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Abstract 
 
In most of the previous researches on the multiple-input multiple-output (MIMO) channel estimation, the 
fading model has been assumed to be Rayleigh distributed. However, the Rician fading model is suitable for 
microcellular mobile systems or line of sight mode of WiMAX. In this paper, the training based channel es-
timation (TBCE) scheme in the spatially correlated Rician flat fading MIMO channels is investigated. First, 
the least squares (LS) channel estimator is probed. Simulation results show that the Rice factor has no effect 
on the performance of this estimator. Then, a new linear minimum mean square error (LMMSE) technique, 
appropriate for Rician fading channels, is proposed. The optimal choice of training sequences with mean 
square error (MSE) criteria is investigated for these estimators. Analytical and numerical results show that 
the performance of proposed estimator in the Rician channel model compared with Rayleigh one is much 
better. It is illustrated that when the channel Rice factor and/or the correlation coefficient increase, the per-
formance of the proposed estimator significantly improves. 
 
Keywords: Channel Estimation, MIMO, Spatially Correlated Rician Fading, Optimal Training Sequences, 

LS, Generalized LMMSE 

1. Introduction 
 
Due to high capacity and diversity gain, multiple input 
multiple output (MIMO) systems have received consid-
erable attention in wireless communications. It has been 
demonstrated that when the fades connecting pairs of 
transmit and receive antenna elements are independent, 
identically distributed (i.i.d.), the capacity of a Rayleigh 
distributed flat fading channel increases almost linearly 
with the minimum number of transmitter and receiver 
antennas [1-3]. Moreover, in [3] it is indicated that Ri-
cian fading can improve the capacity of a multiple an-
tenna system, especially if the transmitter knows the 
value of the Rice factor.  

In order to attain the advantages of MIMO systems, it 
is necessary that the receiver and/or transmitter have 
access channel state information (CSI). One of the most 
usual approaches to identify MIMO CSI is training based 

channel estimation (TBCE). This class of estimation is 
attractive especially when it decouples symbol detection 
from channel estimation and thus simplifies the receiver 
implementation and relaxes the required identification 
conditions. 

The optimal choice of training signals is usually inves-
tigated by minimizing mean square error (MSE) of the 
linear MIMO channel estimator. In the literature, it is 
perceived that optimal design of training sequences for 
MIMO channel estimation is connected with the channel 
statistical characteristics, e.g., fading model and the 
channel noise model. For example, in [4], a sub-matrix 
of the discrete Fourier transform (DFT) matrix has been 
used to identify the Rayleigh distributed flat fading 
MIMO channel. In [5-7], in order to estimate MIMO 
inter symbol interference (ISI) channel, the delta se-
quence is used as optimal training. Further studies are 
reported in [8-13] using optimal training and considering 
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a few aspects, e.g., the peak to average power ratio 
(PAPR) constraint on training sequences.  

In [4,14-19] the spatially correlated fading MIMO 
channel is considered. In [14], the frequency offset and 
channel gain estimation is considered for MIMO ISI 
correlated fading channels. In [15,16], it is investigated 
that the impacts of spatial correlation are helpful not only 
to improve channel estimation but also to decrease the 
training length. It is noteworthy that the spatial correla-
tion harms channel capacity [20].  

In [4], the performance of the least squares (LS), 
scaled LS (SLS), minimum mean square error (MMSE), 
and relaxed MMSE (RMMSE) estimators is studied in 
the Rayleigh fading MIMO channel. The MMSE esti-
mator has the best performance among the estimators, 
because it can employ more a priori knowledge about the 
channel.  

In most previous works on the MIMO channel estima-
tion, the channel fading is assumed to be Rayleigh dis-
tributed. Of course, the Rayleigh fading model is known 
to be a reasonable assumption for fading encountered in 
many wireless communications systems. However, Ri-
cian fading model is suitable for suburban areas where a 
line of sight (LOS) path often exists. This may also be 
true for microcellular or picocellular systems with cells 
of less than several hundred meters in radius.  

In [21], the TBCE scheme is investigated in MIMO 
Rician flat fading channels. By the new method of 
shifted scaled least squares (SSLS), it is shown that in-
creasing the channel Rice factor improves the perform-
ance of channel estimation. However, the SSLS channel 
estimator is only appropriate for uncorrelated Rician 
channels because this estimator cannot exploit the 
knowledge of spatial correlation of the MIMO channels. 
In uncorrelated fading, it is assumed that antenna ele-
ments are placed sufficiently apart. However, it is not 
always realized in practice due to insufficient antenna 
spacing when the channel estimation is used in compact 
terminals. The linear MMSE (LMMSE) channel estima-
tor of [4] is appropriate for spatially correlated channels. 
Nevertheless, this estimator cannot benefit from the Rice 
factor of the Rician fading channels.  

