 
search on the error surface. Albeit not computationally 
efficient, the exhaustive search result establishes a 
baseline for the estimation approaches covered in the 
subsequent sections.  

The Monte Carlo simulation results of the χ2 exhaus- 
tive search are shown in Figure 3 and Figure 4 The per-
formance of the method is limited by the finite step size 
employed by the search algorithm. No obvious trend for 
the estimation error is observed.  

5.2. Least-Square Exhaustive Search 

The derivation of the weight matrix V (or the noise 
autocorrelation matrix R) requires precise knowledge of 
the impulse response of the detector front-end. The com- 
putation of the χ2 function in Eq. (2) also dictates N2 mul-
tiplications for N samples when the off-diagonal entries 
of V are nonzero. In practice, the magnitude of the 
off-diagonal entries of R can be small relative to the 
main diagonal entries. In such cases, the V matrix can be 
well approximated by the identity matrix. Thus, Eq. (2) 
reduces to 
 

 

Figure 2. The quadratic error surface of the χ2function in 
terms of A and τ. 
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Figure 3. Histogram of 100 Monte Carlo runs for amplitude 
(left) and arrival time (right) estimation using the χ2 exhaustive 
search method. The standard deviation of the detector noise 
is set to 10% the peak value of the detector current pulse. 
The sample period T = 25 ns, A0 = 4.1134e-7, and τ0 = 3 ns. 
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Figure 4. The χ2 versus the least-square search results of 
1000 Monte Carlo runs: the mean estimation error and 
standard deviation for amplitude Aest (left) and arrival time 
τest (right). τ0 = [−T/2, T/2]. Other simulation parameters are 
identical to those of Figure 3. 
 

    22 , i i
i

A S Ag t              (3) 

This is identical to the least-square metrics to fit N 
samples to the known pulse shape g (t). 

In our Monte Carlo simulation, the above argument is 
confirmed with a CR-RC2 pulse shaper. Again, an ex-
haustive search is employed to determine the optimal fit 
of the five samples to g (t). The estimation errors for A 
and τ are plotted in Figure 4 and overlaid with the χ2 
exhaustive search results – the two results are nearly 
identical. 
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5.3. χ2 with First-Order Taylor Expansion 

Taylor expansion can be performed on g(t) in the vicinity 
of τ = 0 to reduce the computation complexity of the χ2 
function, i.e., 

     'i i iAg t Ag t A g t            (4) 

Where g'(t) is the first-order derivative of g(t). Thus, 

  2
1 2 1 2'i i i ij j j

i j

S g g V S g g         ' j  (5) 

where α1 = A and α2 = Aτ. 
Compared to Eq. (2), Eq. (5) defines a first-order ap-

proximated quadratic error surface in terms of A and τ, 
which can be used to perform a search or to directly de- 
rive a closed-form analytical solution to the problem. The 
latter has been done in [10] and results are quoted as fol-
lows 
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5.4. Linear Optimal Filtering 

A linear optimal filtering technique was proposed in [10] 
to minimize the computing effort involved in determina-
tion of the amplitude and arrival time information. The 
formulation of the optimal filter is quoted as follows  

i i
i

i i
i

A u a S

A v b S

 

 




            (8) 

The coefficients of ai and bi are given as 

 
 

 
 

a Vg Vg'

b Vg Vg'
              (9) 

where λ = Q2/Δ, κ = −Q3/Δ, μ = Q3/Δ, ρ = −Q1/Δ, and Q 
and Δ are defined in Equation (7). 

The advantage of this technique is that the filter tap 

values are pre-calculated.Thus, the computation can be 
performed on the fly when data samples arrive, suitable 
for continuously operated detectors such as the proposed 
upgrade for ATLAS. It is also useful in resource-con- 
strainted implementation, e.g., FPGA or DSP, or latency- 
sensitive applications. 

