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ABSTRACT

In this paper we apply the Fourier transform to prove the Hyers-Ulam-Rassias stability for one dimensional heat equa-

tion on an infinite rod. Further, the paper investigates the stability of heat equation in R" with initial condition, in the
sense of Hyers-Ulam-Rassias. We have also used Laplace transform to establish the modified Hyers-Ulam-Rassias sta-

bility of initial-boundary value problem for heat equation on a finite rod. Some illustrative examples are given.
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1. Introduction and Preliminaries

The study of stability problems for various functional
equations originated from a famous talk given by Ulam
in 1940. In the talk, Ulam discussed a problem concern-
ing the stability of homomorphisms. A significant break-
through came in 1941, when Hyers [1] gave a partial so-
lution to Ulam’s problem. Afterthen and during the last
two decades a great number of papers have been exten-
sively published concerning the various generalizations
of Hyers result (see [2-10]).

Alsina and Ger [11] were the first mathematicians who
investigated the Hyers-Ulam stability of the differential
equation g'=g. They proved that if a differentiable
function y:1 >R satisfies |y'—y|<e for all tel,
then there exists a differentiable function g:1 >R
satisfying g'(t)=g(t) forany tel such that
|g-y|<3e, forall tel. This result of alsina and Ger
has been generalized by Takahasi et al. [12] to the case
of the complex Banach space valued differential equation
y' = A4y.

Furthermore, the results of Hyers-Ulam stability of
differential equations of first order were also generalized
by Miura et al. [13], Jung [14] and Wang et al. [15].

Li [16] established the stability of linear differential
equation of second order in the sense of the Hyers and
Ulam y”"=Ay. Liand Shen [17] proved the stability of
nonhomogeneous linear differential equation of second
order in the sense of the Hyers and Ulam
y +p(x)y'+q(x)y+r(x)=0, while Gavruta et al.
[18] proved the Hyers-Ulam stability of the equation
y"+B(x)y=0 with boundary and initial conditions.
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Jung [19] proved the Hyers-Ulam stability of first-order
linear partial differential equations. Gordji et al. [20] ge-
neralized Jung’s result to first order and second order
Nonlinear partial differential equations. Lungu and Cra-
ciun [21] established results on the Ulam-Hyers stability
and the generalized Ulam-HyersRassias stability of non-
linear hyperbolic partial differential equations.

In this paper we consider the Hyers-Ulam-Rassias sta-
bility of the heat equation

2
d_ 26_l21 0<t<T <0, —0<X<00 (1)
ot 19)4
with the initial condition
u(x,0) = u(x) )

where z(x) e C(-w,), and
u(x,t)eC’ (]RX(O,OO)).
We also use a similar argument to establish the Hyers-
Ulam-Rassias for the heat equation in higher dimension
U =a’Au 0<t<T <o, xeR" (3)
with the initial condition
u(x,0) = u(x) (4)

XX *

where Au=>u
i=1

Moreover we have proved theorems on Hyers-Ulam-
Rassias-Gavruta stability for the heat equation in a finite
rod.

Definition 1 We will say that the Equation (1) has the
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Hyers-Ulam-Rassias stability with respect to ¢ >0, if
there exists K > 0 such that for each ¢ >0 and for each
solution u(x,t)eC/(R"x(0,%)) of the inequality

|ut —aZAu|£g(p(x,t) (5)

with the initial condition (2), then there exists a solution
w(xt)eC/(R"x(0,)) of the Equation (1), such that

|u(x,t)—w(x,t)| <Kep(x,t),
V(x,t)eR"x(0,),

where K is a constant that does not depend on & nor
on u(xt),and ¢(x,t)eC(R”x(O,oo)).