In this paper, a general form of the LMMSE channel 
estimator is proposed that is appropriate for spatially 
correlated Rician fading MIMO channels. We extend the 
results of [4] in the Rayleigh fading model to the more 
general Rician fading case. It is shown that this estimator 
can exploit the knowledge of both spatial correlation and 
Rician fading of the MIMO channels.  

First, the traditional LS method is examined. It is dem-
onstrated that the performance of this estimator is inde-
pendent of the Rice factor. Then, the proposed MIMO 
channel estimator is introduced; we refer to it as gener-

alized linear minimum mean square error (GLMMSE) 
estimator. It is shown that in the spatially correlated Ri-
cian fading MIMO channel when the Rice factor and/or 
the correlation coefficient increase, the accuracy of the 
GLMMSE estimator improves. Note that the perform-
ance of the proposed estimator in the Rician fading 
channels improves because: 

1) We consider the effect of Rice factor and suggest a 
new formulation comparing with other references as [4] 
and [22]. 

2) We design the optimal training sequence appropri-
ate for spatially correlated Rician channel model. 

It means that the optimal training sequence and the 
LMMSE formulation in the Rayleigh channel estimation 
[4] are not suitable for Rician channel estimation.  

The rest of this paper is organized as follows. Section 
2 introduces the channel model. The performance of the 
LS and GLMMSE channel estimators and the optimal 
training sequence design are investigated in Sections 3 
and 4. Simulation results are presented in Section 5. Fi-
nally, Section 6 concludes this paper. 
 
2. Channel Model 
 
For flat MIMO channels, the block fading model is as-
sumed. It means that the channel response is fixed within 
one block and changes from one block to another ran-
domly. The transmitter and receiver are equipped with 
NT and NR antennas, respectively. During the training 
period, the received signal in such a system can be writ-
ten in the matrix form as 

 Y HX V                  (1) 

where Y, X and V are the complex NR-vector of received 
signals on the NR receive antennas, the possibly complex 
NT-vector of transmitted signals on the NT transmit an-
tennas, and the complex NR-vector of additive receiver 
noise, respectively. The elements of noise matrix are i.i.d. 
complex Gaussian random variables with zero-mean and 

2
n  variance, and the correlation matrix of V is then 

given by 

  2
V Pn R N= E N R V V I          (2) 

where NP is the number of transmitted training symbols 
by each transmitter antenna, 

P
IN  is the NP × NP identity 

matrix, (٠)H denotes the matrix Hermitian, and E{٠} is 
the mathematical expectation.  

The channel matrix H in the model (1) is the NR × NT 
matrix of complex fading coefficients. The (r, t)th ele-
ment of the matrix H denoted by hr,t represents the fading 
coefficient value between the rth receiver antenna and the 
tth transmitter antenna. The elements of H are Gaussian 
with independent real and imaginary parts each distrib-
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uted as N  22,   . So, the elements hr,t of H are iden-
tically distributed complex Gaussian random variables 
hr,t ~ CN   21 2, 2j   for r = 1, 2, , NR and t = 
1, 2, , NT. The magnitude of the elements of H has the 
Rician distribution  

1

m n

mn Rr N
 



 



             (7) 

        212 1 2 1a
Af a ae I      

Therefore, the correlation matrix of the spatially cor-
related Rician fading MIMO channel can be expressed in 
Equation (8).  

a    (3) Note that when ρ = 0, (8) reduces to the special case of 
(12) in [3] and when κ = 0, it reduces to the spatially 
correlated Rayleigh fading channel introduced in [4]. 
Using (5), the covariance matrix of the described Rician 
fading model can be written as (9). 

where I◦ is the modified Bessel function of first kind, of 
order zero, and the Rice factor, κ, can be defined as 

2

22




 If the elements hr,t of H are uncorrelated (ρ = 0), we 
can write the result as 

                 (4) 

1 T

R
H N

N





C I



             (10) For notational convenience, we have also presented 
the normalization μ2 + 2σ2 = 1. Note that (3) reduces to 
the Rayleigh probability density function (pdf) when κ = 
0. If elements of H are distributed as described above, H 
will be a complex normally distributed matrix, denoted 
as H ~ CN (M, CH) where CH and M are the Hermitian 
covariance matrix and the mathematical expectation ma-
trix of the H, respectively. The matrix M can be written 
as follows: 

The elements of H and noise matrix are independent 
of each other. In order to estimate the channel matrix, it 
is required that NP ≥ NT training symbols are transmitted 
by each transmitter antenna. The function of a channel 
estimation algorithm is to recover the channel matrix H 
based on the knowledge of Y and X.  
 
