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ABSTRACT 

In this paper we apply the Fourier transform to prove the Hyers-Ulam-Rassias stability for one dimensional heat equa- 

tion on an infinite rod. Further, the paper investigates the stability of heat equation in  with initial condition, in the 
sense of Hyers-Ulam-Rassias. We have also used Laplace transform to establish the modified Hyers-Ulam-Rassias sta- 
bility of initial-boundary value problem for heat equation on a finite rod. Some illustrative examples are given. 

n
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1. Introduction and Preliminaries 

The study of stability problems for various functional 
equations originated from a famous talk given by Ulam 
in 1940. In the talk, Ulam discussed a problem concern- 
ing the stability of homomorphisms. A significant break- 
through came in 1941, when Hyers [1] gave a partial so- 
lution to Ulam’s problem. Afterthen and during the last 
two decades a great number of papers have been exten- 
sively published concerning the various generalizations 
of Hyers result (see [2-10]). 

Alsina and Ger [11] were the first mathematicians who 
investigated the Hyers-Ulam stability of the differential 
equation .g g 

:
 They proved that if a differentiable 

function y I  R  satisfies y y     for all ,t I  
then there exists a differentiable function :g I R  
satisfying    g t g t   for any t  such that  I

3 ,g y    for all  This result of alsina and Ger 
has been generalized by Takahasi et al. [12] to the case 
of the complex Banach space valued differential equation 

.t I

.y y   
Furthermore, the results of Hyers-Ulam stability of 

differential equations of first order were also generalized 
by Miura et al. [13], Jung [14] and Wang et al. [15]. 

Li [16] established the stability of linear differential 
equation of second order in the sense of the Hyers and 
Ulam .y y 

 x y 

  0y x y

 Li and Shen [17] proved the stability of 
nonhomogeneous linear differential equation of second 
order in the sense of the Hyers and Ulam  

 while Gavruta et al. 
[18] proved the Hyers-Ulam stability of the equation 

 with boundary and initial conditions. 

Jung [19] proved the Hyers-Ulam stability of first-order 
linear partial differential equations. Gordji et al. [20] ge- 
neralized Jung’s result to first order and second order 
Nonlinear partial differential equations. Lungu and Cra- 
ciun [21] established results on the Ulam-Hyers stability 
and the generalized Ulam-HyersRassias stability of non- 
linear hyperbolic partial differential equations. 

    0,y p q x y r x  

 

In this paper we consider the Hyers-Ulam-Rassias sta- 
bility of the heat equation 

2
2

2
0 ,

u u
a t T

t x

 
x        

 
     (1) 

with the initial condition 

  ,0u x x                 (2) 

where    ,x C ,    and  

   2
1, 0u x t C   , .  

We also use a similar argument to establish the Hyers- 
Ulam-Rassias for the heat equation in higher dimension 

2 0 , n
tu a u t T x              (3) 

with the initial condition 

  ,0u x x                (4) 

where 
1

.
i i

n

x x
i

u u


    

Moreover we have proved theorems on Hyers-Ulam- 
Rassias-Gavruta stability for the heat equation in a finite 
rod. 

Definition 1 We will say that the Equation (1) has the 
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Hyers-Ulam-Rassias stability with respect to 0,   if 
there exists K > 0 such that for each 0   

,
and for each 

solution  of the inequality     2
1, nu x t C   0

 2 ,tu a u x t              (5) 

with the initial condition (2) , then there exists a solution 
 of the Equation (1), such that     2

1, nw x t C   0,

    , ,u x t w x t K x t  ,

,

,  

   , 0,nx t     

where K  is a constant that does not depend on   nor 
on  ,u x t , and      , 0nx t C    , .

Definition 2 We will say that the equation (1) has the 
Hyers-Ulam-Rassias-Gavruta (HURG) stability with res- 
pect to 0,   if there exists K > 0 such that for each 

0   and for each solution     2
1, 0nu x t C   ,  

of the inequality  

 2 ,tu a u x t                (6) 

with the initial condition (2), then there exists a solution 
of the Equation (1), such that     2

1, nw x t C   0,

    , ,u x t w x t K x t  ,

,

,  

   , 0,nx t      

where  is a constant that does not depend on K  nor 
on  and  ,u x t  ,     , 0nx t C    , .  