Definition 2 We will say that the equation (1) has the
Hyers-Ulam-Rassias-Gavruta (HURG) stability with res-
pect to ¢ >0, if there exists K > 0 such that for each
&£>0 and for each solution u(x,t)eCf(R”x(O,oo))
of the inequality

|ut —azAu| <ep(x,t) (6)
with the initial condition (2), then there exists a solution
w(x,t) e C} (R"x(0,5)) of the Equation (1), such that

|u(x,t)—w(x,t)| <Kep(x,t),
V(xt)eR"x(0,),
where K is a constant that does not depend on & nor
on u(xt), and g(xt)eC(R"x(0,x0)).
Definition 3 We will say that the solution of the initial
value problem (1), (2) has the Hyers-Ulam-Rassias

asymptotic stability with respect to ¢ >0, if it is stable
in the sense of Hyers and Ulam with respectto ¢, and

lim(u(x,t)—w(xt))=0

t—oo

Definition 4 Assume the functions f(x) and g(x)
defined on xeR" are continuously differentiable and
absolutely integrable, then the Fourier transform of
f(x) is defined as

]:[f]:ﬁﬂ!nf (x)e " dx = F (&)

and the inverse Fourier transform of G(¢£),&eR" is
_ 1 i£x
Fgl=—7 [G(£)edE = g(x)
(27[) R"
Example 1 Let
f(x)=e xeR", g>0

We find the Fourier transform of the function.
Since

Copyright © 2013 SciRes.

F(x)= o _ g PUEd) _ pd o
=h(x)-h(x)---h(x,)
Then
h(x )=e"%, k=1--,n

and by defintion 4 we have

n

F(&)=1TH (&) Y

k=1
where
1 7 2
H = [ ePke Ny 8
(&) " I k (8)
Differentiating H(§k) with respectto &, , we get
' 1 K —ﬂxz —i&eX H
H (gk):—(Zn)"/z J;Oe k@i (_|xk)ka

Integrating by parts gives

H'<5k>=§—;H<fk>

Hence
H (é:k ) — Ce*sz/“/)’

Putting & =0 gives C= H(O), and from (8) one
has

e 270

Using that J'e"”zdzz\/g, we have

_ 1
(28)"
1

e*fsz [ap (9)

H(0)=

H (0)

H (é:k): (Zﬂ)“

Therefore, from (7), (9) we obtain

F(¢)=

e

Theorem 1 (See Evans [22]) Assume that f (x) and
g(x) are continuously differentiable and absolutely
integrable on R". Then

1[)foreach a suchthat D“f e L(R"),

f

“f]:(i(f)”}'[fn].
2) F[f=*g]=(2n)2 F[f]F[g]. where
f*g:jnf(y)g(x—y)dy is the convolution of f ()
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and g(x).

2. On Hyers-Ulam-Rassias Stability for
Heat Equation on an Infinite Rod

Theorem 2 If u(x,t)eC?(Rx(0,T]) then the initial
value problem (1), (2) is stable in the sense of Hyers-
Ulam-Rassias.

Proof. Let ¢>0 and u(x,t) be an approximate
solution of the initial value problem (1), (2). We will
show that there exists a function w(x,t) e C/(Rx(0,T])
satisfying the Equation (1) and the initial condition (2)
such that

|u(x,t)—

W(x,t)| < Kep(x,t)

1 %2
If we take gp(x,t):ﬁltl)e 42?1 then from
a,/(t+
inequality (5), we have
1 X2 2
- o a2t <6U azﬁ_u
2a,/(t+1) ot ox?
e (10)
< e 422 t+1
2a,/(t+1)

Applying Fourier Transform to inequality (10), we get

dv(&,t)
dt

—a’¢ (t+1)

—¢e +alv(E ) <ee M (11)

Or, equivalently
—eTe ™ <e¢

2, dVEjg:,t) N azé:ZV(f,t)eazfzt

< gTe e
Integrating the inequality from O to t we obtain
—eTe ™% < eazfztv(f,t) -v(&,0)< eTe

From which it follows

“26Te ) <y (£,) - a(£)e ™"

(12)
< 26Te ¥ ()
where v(&,t)=F[u(xt)], and 4(&)=F[u(x)]. In
Example 1, we have established
}‘[e-ﬂ\x\z } z%e“ﬂz/“ﬁ, Puttingn=1,and t=——,
(28) a’p

we obtain eazﬁzt:]:{ 1 eX2/4a2t:|'

a2t

Now, Using the convolution theorem, from inequality
(12) one has

Copyright © 2013 SciRes.

