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ABSTRACT

In this work, we study existence theorem of the initial value problem for the system of fractional differential equations
D“f(t)zAa_c(t),tl‘“f(t)| » =b, where D” denotes standard Riemann-Liouville fractional derivative, 0<a <1,

f(t):[xl(t),xz(t),---,xn(t)]T, b =[b,b,,-,b,]" and 4 is a square matrix. At the same time, power-type esti-

mate for them has been given.

Keywords: Riemann-Liouville Fractional Derivative; Weighted Cauchy-Type Problem; Fractional Differential

Equations

1. Introduction

Let M, denote the nxn matrix over real fields R
or complex fields C.For 4 >0,

& ([o.])=
{f eC®((0,4]):lim _ . ¢ f(¢)exists and is finite},
here ¢°((0, h}) is the usual space of continuous func-
tionson (0,%], which is a Banach space with the norm
||f||r =MaX o, f(t)|'
The space C{, ([0,/]) is defined by
¢, ([0.h]) = {f e C,_, ([0,4]): there exists c € R and

S e ([0h]) st f(t)=ct" +1°f" (1)}
(see [1D.

The existence of solution of initial value problems for
fractional order differential equations have been studied
in many literatures such as [1-4]. In this paper, we
present the analysis of the system of fractional differ-
ential equations

{D“f(t) = A% (1), )

% (1), =,

“Corresponding author.
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where D“ denotes standard Riemann-Liouville frac-
tional derivative, where

% (1) =[x ()35, (£) 0%, ()]

D%(1)=[ D"x,(£), D“x, (£),+- D, (1) ],
Y2<a<l,

b =[b,b, b, and 4 isasquare.

To prove the main result, we begin with some de-
finitions and lemmas. For details, see [1-5].

Definition 1.1 Let f be a continuous function de-
fined on [a,b] and n-1<a<n,neN . Then the
expression

Dy f(x)=

dt, x>a

L ¢ 7(0)

F(n_a)dx_n a (x_t)afrvrl

is called left-sided fractional derivatives of order «.
Definition 1.2 Let f be a continuous function de-
finedon [a,b] and « >0. Then the expression

- 1 S0
Ol Gy

is called left-sided fractional integral of order «.
Lemma 1.3 Given 4e M, with eigenvalues
A, Ay, 4, In any prescribed order, there is a unitary

dt, x>a
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matrix U e M, such that U"AU =T =[r,] is upper
triangular with diagonal entries ¢, =4, i=1---,n
That is, every square matrix A4 is unitarily equivalent to
triangular matrix whose entries are the eigenvalues of A4
in a prescribed order. Further more, if 4eM,(R) and
if all the eigenvalues of A are real, then U may be
chosen to be real and orthogonal.

Lemma 1.4 Assume that feCo(Rg)ﬂ Locl(Rg)
with fractional derivative of order O<a <1 that be-
longsto C°(R; )N Loc' (R ). Then

1°D° f(x) = f(x)+Cx*

for some ¢ e R. When the function f e C°(R+), then
¢=0, where

Ry :{xeR,x>0} and R* ={xeR,x20}.

Lemma 1.5 (Schauder’s fixed theorem) Assume Q
is a relative subset of a convex set K in a normed space
X. Let 4:Q—>K be a compact map with 0 Q.
Then either

(A1) A4 hasafixed pointin Q,or

(A,) there is a xeo0Q and a A<1 such that
x = AAx.

