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ABSTRACT 

In this work, we study existence theorem of the initial value problem for the system of fractional differential equations 
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  is the usual space of continuous func- 
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(see [1]). 
The existence of solution of initial value problems for 

fractional order differential equations have been studied 
in many literatures such as [1-4]. In this paper, we 
present the analysis of the system of fractional differ- 
ential equations 
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1 2, , , nb b b b    and A  is a square. 

To prove the main result, we begin with some de- 
finitions and lemmas. For details, see [1-5]. 

Definition 1.1 Let f  be a continuous function de- 
fined on  ,a b  and 1 ,n n n N    . Then the 
expression 
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is called left-sided fractional derivatives of order .  
Definition 1.2 Let f  be a continuous function de- 

fined on  ,a b  and 0.   Then the expression 
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is called left-sided fractional integral of order .  
Lemma 1.3 Given nA M  with eigenvalues  

1 2, , , n     in any prescribed order, there is a unitary *Corresponding author. 
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matrix n  such that ijU A  is upper 
triangular with diagonal entries 

U M U T t     
,ii it   1, , .i n   

That is, every square matrix A  is unitarily equivalent to 
triangular matrix whose entries are the eigenvalues of A  
in a prescribed order. Further more, if  nA M R  and 
if all the eigenvalues of A  are real, then U  may be 
chosen to be real and orthogonal. 
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Lemma 1.5 (Schauder’s fixed theorem) Assume   
is a relative subset of a convex set K  in a normed space 

.X  Let :A K  be a compact map with 0 . 
Then either 

(A1) A  has a fixed point in  , or 
(A2) there is a  and a x 1   such that 

.x Ax  
Now, let’s us give some hypotheses: 
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Lemma 1.6 Let 1 2 1.   If we assume that 

0 1 1q ,    then the initial value problem  
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for  sufficiently small. 0h 
Proof. If  

       0 1 0,1 0,qx t C  h L h , 

then , by Lemma 1.4, We are therefore 
reduced the initial problem to the nonlinear integral 
equation 
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The existence of a solution to Problem (3) can be 
formulated as a fixed point equation  where ,Tx x
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Clearly, it is closed, convex and nonempty. 
Step I. We shall prove that we note that .  TS S
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In view of the assumption  the se- 
cond estimate is satisfied if say 

 1 1 0,q    
r b  and  is 

chosen sufficiently small. 
h

1
Step II. We shall prove that the operator  is com- 

pact. To prove the compactness of 
T
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     0 0
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defined by (5), it will be sufficient to argue on the oper- 
ator  
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Turn out to be compact from classical sufficient con- 
ditions, since  1 1, 1q       1. By Lemma 1.5, 
we have that Problem (3) has least a solution. 

The proof is complete. 
Lemma 1.7 Suppose that  ,f t x  satisfies H1, 
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(6) and its associated integral equation 
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2. Main Results 
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m 2.2. Therefore, it is omitted. 
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