Definition 3 We will say that the solution of the initial 
value problem (1), (2) has the Hyers-Ulam-Rassias 
asymptotic stability with respect to 0  , if it is stable 
in the sense of Hyers and Ulam with respect to ,  and 

    lim , , 0
t

u x t w x t


   

Definition 4 Assume the functions  f x  and  g x  
defined on  are continuously differentiable and 
absolutely integrable, then the Fourier transform of 

nx

 f x  is defined as 

 
 

   2

1
e d

2 n

i x
n

f f x x F  





  

and the inverse Fourier transform of  is   , nG   

 
   1

2

1
[ ] e d

2 n

i x
n

g G g   





 x  

Example 1 Let 

 
2

e , ,x nf x x   0  

We find the Fourier transform of the function. 
Since 

   

     

2 22 221 1

1 2

e e e en n
x xx xx

n

f x

h x h x h x

      

 





 

Then 

  2

e , 1, ,kx
kh x k n    

and by defintion 4 we have 

   
1

n

k
k

F H 


               (7) 

where 

 
 

2

1 2

1
e e dk k kx i x

k kH x 


 




         (8) 

Differentiating  kH   with respect to k , we get  

 
 

 2

2

1
e e dk k kx i x

k kn kH ix x 


 



  
   

Integrating by parts gives 

   
2

k
k kH H


 


   

Hence 

  2 4e k
kH C     

Putting 0k   gives  and from (8) one 
has 

 0 ,C H

 
 

2

1 2

1
0 e kx

kdH x







   

Using that 
2

e dz z









 , we have  

 
 1 2

1
0

2
H


  

 
 

2 4
1 2

1
e

2
k

kH  


            (9) 

Therefore, from (7), (9) we obtain 

 
 

2 4

2

1
e

2
n

F  


  

Theorem 1 (See Evans [22]) Assume that  f x  and 
 g x  are continuously differentiable and absolutely 

integrable on . Then n
1) for each   such that   

 
  ,nD f L  

 n
i   .D f f   

2)        2 ,
n

f g f    g  where  

   d
n

f g f y g x y  


y  is the convolution of  f x  
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and  .g x  

2. On Hyers-Ulam-Rassias Stability for  
Heat Equation on an Infinite Rod 

Theorem 2 If    2
1,u x t C T  0,  then the initial 

value problem (1), (2) is stable in the sense of Hyers- 
Ulam-Rassias. 

Proof. Let 0   and  ,u x t  be an approximate 
solution of the initial value problem (1), (2). We will 
show that there exists a function    2

1,w x t C T   
satisfying the Equation (1) and the initial condition (2) 
such that 

0,

     , ,u x t w x t K x t  ,  

If we take  
 

2

2

1

141
, e

2 1

x

tax t
a t







 then from 

inequality (5), we have 

 

 

2

2

2

2

1 2
214

2

1

14

e
2 1

e
2 1

x

ta

x

ta

u u
a

t xa t

a t











  
 
 




    (10) 

 

Applying Fourier Transform to inequality (10), we get 

       2 2 2 21 12 2d ,
e , e

d
a t a tv t

a v t
t

 
           (11) 

Or, equivalently  

   2 2 2 2 2 2

2 2

2 2d ,
e e , e

d

e

a a t a

a

v t
T a v

t

T

tt  




 







  




 

Integrating the inequality from 0 to  we obtain t

   2 2 2 2 2 2

e e , ,0 ea a t aT v t v T           

From which it follows 

     
 

2 2 2 2

2 2

1

1

ˆ2 e , e

2 e

a t a t

a t

T v t

T

 



   



  

 

  


      (12) 

where , and    , ,u x t  v t     ˆ .x       In 
Example 1, we have established  

 
2 2 4

2

1
e

2

x

n e   . Putting n = 1, and 


     


2

1

4
t

a 
 , 

we obtain 
2 2 2 241

e e
2

a t x a t

a t
  

  
 

 .  

Now, Using the convolution theorem, from inequality 
(12) one has 

 

   

 

2

2

2 2

2

2

1

14

4

1

14

1
e

2 1

1
, e

2

1
e

2 1

x

ta

x a t

x

ta

T
a t

u x t x
a t

T
a t















 
 
  

       
 
 
  



 



 

Applying inverse Fourier transform to the last inequal- 
ity and using convolution theorem we have 

 

     

 

2

2

2 2

2

2

1

14

4

1

14

e
2 1

1
, e

2

e
2 1

x

ta

x a t

x

ta

T

a t

u x t
a t

T

a t





d  







 









 





  

Let us take 

     2 241
, e d

2

x a tw x t
a t

 .  