Now, let’s us give some hypotheses:

H1: f(z,x) is continuous on R*xR and is such
that

|f(t,x)| < t"¢(t)e"” |x|m yu=20m>10>0, 1)

where ¢(¢) is a continuous functionon R*.
H2: f(z,x) is continuous on R*xR and is such
that

|f ()| <t“p(e)|x" 2 0,m>1, @)

where ¢(7) isa continuous functionon R*.
Lemma 1.6 Let 1/2<a<1. If we assume that
0<g<ll-a, thenthe initial value problem

D”x(t) = x1 (t)+ y(t),
{tl“x(t)L_o = b, ®

where
y(t)e L, ([0.R])NL((0,R)),
0 ([0 MNE(00)

has at least a solution x(¢)ecCy,([0,A])NL((0,h))

for 2 >0 sufficiently small.
Proof. If

x!(t) ey, ([0.n])NL((0,h)),

then ¢(a-1)>-1, by Lemma 1.4, We are therefore
reduced the initial problem to the nonlinear integral
equation
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x(t)=bt""
+ﬁ(ﬁ(f—s)al x?(s)ds +L:(t —s)wl y(s)ds)

The existence of a solution to Problem (3) can be
formulated as a fixed point equation 7x = x, where

() (1) = e
(s ()8 [ -5 ()

I'(a)
in the space 7, ([0,2])N L ((0,/)).
Define

@

®)

S= {x eCy,([0.4]): ||x _pt 1

—a

1 5
sre2iel,, |

Clearly, it is closed, convex and nonempty.

Step |. We shall prove that we note that 7S < S.
We note that

tl—a

= maxte[o,h]

”Tx—bt"’l F(a)

|

tl—a
S maX, o4 m{

—a

(=) X9 (s)ds+ [ (t—s “1y(s)ds
0 0
I;(t —s)‘H stlo ) gal-a) a (s) ds
Iot (t - s)ail et gilt-a) ya (s)ds

|

- 1 5
WL, 4 —h

+ U; (1- s)ail sy (s)ds

l-a

t
Ie[O,h] m{

=max

|

+ max

tla ‘ @1 g 1
’E[O!h]m{-[O(t—s) 1S 151 y(S)dS

I'(g(a-1)+1)
B F(q(a -1)+1+ a)F(a)

since x|, <r+[p[+— A2 |y|, . it will be suf-
[24
ficient to impose

||x—bt"”1

1-o

q
< const.h"(“'l)ﬂ(r"“|b|+1hza_1 "y"la] ST
(04

In view of the assumption ¢(a—-1)+1>0, the se-
cond estimate is satisfied if say r=|[b| and & is
chosen sufficiently small.

Step Il. We shall prove that the operator T is com-
pact. To prove the compactness of
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r:¢y, ([0.h]) > ., ([0.7])

defined by (5), it will be sufficient to argue on the oper-
ator

¢ ((0.1]) > € ([0)
defined in this way:
(T.x)(e) =T (¢ x(1)).

We have T.x=b+T"x where the operator

tl—a

=
+j;(t —s)‘H s'“y(s)ds).

Turn out to be compact from classical sufficient con-
ditions, since g(a-1)>-1a-1>-1. By Lemma 1.5,
we have that Problem (3) has least a solution.

The proof is complete.

Lemma 1.7 Suppose that f(7,x) satisfies H1,
u—(m-1)(1-a)>0 and a>1/2. If ||¢7||q <L for
some ¢ >1/a, then the problem

{D“x(t) =f(t,x),

x(1) , =b ©

a-1

exists a positive constant C such that |x(¢)|<Cr*?,
t>0.

Lemma 1.8 Let xeC/,([0,4]) with a>1/2.Sup-

pose further that ux—(m-1)(1-a)>0. Then Problem
(6) and its associated integral equation

1 a-1
F(a)'[o(t_s) f(s,x(s))ds @)

x(t)=bt""+

are equivalent.

Lemma 1.9 Assume that o >1/2. f(t,x) satisfies
H2, and ||(0||q <K for some ¢ >1/2. Suppose further
that x+1/p<m(l-«), then there exists C>0 and
0< 6 <1-a such that any solution of (6) exists glo-
bally and satisfies

[x(t)<Cret=a>0. (8)

2. Main Results

Theorem 2.1 Let 4 e M, then initial problem (*) has a
solution x(¢)e R",where

% (1) =[x ()%, (1),0x, ()]
x () ey, ([0.n])NL((0,7))

forall i=12,---,n and sufficiently small %> 0.
Proof. Given 4e M, with eigenvalues A,,4,,---,4,
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by Lemma 1.3, there is a unitary matrix U € M, such
that

UAU =T =[t, ]|
is upper triangular with diagonal entries ¢, = 4,,i=1---,n.
Let y(1)=U"x(t), we have
Dy()=U"D*x(t) =U" Ax(¢)
=U AUy (1) =Ty (0).

