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ABSTRACT 

This paper presents a general formula for (2m + 2)-point n-ary interpolating subdivision scheme for curves for any in- 
teger m ≥ 0 and n ≥ 2 by using Newton interpolating polynomial. As a consequence, the proposed work is extended for 
surface case, which is equivalent to the tensor product of above proposed curve case. These formulas merge several 
notorious curve/surface schemes. Furthermore, visual performance of the subdivision schemes is also presented.   
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1. Introduction 

Subdivision schemes have become important in recent 
years because of giving a specific and proficient way to 
describe smooth curve/surfaces. It is an algorithm method 
to generate smooth curve/surfaces as a sequence of suc- 
cessively refined polyhedral meshes. Their beauty lies in 
the elegant mathematical formulation and simple imple-
mentation. The flexibility and simplicity of subdivision 
schemes become more appropriate in computer and in- 
dustrial applications.   

There are two general classes of subdivision scheme 
namely interpolating and approximating. If the limit curve/ 
surface approximates the initial control polygon and that 
subdivision, the newly generated control points are not in 
the limit curve/surface, the scheme is said to be ap- 
proximating. It is called interpolating if after subdivision, 
the control points are interpolated on the limit curve/ 
surface. Among interpolating subdivision scheme 4-point 
interpolating scheme [1] was one of the initial scheme. 
Nowadays spacious mixture of interpolating scheme [2-8] 
has been anticipated in the literature with different shape 
parameters.   

In 1978, Catmull-Clark [9] and Doo-Sabin [10] first 
introduced subdivision surface schemes, which genera- 
lised the tensor product of bicubic and biquadratic B- 
splines respectively. After that, Kobbelt [11] gave the 
tensor product of the curve case and he generalized the 

four-point interpolatory subdivision scheme for curve to 
the surface by using tensor product. 

The proposed work gives a new idea in finding subdi- 
vision rules for curves and surfaces using Newton inter- 
polating polynomial. The proposed method is simple and 
avoids complex computation when deriving subdivision 
rules. Since higher arity subdivision schemes have high 
approximation order and lower support than their coun- 
terpart of lower arity schemes. Therefore researchers are 
focusing in introducing higher arity schemes (i.e., ternary, 
quaternary, ..., n-ary). This paper presents a general for- 
mula for (2m + 2)-point n-ary interpolating rules for 
curves. Since the subdivision schemes for surface design 
have gained more popularity in computer animation in- 
dustries. So, a new approach for regular quad meshes 
using 2-dimensional Newton interpolating formula is 
also the part of this paper.   

In the following section, there is presented a brief in- 
troduction about the preliminary concepts used in this 
work. In Sections 3 and 4, new formula for interpolating 
subdivision schemes is given for curves and surfaces by 
using Newton interpolating polynomial. In Section 5, 
application of the subdivision schemes is also accessible. 
A few remarks and conclusions are given in Section 6.   

2. Preliminaries 

Given a sequence of control points 
, , 1k N

ip i N ,     where the upper index  0k *Corresponding author. 
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indicates the subdivision level. An n-ary subdivision 
curve is defined by  
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Labeling of old and new points is shown in Figure 1, 
which illustrates subdivision scheme (2.1). 

Let 2 1m be the space of all polynomials of degree 
where  m  i s  non-nega t ive  in teger .  I f  
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In general, the coefficient of the Newton form of 
polynomial is called divided difference, the divided dif- 
ference 0 n  is a symmetric function, 
hence can be found by following method,  
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and  can originate by the subsequent way, Ν (x)j
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3. Construction of the Subdivision Scheme 
for Univariate Case 

This section gives the construction of (2m + 2)-point bi- 
nary and ternary interpolating schemes. Then by induc- 
tion, a general formula for (2m + 2)-point n-ary interpo- 
lating subdivision scheme is formulated for curve case.   

3.1. (2m + 2)-Point Binary Interpolating Scheme 

To construct the rules for binary 2-point interpolating  

scheme, consider   1

0j j
x


  be the Fundamental  

Newton polynomial to the node points {0, 1}. The New-
ton polynomial replicate linear polynomial P in the way 
that taking m = 0 in (2.3), we achieve 
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where j  is divided difference can be calculated by 
(2.4), and  by setting in (2.5). This implies that 
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with following Gamma function  
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1 1
x x
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Now, to construct the desired 2-point ternary subdivi- 
sion scheme, let 

 1 1
2 1 2 1 1

1
0 , .