 




       (13) 

Applying arguments shown above to initial-value pro- 
blem (1), (2), one can show that (13) is an exact solution 
of Equation (1). 

To show that    ,0 ,w x x  we put .
2

x

a t

 
  

Then 2 , d 2 d ,x a t a t        so that 

    21
, 2w x t x a t e d  






 
 

 

Hence, as  we find 0t  

     21
,0 e dw x x x  






 
 

 

Therefore the initial value problem (1), (2) is stable in 
the sense of Hyers-Ulam-Rassias. 

More generally, the following Theorem was estab- 
lished for the Hyers-Ulam-Rassias stability of heat equa- 
tion in  .n

Theorem 3 If     2
1, 0, , 0nu x t C T T ,      

then the initial value problem (3), (4) is stable in the 
sense of Hyers-Ulam-Rassias. 

Proof. Let 0   and  be an approximate 
solution of the initial value problem (3), (4). We will 
show that there exists a function 

 ,u x t

    2
1, 0nt C T  ,w x  

satisfying the Equation (3) and the initial condition (4) 
such that 

     , ,u x t w x t K x t  ,  
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Taking  
  

2

2
1

141
,

2 1
e

x

ta
nx t

a t





 
 then from 

the inequality (5), we have 

  

 

2

2

2

2

1

14

1
2 14

e
2 1

e
2 1

0,

x

ta
n

x

ta
t

n

a t

u a u
a t

t x














   


 

,        (14) 

Applying Fourier Transform to inequality (14), we get 

     222 12d ,
, e

d
a tv t

a v t
t


       

Or, equivalently  

   
2 22 2 2

22

22d ,
e e , e

d

e

a a t a

a

v t
a v t

t

2 t  




 







  




 

Integrating the inequality from 0 to  we obtain t

   
2 22 2 2

e e , ,0 ea a t at v t v t
2           

From which it follows 

     
 

2 22 2

22

1

1

ˆe , e

e

a t a

a t

T v t

T

 



   



  

 

  



t



     (15) 

where  and    , ,v t u x t   ,    ˆ .x       
Using Example 1, we find that  

 
2 22 41

e ,
2

a t x a t

n
e

a t

 
 
   
  


2

  

and applying the convolution theorem, from inequality 
(15) one has 

  
 

 
 

  

2

2

2 2

2

2

1

14

4

1

14

1
e

2 1

1
, e

2

1
e

2 1

x

ta
n

x a t

n

x

ta
n

T
a t

u x t x
a t

T
a t















 
   

  
       

 
   

  



 




 

By applying the inverse Fourier transform to the last 
inequality, and then using convolution theorem we get 

 
   

 

2

2

2 2

2

2

1

14

4

1

14

e
2 1

1
, e

(2 )

e
2 1

n

x

ta
n

x a t

n

x

ta
n

T

a t

u x t
a t

T

a t





d  






 







 








 

Now, let us take 

 
 

 
2 241

, e d
2 n

x a t

nw x t
a t

 .   





    (16) 

One can find that (16) is a solution of Equation (3). 

To show that    ,0 ,w x x we put .
2

x

a t

 
  

Then 2 , d 2x d ,a t a t        so that 

    2

2

1
, 2

n
nw x t x a t e d   

 


 

Hence as  we obtain 0t  

     
2

2

1
,0 e d

n
nw x x x   

 


 

since 
2

2

1
e d 1

n
n

  .
 


 

Hence the initial value problem (3), (4) is stable in the 
sense of Hyers-Ulam-Rassias. 

Theorem 4 Suppose that     2
1, 0u x t C   ,  

satisfies the inequality (5) with the initial condition 
   ,0 .u x x  Then the the initial-value problem (1), 

(2) is stable in the sense of HURG. 

Proof. Indeed, if we take  
2

2

1

14e
, e

2 1

xt
tax t

a t


 



 

then from the inequality (5), we have 
2

2

2

2

1

14

12
2 14

2

e
e

2 1

e
e

2 1

xt
ta

xt
ta

a t

u u
a

t x a t





 


 





 
  
  

        (17) 

Applying Fourier Transform to inequality (17), we get 

     
 

2 2

2 2

1 2 2

1

d ,
e ,

d

e

a tt

a tt

v t
e a

t

e






v t  



 

 

  



 

Now, by applying the same argument used above, we 
obtain 

Copyright © 2013 SciRes.                                                                                  AM 
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 

   

 

2

2

2 2

2

2

1

14

4

1

14

1 e
e

2 1

1
( , ) e d

2

1 e
e

2 1

t x

ta

x a t

t x

ta

a t

u x t
a t

a t





  









 













 







     (18) 

One takes 

     2 241
, e

2
x a tw x t

a t
 d .  