_1 X
—TF _r g 42’
2a,/(t+1)

Applying inverse Fourier transform to the last inequal-
ity and using convolution theorem we have

1 %2
al 4a2t+l

“2a(tel) h
_u(x,t)_Zaf/Ezﬂ(z)

2
1 x
T e‘@ﬂ

<<
2a,/(t+1)

e-(><-/1)2/4aztd/1

Let us take

w(xt) e 0 tg s (13)

2a\/_ -

Applying arguments shown above to initial-value pro-
blem (1), (2), one can show that (13) is an exact solution
of Equation (1).

X—A4

X), we put u= .
#(x) Put w=- %

Then 1=x- 2a\/t_y, di= —2a\/t_dy, so that

To show that w(x,0)=

X t):%j y(x—2a«/f,u)e"’2dy

Hence, as t > 0+ we find

=5 L#t)e du=

Therefore the initial value problem (1), (2) is stable in
the sense of Hyers-Ulam-Rassias.

More generally, the following Theorem was estab-
lished for the Hyers-Ulam-Rassias stability of heat equa-
tionin R".

Theorem 3 If u(xt)eC/(R"x(0,T]),0<T <,
then the initial value problem (3), (4) is stable in the
sense of Hyers-Ulam-Rassias.

Proof. Let £>0 and u(xt) be an approximate
solution of the initial value problem (3), (4). We will
show that there exists a function W(x,t)eCf(R” x(O,T]g
satisfying the Equation (3) and the initial condition (4
such that

|u(x,t)—

W(x,t)| < Kep(x,t)
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2
Taking o(x,t) S N ; eié% then from
fat0)
the inequality (5), we have
_ & e 4i2 ‘il
(2ayf(t+1))
<u, —a’Au< ;EJ“:12 “i‘l (14)
R R
t>0,xeR"
Applying Fourier Transform to inequality (14), we get
dv t (t+1)
-
Or, equivalently
co K <ok ( + a’ |§| ekl
< e

Integrating the inequality fromOto t we obtain

_ste M < eaz‘f‘zlv(f,t)—v(f, 0)< ste =
From which it follows

—eTe I <y (£,0)— (&)
< gTe kI
where v(&,t)=F[u(xt)], and i(&)=
Using Example 1, we find that
o-allélt _ 1

(a2

and applying the convolution theorem, from inequality
(15) one has

e-\x\z [aa?t

1

o

(2ayf(t+1))
I

<Flu(xt)]- (Zam)

e

4a2 t4l
(2a(t+D))

By applying the inverse Fourier transform to the last
inequality, and then using convolution theorem we get

<eTF

Copyright © 2013 SciRes.

1 |sf

B eT o 422t
(Za\/t+1)n
1 v 32 [ 2a2
<u(xt)-———— e Ay,
()~ Gy | 404

1 P

T i
€

< 422 t+1
(2a«/tTl)n

Now, let us take

w(xt)=

- [ u(a)et etz (16)
(Za\/ﬁ) R"
One can find that (16) is a solution of Equation (3).
u(x), we put p= X=4
2an/t

Then A=x- Zaﬁ,u, di= —2a\ﬁdy, so that

W(X,t):% .f ,u(X—Zax/f,u)e_‘”‘zd,u
T

RrR"

To show that w(x,0)=

Henceas t — 0+ we obtain

w(x,0)=—z | w(x)e ™ dur=u(x)

Rn
since — j e du=1.

Hence the initial value problem (3), (4) is stable in the
sense of Hyers-Ulam-Rassias.