3. LS Channel Estimator 

 1
2 R TN Nj


 M 1           (5)  
Consider that H is an unknown deterministic matrix. 
To identify it from (1), the LS approach minimizes 

   H
tr  Y HX Y HX  which results in 

Here, NR TN  is an NR × NT matrix whose entries are 
all 1. We assume that the elements hr,t of H are correlated. 
Suppose that 

1

0m n    1  is the correlation coef-
ficient of elements in the columns mth and nth of the H. 
Therefore, the correlation of any two elements from mth 
and nth columns of H is expressed in the following form: 

  1ˆ H H
LS


H YX XX            (11) 

where tr {٠} denotes the trace of a matrix, (٠)–1 denotes 
the matrix inverse. The LS error criterion (MSE) is de-
fined by  * 2 22

1 1 1

m n
im in

m n m n

E h h   

   
  





 


  

  

 2ˆ
LS LS

F
J E H H             (12)       (6) 

where 
2

F
  denotes the Frobenius norm. Let us write 

from (1) and (11) 
where m, n = 1, 2, , NT, i = 1, 2 , , NR, and (٠)* 
denotes the complex conjugate. Then, the (m, n)th ele-
ment of the channel correlation matrix can be written 
as 

   
 

1

1

ˆ H H
LS

H H





   

 

H H H HX V X XX

VX XX
    (13) 

 

12

2

1 2 3

1

1

1

1

T

T

T T T

N

N
R

H

N N N

N

      
     


      





  

   
 

   
 
 

     

R




    






                       (8)
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1
 

1

1

T

T

T T T

N

N
H R

H H

N N N

N

  
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
  





  


 
 
   
 
 
  

C R M M




    


                       (9)
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Using (2) and (13), the MSE (12) can be rewritten as  

   21 2H H H
LS n R

F

J E N tr
 

   
 

VX XX XX 1

H

p 

 

(14) 

Let us find X which minimizes (14) subject to a trans-
mitted power constraint. This is equivalent to the fol-
lowing optimization problem: 

    1

X
min .Htr S T tr p


XX XX     (15) 

where p is a given constant value considered as the total 
power of training matrix X. To solve (15), the Lagrange 
multiplier method is used. The problem can be written as 

      1
,H H HL tr tr 

   XX XX XX   (16) 

where η is the Lagrange multiplier. By differentiating (16) 
with respect to XXH and setting the result equal to zero, 
it is obtained that the optimal training matrix should sat-
isfy the Equation (17) 

1
T

H
N

XX I              (17) 

Equation (17) can be expressed in the following form 
using the constraint  Htr pXX , 

T

H
N

T

p

N
XX I              (18) 

Therefore, any training matrix with orthogonal rows of 
the same norm T  is optimal. Let us dictate PAPR 
constraint on X that is considered in [4,11,12]. To satisfy 
this constraint, a properly normalized sub-matrix of the 
DFT matrix can be used 

p N

 

    

1

1 1

1 1 1

1

1

P

P P

T T

P P

N
N N

P T

N N N
N N

W Wp

N N

W W



 



1P 

 
 

  
 
 
 

X





  





   (19) 

where exp 2kW j  k . Substituting (18) back into 
(14), the channel estimation error under optimal training 
is given by 

 
2 2

min
n T R

LS

N N
J

p


             (20) 

In a particular case that NT = NR =1, single-input sin-
gle-output (SISO) channel, the MSE of (20) is minimum. 
Then, increasing the number of antennas results in higher 
MSE. On the other hand, the capacity of an MIMO 
channel increases when the number of antennas is in-
creased. Note that the error in (20) is proportional to the 
square of NT. This causes a certain restriction in the 

number of transmit antennas as compared with the num-
ber of receive antennas used. For optimal training which 
satisfies (18), the LS channel estimator (11) yields 

ˆ HT
LS

N

p
H YX               (21) 

These results are the same as [4], because the LS esti-
mator cannot exploit any statistical knowledge about the 
Rayleigh or Rician fading channels. In the next section, 
we derive new results in the Rician channel model by the 
new GLMMSE estimator. 
 
