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ABSTRACT 

Production of axisymmetric pieces by technology of sheet metal drawing is widespread nowadays. So the calculation 
analysis of capacity and forces necessary for deformation is of special interest. The length of cylindrical pieces with 
axisymmetric deformation is limited by loss of stability and buckling due to the development of side strains. A new 
technological process is based on making considerable number of folds—18 - 26 with the amplitude of 0.8 - 0.9 mm— 
before the deformation or immediately after the partial one. That reduces the stiffness of billets and prevents from de- 
velopment of large size buckles. A new technological process is developed for producing a long run of high-quality 
products. 
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1. Introduction 

Axisymmetric deformation of sheet metal blanks are 
widely used in the manufacture of cylindrical pieces 
made of flat metal sheets. 

Such products as various vessel bodies, nozzles, con- 
necting pipes are made of low carbon steels as well as of 
copper, brass, magnesium alloys and other metals. 

This paper examines only the deformation of the pro- 
ducts with axial symmetry, which are increasingly used 
in industry. 

Regularities of plastic deformation are studied in re- 
search papers [1-4]. They demonstrate that under the 
pressure of a cylindrical die on the center of the work- 
piece which was initially shaped like a disk, the plane 
stress is developed, with only two of the six tensor com- 
ponents being nonzero. Due to tensile radial stress and 
compressive tangential stress [1,2] the buckling of de- 
formable workpiece accompanied with folds is possible. 
Usually this leads to waste metal and therefore it is nec- 
essary to limit the length of a product, to use drawing 
with subsequent additional deformation (secondary draw- 
ing operation, rolling). 

To prevent the occurrence of folds the blank holders 
are used, but this significantly increases the deformation 
strain to an extent of the occasional overdrawing occur- 
rence in a deformable work piece. Sometimes drawing 
with the billet or its edge parts heating (near the maxi- 
mum diameter) is used. For some metals billet heating 
can increase the allowed length of a product by 1.5 - 2.0 

times. 
Magnesium alloy sheets are thought to be used for 

deep drawing only with the billet heating. But as the 
thickness of a sheet metal to be deformed is small (up to 
1 - 3 mm) and is exposed to chilling it has to be heated 
directly on a die. That complicates the design of the 
equipment, enhances significantly power consumption 
and makes it difficult to ensure safety conditions. 

In this paper we discuss some features of the sheet 
blanks axsymmetric strain. A new drawing technique 
which allows to improve the technology and to expand 
significantly the range of products is proposed and in- 
vestigated. 

2. Kinematically Admissible Velocity Fields  
by Drawing Deformation 

The graphic pattern of drawing deformation is illustrated 
in Figure 1, where one can see matrix 1, deformed billet 
2 with outer radius R0 and inner one R1, thickness h and 
punch 3 which moves along axis Z with constant velocity 
Vz = ‒V0. 

Kinematically admissible velocity field determines the 
upper limit of deformation ca capacity N and the associ- 
ated moving die force P. Such a velocity field is to sat- 
isfy: a) the incompressibility condition, b) velocity 
boundary conditions, c) the condition under which the 
deformation capacity is positive [1]. The volume of a 
deformable billet can be divided into two parts. One of 
them having a cylindrical shape with inner radius R1 
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moves with velocity Vz = ‒V0 together with moving die 3 
[2,3]. In this zone Vr is equal to 0 (the coordinate axes 
location is shown in Figure 1). As this part of a billet 
moves like a rigid body, its capacity of plastic deforma- 
tion is equal to zero [3]. The second zone includes the 
part of a billet which has a shape of a ring with thickness 
h limited by radius r = R1 + h and r = R0. Some features 
of this deformation are considered in paper [4]. In this 
area the kinematically admissible velocity field could be 

1
0 ;rV

R

r
V V   0z             (1) 

with the strain-rate tensor components 

1 1
0 02 2

; ;r

R R
V V

r r    0z   

(the other tensor components are equal to zero). Value 0  
is velocity under 1  and the second invariant of 
strain-rate tensor is equal to 

V
r R

0 1
2

2
V R

H
r

  

This velocity field can be assumed as kinematically 
admissible only if there exists surface z(r) separating the 
two selected deformation zones. On this surface the nor- 
mal rate components are to be equal, (tangential compo- 
nents may differ and their difference determines the ca- 
pacity of the shear). Such a surface exists and is a para-
boloid [5]. As a result, it is possible to determine the de-
formation capacity 
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Figure 1. Drawing Scheme. 
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Full capacity with provision for friction load at the 
surface of lower die is 
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where   is coefficient of sliding friction. Moving die 
force is 
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If the deformation is carried out with the use of 
blankholder, with force T, the friction load increases and 
force P is equal to 
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If the steel sheet deformation is carried out without the 
use of blankholder, as shown in Figure 1 (with Т = 0,  