Theorem 4 Suppose that u(xt)eC/ (]Rx(o,oo))
satisfies the inequality (5) with the initial condition

u(x,0)=u(x). Then the the initial-value problem (1),
(2) is stable in the sense of HURG.
1 x?
. et T
Proof. Indeed, if we take ¢(x,t)= 4a” i
(p( ) 2a4t+1
then from the inequality (5), we have
1 %2
—&e E_Em
2avt+1 2 (17)
_ 1 x
S@_U_azﬂs_get a2’
ot X’ 2aVt+1
Applying Fourier Transform to inequality (17), we get
_ge—te—azgz(tu) < %_F azfzv(f,t)
< ge_te—a2§2(1+1)

Now, by applying the same argument used above, we
obtain
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2

g(l—e’t) L
e 43°t+1
2a\t+1

<u(x,t)—

1 J‘ #(l)e—(x—l)z/élaztdﬂv (18)

2a«/ﬁ e

£ (l— e ) 1

e 4a%t+l

<

T 2at+1

One takes

w(xt)=

1 T ﬂ(i)e—(x—l)z/wztdl.

Za\/ﬁ :

as a solution of initial-value problem (1), (2).

Therefore the initial value problem (1), (2) is stable in
the sense of HURG.

Corollary 1 Suppose that u(x,t)eC7(Rx(0,00))
satisfies the inequality (5) with the initial condition (2).
Then the the initial-value problem (1), (2) is asymptoti-
cally stable in the sense of Hyers-Ulam-Rassias.

Proof. It follows from Theorem 4, and letting t — oo,
in (18), we infer that lim (u(x,t)—w(x,t))=0.

Remark Using similar arguments it can be shown that
the initial-value problem (3), (4) is asymptotically stable
in the sense of HURG.

Example 2 We find the solution of the Cauchy pro-
blem

4u, =Au t>0 xeR" (19)

u(x,0)= e /2 yemrn (20)
Applying the same argument used in the proof of the
Theorem 4 to the inequality

& bt 1 & b
—— e W<y -SAU<—— ¢t

(n(t+1))" 4 (n(t+1)”

we get

u(x,t)——1 je"x‘z/ze"x"‘z/‘dl

(Vat) = 21)
ce™ —%
- (m(t+1)"
One can show that the function
W(x,t) = [ e Hg gy, (22)
(Tft) R"

is a solution of the problem (19), (20).
Or, equivalently

Copyright © 2013 SciRes.

T 1 7 i [25-(n—a )
w(x,t)= e /g dt
=115 |

Now, using the change of variables

n/2
1+2t Xy . .
Z, = - in the integral
X (th (ﬂ“k 1+2tj g

(%)= (ml)w [ eireg-tu-rfgy

we obtain the integral
(%)=

Therefore we have

m T efx§/2(1+21)dﬂk' t>0
+2t) %

e-\x\2/2(1+2t)

(23)
Itis clear that w(x,0)= e’/
Hence, from (21) and (23) we get
¥ [2(1+
_eu/z<1zt>|S e i
(@+2t)"| " (m(t+2))"

Hence the initial value problem (19), (20) is stable in
the sense of HURG. Moreover, since

e-\x\2/2(1+2t)
lim{ u(x,t) -
e (1+2t)
is asymptotically stable in the sense of HURG.

—t [

J:O, then problem (19), (20)

3. A Modified Hyers-Ulam-Rassias Stability
for Problem of Heat Propagation in a
Finite Rod

In this section we show how Laplace transform method
can be used to esatblish the Hyers-Ulam-Rassias-Gavruta
(HURG) stability of solution for heat equation

2
N _a2%U 450, 0<x<l (24)

ot OX

with the initial condition
u(x,0)=u(x),0<x<I (25)

and the boundary conditions
u(0,t)=0;(t),u, (0,t)=0,(t),t=0 (26)
where z(x) e C(-w,), and
u(xt)eC}(Rx(0,)).
We introduce the notation

Llu(xt)]=U(xp),

AM
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where L[u(xt)]=[u
0

Theorem 5 If u(x,t)eC?(Rx(0,%0)), then the
initial-boundary value problem (24-26) is stable in the
sense of Hyers-Ulam-Rassias.