At the same time, the initial problem (*) changed into
{D“i(r) =75(7),

*%
(1), =U’D. ™)

Now, let’s consider the problem (**).
Clearly, the problem (**) is equivalent to the follow-
ing n problems

Dy, () =213, (1),
j=i

£y, (t)| =b,

t=0
for i,j=12,---,n. where b, is the ith entries of the

vector U’b.
Consider the weighed Cauchy-type problem

{Dayn URIAGE

tl—oty,1 (t)

In Lemma 1.6, take ¢=1,y(¢)=0. Then by lemma
1.6, 3h >0, s.t. the above problem has at least a solution

v, (t)eC, ([0.R])NL((0,h)).
Consider the following weighed Cauchy-type problem
{Daynl (t) = tnfl,nflynfl (t) + tnfl,nyn (t)’

tliayn—l (t)|t:0 = bn—l'

=0 n'

In Lemma 1.6, take ¢ =1,y(¢)=1,,,v,(¢). Then by
Lemma 1.6, 32 >0, s.t. the above problem has at least a
solution y, (1) e C2,, ([0,A])N L ((0,7)).

Similarly, there has at least a solution in

C. ([N L ((0.1)

for the rest n-2 initial problem in (**), denote by
Voo (1), ,3(¢), -+, 7 (¢) respectively. And therefore,
there has at least a solution

F(6) =[50 32 (1), ()]

of the problem (**). Let x(¢)=Uy(¢), itis required for
us.
The proof is completed.
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Since the problem (**) is equivalent to the following n
problems

D ()= 207, (1)

[l_ay" (t)|z:o =b;

for i,j=12,---,n. where b, is the ith entries of the
vector U*h. Next, we shall discuss these equations in

(9).

Theorem 2.2 Assume that the right hand of these
equations in (9) satisfied H1, x—(m-1)(1-a)>0,
a>1/2 and |¢| <L for some ¢>Ya, If the solu-
tion of the problems (**) denoted by

=[x ()%, (6)0x, ()]
then there exists some constant C >0 such that
5, (1) <|ul, ce e >0 forall i=12,,n

Proof. Similar to the proof of Theorem 2.1, now con-
sider the following weighted Cauchy-type problem

Dayn (t) = tnnyn (t)’
£y, (1), =bw

Then by Lemma 1.7, there exists some constant
C, >0 suchthat |y, (¢)|<C,e“*t>0.
Consider the following problem

Dayn—l (t) = tn—l,n—lyn—l (t) +
tliaynfl (t)|t:0 = bnfl

Then by Lemma 1.7, there exists some constant
C,,>0 suchthat |y, (¢)<C, " t>0.

)

tn—l,nyn (t)’

n

Similarly, there exist some positive constants
C,,,C, 5+, C; suchthat

|y (1) < Gt e > 0.

forall i=n-2,n-3,---,1,
Let X(¢)=Uy(t),C =max,,.,{C,}. Thenwe have

|, (1) <|u], ¢t e >0,

forall i=12,---,n
The proof is completed.

Copyright © 2013 SciRes.

Theorem 2.3 Assume that « >1/2, the right-hand of
these equations in (9) satisfied H2, and "(0" <K
For some ¢ >1/2. Suppose further that

u+lp<m(l-a).
If denote solution of the problems (**) f(t) b

1) =[x(1).%, (1), x, (I)T.

Then there exists some constant C >0 and
0< 6 <1l-a, such that

x, (1) <|ul, ¢ 2tz a>0,

forall i=12,---,n
Using Lemmas 1.3 and 1.9, the proof is similar to
Theorem 2.2. Therefore, it is omitted.
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