1 80 mmR  , 0 96 mmR  , 0

1

1.2
R

R
 ; h = 1 mm,  = 

0.10, 
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2
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м
k

МН
  ), the value of force 

according to (5) is P= 0.13 MN. 
As usual, the kinematically admissible velocity field 

determines the upper limit of forces (i.e., overstated val- 
ues of P). According to experimental data, in case of 
drawing this overstatement amounts to 20% - 25%. This 
is acceptable for the choice of equipment in most cases. 

3. Workpiece Buckling in the Drawing  
Deformation 

In the process of deep drawing a sheet shaped initially 
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like a disk undergoes tangential compressive stress that 
can lead to loss of stability. Thereby folds occur on the 
part of a surface, as shown in Figure 2. Paper [1] indi- 
cates that the location and number of  folds depends on 
the metal anisotropy, for example for some alloys the 
number of waves is four, with the location being at an 
angle of 45˚ to the rolling direction of a sheet. But the 
number may come up to six [1].  

Usually, the fold occurrence, i.e. wavy surface with 
amplitude of up to 10 - 20 mm, leads to inability to out- 
put products and to rejected material. From Saint-Venan 
condition end equation of equilibrium 
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and condition of plasticity 
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where the integration constant is determined by the con- 
dition of 0r   with 0  Tangential stress with 
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Figure 2. Development of Folds. 

As well as to determine approximately strain-hardening 
characteristic T В TE    , where В  is ultimate 
strength. 

According to   theorem the relationship between the 
above-mentioned parameters must take the following 
form  3A1 2, , 0f A A  . Having solved it for 1A , we  
get 
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Based on the data of many deformation experiments 
with carbon steel sheets of 0.5 mm, 1.00 mm, 1.5 mm and  

2.0 mm thicknesses the graphs 1
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0

,
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plotted as given on Figure 3.  
The relationship (8) can be determined with the em- 

pirical formula for a maximum permissible (minimum) 
value 
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To provide the sheet stability the following condition 
should be fulfilled: 
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For example, for a steel sheet of h = 1 mm thickness  
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with 
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Formula (9) can be applied if 
0

0.4T
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experimental data spread is considerable which is seen 
from Figure 3. The dotted line here divides the data span 
into two parts. Below the dottedline there is a zone for 
specially selected samples with thickness differences of 
no more than 0.02 mm. The higher the gage interference, 
the more often the buckling failure and buckle develop- 
ment happen. Therefore it is important to increase the 
dimensional accuracy of sheets used for deep drawing. 
Empirical formula (9) gives that if  
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 It conforms to the test which 

shows what should be applied for metal (alloys) drawing 

with high hardening: the higher B

T
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 is, the easier the  

deformation can be made, and the larger work length can 
be produced when drawing. Metals with minor hardening 
with graph of function     being close to a perfectly 
plastic body graph (i.е. when const. T   ) are unfit 
for deep drawing. 

Steel sheets with up to 0.05% - 0.15% temper and not 
more than 20 - 30 µm grain size with extension strain of 
no less than 40% are often used fro drawing.  

According to the above-mentioned the holder allows to  

increase l value and decrease parameter 1

0

R
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 
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. How-  

ever, the ring crack wastage increases as shown on Fig- 
ure 4. There can be seen ring cracks being the reasons of 
up to 10% and more increase of waster number which 
aggravates the manufactures’ economic indexes signify- 
cantly. 

4. New Method of Drawing 

Based on the research conducted a new technological 
drawing process has been suggested (see Patent Applica- 
tion of Russian Federation №2011123174/02, MPK 
7В1D 22/02 from 08 June 2011). 

The method consists in forming a series of waves 
(ridges) along a ring on a disk-form billet, see Figure 5. 
The amplitude of the waves is small (usually not more 
than (1/2)h) but their quantity is large up to 16 - 28 

waves located along the ring as can be seen on Figure 5. 
All the deepenings (waves) are reasonable to be made 
simultaneously with one die then the billet should be 
upturned and deformed by drawing, the clearance be- 
tween the sheet being deformed and the punch should 
exceed the “waves” amplitude 1.5 - 2.0 times in order to 
avoid sheet jamming. With drawing deformation the 
buckled sheet compressive deformation relieves (its 
hardness is reduced). 