Proof. Given &>0, Suppose u(x,t) is an approxi-
mate solution of the initial value problem (24)-(26). We
show that there exists an exact solution
w(x,t)eC/(Rx(0,»)) satisfying the Equation (24)
such that

(x,t)e ™dt.

|u(x,t)—w(x,t)|s Ke

where k is a constant that does not explicitly depend on
& noron u(xt).
From the definition of Hyers-Ulam stability we have

pl2) au o 2
t—— -a —S t—— 27
( azj a Cae T @n
where a(t-c)=0, fort<cand a(t-c)=1 fort>

c, c=0.
By applying the Laplace transform to (26), (27) we

)

£[u,(0,t)]=U,(0,p)=N,(P),
£[u(0,6)]=U(0,p)=N,(P),

Assuming the operation of differentiation with respect
to x is interchangeable with integration with respect to
t in Laplace transform, we will get

2 2 2 0
L{%}z % e Pt = 2(ju(x,t)e‘p‘dtj
X " (29)

and

We also have
ou
L[at} pU (x, p)—u(x,0) (30)
From the inequality (28), and using (29), (30) it fol-
lows that
dU p 1

pramPaE O

2
< iexp[_lJ (31)
pa a

Integrating twice inequality (31) from O to x, we have

<U(x,p) v ((j?( P) u(0,p)

_a_pz.iu(s, p)(x—s)ds+—2.i,u(s)(x—s)ds
<X e[ P
"~ pa’ p[ a’ ]

with the boundary conditions
U, (0, p) =Ny (P),
U(0,p)=N;(P)

One can easily verify that the function
W (x, p) = L[ w(x,t)] which is given by

W (x,p)=Ny(P)x+N,(P)+
—a—lz:[u(s)(x—s ds

has to satisfy the the equation
du p 1

o a2 =0

(32)

a—pziw(s, p)(x—s)ds

_dU(xp) with boundary condition (32).
G Now consider the difference A = |U (%, p)-W (x, p)|
A<U (% p)-N,(P) —E'X[U s, p)(x-s) ds+—jy (x—s)ds|+— ”[U (s,p)- p)](x—s)|ds
1 a2 .

pa

Using Gronwall’s inequality, we get the estimation

U (%, p)-W (%, p) ﬁ%exp[_ﬁj

Or, equivalently

<Lexp( F:J a—gﬂ[U(S: P)-W(s,p)](x~s)ds

2a*

_L{a[t—g]}i <c{lu(xt)]-[w(xt)]} s%z,c{ (t—%)}

Copyright © 2013 SciRes.
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Consequently, we have
&l? 12
u(xt)-w(x ‘>|<?"‘(“Ej

Hence the initial-boundary value problem (24)-(26) is
stable in the sense of HURG.
Example 3 Consider the problem

max

0<x<lI

du_,0u
o o (33)
t>0,0<x<4
with the initial condition
u(x,0)=cosx,0<x<4 (34)
with the boundary conditions
u(0,t)=0,u,(0,t)=0,t>0 (35)
By the definition of HURG stability we have
ou o
—sa (t— 4)<E—487_ sa(t—4) (36)

By applying the Laplace transform to ( 36) we obtain
2

du pU cos X

oz 4 4

~Zexp(-4p)<
P (37)

< axp(t
< 4pexp( p)

Integrating twice inequality (37) from O to x, we have
p X
U —

34—;exp(—4 p)

(s,p)(x— s)ds—%

with the boundary conditions
U(0,p)=0,U,(0,p)=
It is easily to verify that the function

COS X

W (x, p)= pIW s, p)(x-— s)ds+T

satisfies the boundary value problem

2
dU—£U+COSX=O
dx> 4 4

U(0,p)=0,U,(0,p)=0

Now consider the difference

~W (x, p)|

U (x,p)

Copyright © 2013 SciRes.

1007
<U(x,p —%Z s,p)(x— s)ds—gj’x
+§£|[U (s,p)-W(s, p)](x—s)|ds
s4—:exp(—4p)+§i|[u (s,p)-W(s, p)}(x—s)|ds

Hence, we get the estimation

U (xp)-W (x p)|<?exp( 2p)

Or, equivalently
ot fa(t-2) < £{[u(xt)]-[w(xt) ]}
<4sl{a(t-2)|
Consequently, we have
u(x,t)-w(xt) < dee(t-2)

Hence the initial-boundary value problem (33)-(35) is

max

0<x<lI

stable in the sense of HURG.
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