It can be shown that linear optimal filtering is equiva- 
lent to the χ2 method of first-order approximation [10]. 
The simulation results of both for A and τ are illustrated 
in Figure 5. It is interesting to note that the estimation 
error exhibits a quadratic dependence on τ as predicted 
by Eqs. (4) and (5) fortruncating the second- and higher- 
order terms in the Taylor expansion. 

5.5. χ2 with Second-Order Taylor Expansion 

The first-order Taylor expansion of the χ2 function leads 
to a rather large estimation error or bias when τ is large 
–−4.9% for amplitude and 12% for arrival time when τ 
reaches ±T/2 in Figure 5,. One way to mitigate the large 
error is to iterate the series expansion and Equation (5) 
by re- calculating the g' and Q or, in the linear optimal 
filtering case, re-derive the filter tap values ai and bi and 
iterate Equation (8). Simulation results are shown in Fig-
ure 6 for linear optimal filtering with two iterations. The 
computing over- head in either case is significant. Another 
solution is to resort to a second-order Taylor expansion, 

       21
'

2i i i '' iAg t Ag t A g t A g t         (10) 

Where g''(t) is the second-order derivative of g(t). 
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Figure 5. The simulation results of 100 Monte Carlo runs 
for the first-order χ2 exhaustive search, linear optimal 
filtering, and second-order χ2 exhaustive search: the mean 
estimation error and standard deviation for amplitude Aest 
(left) and arrival time τest (right). Simulation parameters 
are identical to those of Figure 4. 
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Figure 6. The simulation results of 100 Monte Carlo runs 
for the linear optimal filtering case with two interations. 
Simulation parameters are identical to those of Figure 4. 
 

The error surface of the second-order approximation 
can be similarly defined as of Equation (5). However, the 
nonlinearity of the second-order term excludes the possi-
bility of a closed-form analytical solution. Thus, an ex-
haustive search is performed instead and the simulation 
results are shown in Figure 5 as well. We note that the 
estimation error in this case exhibits a cubic dependence 
on τ as the truncation error in Equation (10) is dominated 
by the third order.  

5.6. Gradient Descent Approach 

As simulation results evidenced so far, the exhaustive 
search approach produces the best estimation accuracy at 
the cost of high computation complexity. To improve the 
efficiency of the search, a gradient-descent approach is 
devised. As illustrated in Figure 2, the bowl-shaped error 
surface of the χ2 function exhibits a global minimum. 
Starting from a random initial point on the surface, a 
search direction can be derived by comparing the value 
of the function at the current position to those offset by a 
step size away in both A and τ direction. The current po-
sition is then advanced in the direction that minimizes the 
function value. The process is itereated until convergence at 
the bottom of the surface. Simulations for the gradient- 
descent approach were performed with four random 
starting point and the resulting search paths are plotted in 
Figure 7. Comparing to the exhaustive search method in 
which the whole error surface is evaluated, the gradient- 
descent approach significantly reduces the computation 
involved. Table 1 compares the typical required number 
of iterations for the two cases.  

6. Other Shapers 

The amplitude and timing estimation techniques covered 

in Sec. 4 are also tested with CR-RC3 and CR2-RC2 pulse 
shapers. For the same 40-MHz sample rate, the peak of 
g(t) falls in the middle between two samples in contrast 
to the case of the CR-RC2 shaper in which the peak is 
very close to a sample point. Figure 8 and Figure 9 plot  
 

 

Figure 7. Simulated gradient-descent search paths for four 
random starting point on the error surface of the χ2function. 
The x-axes are delay (in ns) and the y-axes are amplitude. 
 
Table 1. Effciency comparison between gradient-descent 
and exhaustive search methods. 

Method Gradient Descent Exhaustive Search

Iterations 680* 603201 

Computations 
per 

iteration 

90 multiplications 
72 additions 

3 comparisons 

30 multiplications 
24 additions 
1 comparison 

*Averaged over different delay times. 
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Figure 8. The simulation results of 100 Monte Carlo runs 
for CR-RC3 shaper. Simulation setupis identical to that of 
Figure 4. Standard dev. bars are not shown for clarity. 
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