Experiments were made with samples of diameters 70 
- 120 mm and height 80 - 140 mm of low carbon steels. 

The waves may be located not along the billet edge as 
shown on Figure 5(а) but in its middle as on Figure 5(b). 
Even making 0.5 - 1 mm amplitude waves on a billet 
parallel portion gives a positive result after partial draw- 
ing deformation. 

Various wave variants are also shown on Figures 5(c) 
and (d), e. The depth for 0.5 mm sheets of carbon steel 
was 0.5 mm, the number of waves being 18 - 26. “The 
loss of stability” with large wave formation, e.g. shown 
on Figure 2, does not occur and there is a possibility of 
manufacturing products with a length 2 - 3 times higher 
the admissible length of a conventional drawing. 

The deformation is sure to result in increasing the 
wave amplitude, sometimes 1.5 times (there occurs their 
compression with “wave” shortening sometimes in 2 - 3 
times), but the new waves of large amplitude do not 
emerge (e.g. as those shown on Figure 2). 
 

   

Figure 4. Blanks with Cracks. 
 

 

Figure 5. New Method of Drawing. 
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The main idea of the method consists in making a 
large number (18 - 26) of waves of small amplitude on a 
sheet (disk) in advance in order to avoid the potential of 
emerging 4 - 8 “waves” (buckles) of large amplitude (up 
to 10 - 20 mm). It decreases the rigidity of a deformed 
billet, with the amplitude being able to reach 1.5 mm 
after drawing, which does not lead to sharp changes of 
the whole product pattern (it usually happens with the 
stability loss) and allows to manufacture the required 
product of high quality. 

Figure 6 shows the samples manufactured at OAO 
TsBPR (the town of Tver, Russia) with the new method 
used. 

These Filter Casing Blanks were made from low car- 
bon steel (st.08 according Russian standart 1050 - 88). 
Quality of Carbon was 0.05% - 0.25%. Part of filter Cas- 
ings was made of semi-killed steel (st.3). Diameters of 
these Casing Blanks were 96 mm and their height was 92 
mm. Artificial waves were made with length 28 mm and 
amplitudes 1 mm. Quanlity of Filters was good and reject 
was decreased twice till 0.75%. 

The artificial waves (ridges) are certain to remain on 
the product. The method is sure not to be used in cases 
when even small waves on the product cannot be allowed. 
But in many cases such waves with amplitude of less 
than 1mm do not at all make the product quality worse 
and therefore are possible. So the above-mentioned Tver 
plant manufactured more than 10 thousand filter casings 
(Figure 6) of high quality. An analogy may be drawn to 
the case of bar pressing (see Figure 7). When a straight 
cantilever bar is compressed with stress P (Figure 7(а)), 
according to Euler formula 
 

   
(a) 

 
(b) 

Figure 6. Filter Casing Blanks Produced with New Method. 

 

Figure 7. Scheme of Stability under Deformation. 
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it loses stability when being subject to compressive de- 
formation, (where F is an area of bar section, J is its 
moment of inertia, l is a bar length). 

With further compression a bar loses its configuration, 
with the deflection increasing rapidly up to 0.5 l and 
more. 

If a bar can be manufactured as shown on Figure 7(b), 
it keeps its whole configuration in higher deformations 

0 02 ,3 .   Its rigidity is a considerably less than that of a 
straight bar but no sharp changes of the whole form oc- 
cur.  

(Both the rings and deformable bodies of Figure 7(b) 
can certainly “buckle” but, as a rule, in cases when the 
deformation is several times more than value 0  for a 
straight bar). 

In some cases the manufactured rigidity reduction of 
the billet being drawn can be rational. 

5. Conclusions 

The following conclusions can be deduced from the 
above-said study: 

1) The axially symmetric sheet blank deformation un- 
der drawing has been examined. 

The kinematically admissible velocity field for force 
upper limits has been built.  

2) A new method of drawing which included making 
ridges-waves of small amplitude on a blank before draw- 
ing has been proposed and studied. But the number of 
such waves should be considerable and it gives the pos- 
sibility to avoid the formation of more significant form 
distortions of a billet.  

3) The method was used for producing oil filter cas- 
ings and getting a high-quality product. More than 10 
thousand filter casings of good qualities of carbon steel 
were produced with use of new method. 
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