2i ip p i p p i
     
 

 

Since we want to construct uniform and stationary 
scheme reproducing polynomials up to a fixed degree, it 
is sufficient to consider the case i = 0 with subdivision 
level k = 0. This implies that  

 

 
(a)                                      (b)                                       (c) 

Figure 1. Solid lines show coarse polygons whereas dotted lines are refined polygons. (a)-(c) represent binary, ternary and 
quaternary refinement of coarse polygon using (2.1) for n = 2, 3, 4 respectively. 
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In composite form (3.3) can be written as 
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Continuing in the same way for m = 1 in (2.3), where 
be the Newton polynomial to the node points {−1, 

0, 1, 2} then we have the following compact form of 
4-point binary subdivision scheme 
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Consequently, we can generate a general form of (2m 
+ 2)-point binary interpolating scheme, which is of the 
following form 
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3.2. (2m + 2)-Point Ternary Interpolating Scheme 

To construct the rules for ternary 4-point interpolating  

scheme, consider   2

1j j
x


  be the Newton polyno- 

mial to the node points {−1, 0, 1, 2}. The Newton poly-
nomial reproduces cubic polynomial P in the way that 
taking m = 1 in (2.3), we achieve 
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Now to construct the 4-point ternary subdivision 
scheme, take  
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In composite form, the above rules can be written as 
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Accordingly, general formula for (2m + 2)-point ter- 
nary interpolating scheme is given by 
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where 
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3.3. (2m + 2)-Point n-Ary Interpolating 
Subdivision Scheme (Generalization) 

Now there is presented a general formula for (2m + 2)- 
point n-ary (i.e. binary, ternary and so on) interpolating 
subdivision scheme by using Newton interpolating poly-
nomial. This new formula will be helpful to drive inter-
polating subdivision rule plainly and quickly. The gen-
eral formula for (2m + 2)-point n-ary interpolating subdi-
vision scheme has the following form 
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 By setting m = 2, and n = 2, in proposed result, we get 
6-point DD scheme [12], 
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 Taking m = 1, and n = 3 in (3.13), we get ternary 
4-point interpolating scheme [13], 

1
2

1
3 1 1 1 2

1
3 2 1 1 2

,

5 20 20 4
,

81 27 27 81
4 20 20 5

81 27 27 81

k k
i i

k k k k
i i i i

k k k k
i i i i

p p

p p p p

p p p p
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4. Tensor Product of (2m + 2)-Point n-Ary 
Interpolating Subdivision Scheme 
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ss 

 
(a)                                        (b)                                       (c) 

Figure 2. Solid lines show one face of coarse polygons whereas dotted lines are refined polygons. (a)-(c) can be obtained by 
subdividing one face into four, nine and sixteen new faces by using (4.1) for n = 2, 3, 4 respectively. 
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Lemma 4.1. [14] Given initial control polygon 
 let the values  be de-

 subdivision p gether 
with (2.2), then the schemes derived by tensor product 
naturally get four-sided support regions. 

Remark 4.2. It can be loosely say that the support is 
the tensor product of the supports of the two regions, just 
as one can loosely say that Kobbelt subdivision scheme 
for surface [11] is the generalization of the tensor prod ct 
4-point DD subdivision scheme [12]. 

Lemma 4.2. [15] Given initial control polygon 
 let the values  be de- 
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with (2.2), then if a scheme is derived from a tensor 
product, then the level of continuity can be determined 
between pieces by reference to the underlying basis func- 
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5. Application 

This section is devoted for the visual performance of 
curves/surfaces. It is illustrated by some examples, ob-
tained from the proposed work (3.13) and (4.2). The 
stepwise subdivision effects are shown in Figures 3 and 
4. 

 
(a)                                 (b) 

 
(c) 

 
(d)                               (e) 

 
(f) 

Figure 3. Dotted line indicate initial polygon whereas continu-
ous curve generated by terna - and 6-point interpolating 
subdivision schemes [12]. (a) 4 t: 1st level; (b) 2nd level; (c) 
3rd level; (d) 6-point: 1st level; (e) 2nd level; (f) 3rd level.  
 

ry 4
-poin

 

 
(a)                           (b) 

 

 
(c)                          (d) 

Figure 4. Tensor product of 4-point binary approximating 
scheme: (a)-(d) show the initial polygon, 1st-, 2nd-subdivi- 
sion levels and limit surface respectively.  
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6. Conclusion 

This work gives a variety of subdivision schemes for the 
univariate and bivariate cases by using Newton’s inter-
polating formula. The work presented here is a new ap-
proach to the subdivision rules, which reduce the com
putational cost. Most of the well-known subdivision
schemes are the special cases of the proposed work (3.13)
and (4.2).  
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