 




   

as a solution of initial-value problem (1), (2). 
Therefore the initial value problem (1), (2) is stable in 

the sense of HURG. 
Corollary 1 Suppose that     2

1, 0u x t C   ,  
satisfies the inequality (5) with the initial condition (2). 
Then the the initial-value problem (1), (2) is asymptoti- 
cally stable in the sense of Hyers-Ulam-Rassias. 

Proof. It follows from Theorem 4, and letting  
in (18), we infer that  

,t 
    lim , , 0.u x t w x t 

t
Remark Using similar arguments it can be shown that 

the initial-value problem (3), (4) is asymptotically stable 
in the sense of HURG. 

Example 2 We find the solution of the Cauchy pro- 
blem 

4 0 n
tu u t x             (19) 

 
2 2,0 e ,x nu x x            (20) 

Applying the same argument used in the proof of the 
Theorem 4 to the inequality 

     

2 2

1 1
2

1
e

41
2

e
1

x x

t t
tn

u u
t

  
     

   
n

t


 

we get 

 
 

  

2 2

2

2

1
2

1
, e e

e
e

1

n

x x t

n

xt
t

n

u x t
t

t

 d



  

 






 




     (21) 

One can show that the function 

 
 

2 22

2

1
, e e d

n

x x t

n
w x t

t

 .  
 


       (22) 

is a solution of the problem (19), (20). 
Or, equivalently 

 
 

 22 2
1 2

1

1
, e e k kk

n
x tx

k

w x t t
t




 

 




  d  

Now, using the change of variables  
2

1 2

2 1

n

k
k k

xt
z

t t
         2


  in the integral 

 
 

 22 2
1 2

1
e e dk kk x tx

kI x t
t




 




   

we obtain the integral 

 
 

 2 2 1 2

1 2

1
e d ,

1 2
kx t

k kI x t
t




 



0 
   

Therefore we have 

 
 

 

2 2 1 2

2

e
,

1 2

x t

n
w x t

t

 




            (23) 

It is clear that  
2 2,0 e .xw x   

Hence, from (21) and (23) we get 

 
 

    

22 2 1 2

1
2 2

e e
, e

1 2 1

xx t t
t

n n
u x t

t t

   
 

  
 

Hence the initial value problem (19), (20) is stable in 
the sense of HURG. Moreover, since  

 
 

 

2 2 1 2

2

e
lim , 0,

1 2

x t

nt
u x t

t

 



 
  
  


 then problem (19), (20) 

is asymptotically stable in the sense of HURG. 

3. A Modified Hyers-Ulam-Rassias Stability 
for Problem of Heat Propagation in a  
Finite Rod 

In this section we show how Laplace transform method 
can be used to esatblish the Hyers-Ulam-Rassias-Gavruta 
(HURG) stability of solution for heat equation 

2
2

2
0, 0

u u
a t x

t
l

x

 
   

 
        (24) 

with the initial condition 

   ,0 , 0u x x x l             (25) 

and the boundary conditions 

       1 20, , 0, , 0xu t t u t t t         (26) 

where    ,x C ,    and  

   2
1, 0u x t C   , .  

We introduce the notation 

  , ,u x t U x p    ,   

Copyright © 2013 SciRes.                                                                                  AM 
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d .

, ,

We also have 
where     

0

, , e ptu x t u x t t


   

2   ,
u

pU x p u x
t

     
 ,0         (30) 

Theorem 5 If 1  then the 
initial-boundary value problem (24-26) is stable in the 
sense of Hyers-Ulam-Rassias. 

   , 0u x t C  
From the inequality (28), and using (29), (30) it fol- 

lows that 
Proof. Given 0, 



 Suppose  is an approxi- 
mate solution of the initial value problem (24)-(26). We 
show that there exists an exact solution  

 satisfying the Equation (24) 
such that 

 ,u x t

  2
1,w x t C  

 
2 2

2 2 2 2 2

d 1
exp

d

U p pl
U x

x a a pa a




   
 


    (31) 

0,
Integrating twice inequality (31) from 0 to x, we have 

     

     

2 2

2 2

2 2
0 0

2 2

2 2

exp

d 0,
, 0,

d

1
, d

exp

x x

x pl

pa a

U p
U x p x U p

x

p
U s p x s s s x s s

a a

x pl

pa a







 
  

 

  

  

 
  

 

 

   , ,u x t w x t K   

where  is a constant that does not explicitly depend on k
  nor on   , .u x t

From the definition of Hyers-Ulam stability we have 

d
 

2 2
2

2 2

pl u u l
t a t

ta x
 

   
          

2

2a





   (27) 

where  for t < c and  for t > 
c, . 

  0,t c  
0

  1,t c  
c 

By applying the Laplace transform to (26), (27) we 
obtain 

with the boundary conditions 

   
   

1

2

0, ,

0,

xU p N P

U p N P




             (32) 2 2

2
2 2

u u l
a t

t x a
 

                    
        (28) 

One can easily verify that the function  
   ,W x p w x tand ,    which is given by  

    
     

1

2

0, 0, ,

0, 0, ,

x xu t U p N P

u t U p N P

   
   






         

  

1 2 2
0

2
0

, ,

1
d

x

x

p
W x p N P x N P W s p x s s

a

s x s s
a



   

 





d

 

Assuming the operation of differentiation with respect 
to x  is interchangeable with integration with respect to 

 in Laplace transform, we will get t has to satisfy the the equation 

 

 

2 2 2

2 2 2
0 0

2

2

e d , e d

d ,

d

pt ptu u
t u x t

x x x

U x p

t

x

 
     

         



 
  (29) 

 
2

2 2 2

d 1
0

d

U p
U x

x a a
    

with boundary condition (32).  
Now consider the difference    , ,U x p W x p    

 

                  

     

1 2 2 2 2
0 0 0

2 2

2 2 2
0

1
, , d d ,

exp , , d

x x x

x

p p
U x p N P x N P U s p x s s s x s s U s p W s p x s s

a a a

l pl p
U s p W s p x s s

pa a a





            

 
        

 

  



, d

 

Using Gronwall’s inequality, we get the estimation 

   
2 2

2 2
, , exp

2

l p
U x p W x p

pa a

  
   

 

l
 

Or, equivalently 

    
2 2 2 2

2 2 2 2
, ,

2 2

l l l l
t u x t w x t t

a a a a

  
                     
      
  




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Consequently, we have 

   
2 2

2 20
max , ,

2x l

l l
u x t w x t t

a a

 
 

 
   

 
 

Hence the initial-boundary value problem (24)-(26) is 
stable in the sense of HURG. 

Example 3 Consider the problem 
2

2
4

0, 0 4

u u

t x
t x

 


 
  

              (33) 

with the initial condition 

 ,0 cos , 0 4u x x x  



           (34) 

with the boundary conditions 

   0, 0, 0, 0, 0xu t u t t           (35) 

By the definition of HURG stability we have 

  
2

2
4 4

u u
t t

t x
  
     

 
4       (36) 

By applying the Laplace transform to ( 36) we obtain 

 

 

2

2

d c
exp 4

4 4d

exp 4
4

U p x
p U

p x

p
p





    

 

os

     (37) 

Integrating twice inequality (37) from 0 to x, we have 

    

 

0

cos
, , d

4 4

4
exp 4

xp
U x p U s p x s s

p
p



  

 


x

 

with the boundary conditions 

   0, 0, 0, 0xU p U p   

It is easily to verify that the function  

    
0

cos
, , d

4

xp
W x p W s p x s s   4

x
 

satisfies the boundary value problem 

2

2

d cos
0

4 4d

U p x
U

x
    

   0, 0, 0, 0xU p U p   

Now consider the difference  

  

    

     

       

0

0

0

cos
, , d

4 4

, , d
4

4
exp 4 , , d

4

x

x

x

p x
U x p U s p x s s

p
U s p W s p x s s

p
p U s p W s p x s

p



   

    

      





 s

 

Hence, we get the estimation 

     4
, , expU x p W x p p

p


  2  

Or, equivalently 

       
  

4 2 , ,

4 2

t u x t w x

t

 

 

       

 

 



t 
 

Consequently, we have 

     
0
max , , 4 2

x l
u x t w x t t

 
    

Hence the initial-boundary value problem (33)-(35) is 
stable in the sense of HURG. 
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