4. Proposed GLMMSE Channel Estimator 
 
For linear model (1), the MMSE and LMMSE estimators 
are identical [23]. So, let us obtain a general form of lin-
ear estimator, appropriate for Rician fading channels, 
that minimizes the estimation MSE of H. It can be ex-
pressed in the following form: 

      ˆ YGLMMSE E E     H H Y A M Y M X A  

(22) 

Here,  has to be obtained so that the following 
MSE is minimized: 

A

 2ˆ
GLMMSE GLMMSE FJ E H H        (23) 

The optimal  can be found from ∂JGLMMSE /∂ = 
0 and it is given by 

A A

  12

P

H H
H n R N HN


 A X C X I X C      (24) 

Proof: See the Appendix. 
Substituting  back into (22), the GLMMSE chan-

nel estimator of H can be rewritten as 
A

   12ˆ
P

H H
GLMMSE H n R N HN


   H M Y MX X C X I X C  

(25) 

Note that in the Rayleigh fading channel, M = 0, CH = 
RH. This estimator not only utilizes received and trans-
mitted signals but also takes the advantages of the chan-
nel first and second-order statistics. The required 
knowledge of the channel statistics can be estimated by 
some methods. For instance, the problem of estimating 
the MIMO channel covariance, based on limited amounts 
of training sequences, is treated in [24]. Moreover, in 
[25], estimation of the channel autocorrelation matrix is 
performed by an instantaneous autocorrelation estimator 
where only one channel estimate (obtained by a very low 
complexity channel estimator) has been used as input. 

The performance of the GLMMSE channel estimator 
is measured by the error matrix ε = H – ĤGLMMSE, whose 
pdf is Gaussian with zero mean and the following co-
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variance matrix: 

 
1

1
2

1
-

H - H
H

n R

E
N  


   


C R ε ε C XX





  (26) 

Therefore, the estimation error can be computed as 

    

 

2

1

1
2

ˆ

1

H
GLMMSE GLMMSE

F

H
H

n R

J E E tr

tr tr
N 





  

       
 

H H ε ε

C C XX


  (27) 

Let us find X which minimizes the channel estimation 
error subject to a transmitted power constraint. Thus, we 
seek the matrix X that is the solution to the optimization 
problem (28) 

 
1

1
2

1
min .H H

H
n R

tr S T tr p
N




     
   

X
C XX XX   (28) 

To solve (28), the Lagrange multiplier method is ap-
plied. The problem can be written as 

 

 

1

1
2

1
,H

H
n R

H

L tr
N

tr p









   
 
   

XX C XX

XX

H


     (29) 

By differentiating (29) with respect to XXH and equat-
ing to zero, we have  

2
2

T

H n R 1
N n R H

N
N





 XX I C        (30) 

Using the constraint , (30) can be ex-
pressed as 

 Htr pXX

 2 1

2

T

n R HH 1
N n R H

T

p N tr
N

N








 

C
XX I C    (31) 

By applying (31) in (27),  1 21 H
H n RN C XX  will 

be a diagonal matrix. Therefore, according to the lemma 
1 in [4], we obtain that the MSE (27) will be minimized 
as 

     
2

min 2

T
GLMMSE

R n H

N
J

p N tr 


 C 1
     (32) 

In a particular case that the elements hr,t of H are un-
correlated (ρ = 0), the covariance matrix of H is diagonal 
and from (10) 

 1 1
H T

R

tr N
N

 
C              (33) 

Using (33), it is observed that (31) is the same as (18). 
It means that in the case of ρ = 0, both the LS and 

GLMMSE approaches have the same condition on the 
optimal training matrices.  

Using (10) and (18), the GLMMSE channel estimator 
(25) reduces to  

 ˆ 1 H
GLMMSE    H M YX         (34) 

where  

   2 2
,

1 1
P P

n P T n P

N pN

p N pN N
 

   
 

    TN
(35) 

Substituting (33) back into (32), MSE in the particular 
case of ρ = 0 is given by (36) 

     

2

min 2 1
R T

GLMMSE

n T

N N
J

p N 


 
      (36) 

Equation (36) shows that when the Rice factor, κ, 
increases, the MSE considerably decreases. In other 
words, in the Rician fading channel model compared 
with Rayleigh one, the obtained MSE improves. 
Increasing the channel Rice factor causes decreasing the 
MSE, and for higher values of κ, the MSE is 
proportional to 1/κ. When κ = 0, (36) is identical to the 
acquired result in [4] for RMMSE channel estimator. 

In general, the covariance matrix of the H is given by 
(9) and the condition for the optimal training matrix of 
the GLMMSE channel estimator is different from that of 
the LS estimator. We seek the matrix X that is the solu-
tion to (31). Thus, the eigen-value decomposition (EVD) 
of CH in the form of CH = QΛQH is used, where Λ is a 
diagonal matrix containing the nonnegative eigenvalues 
of the CH as its diagonal elements and Q is a unitary ma-
trix containing the eigenvectors of the CH in its columns. 
Using this notation, (27) can be rewritten as 

1

1
2

1

1
2

1

1

H H
GLMMSE

n R

H H

n R

J tr
N

tr
N













      
   
      
   

QΛ Q XX

Λ Q XX Q

   (37) 

Equation (37) can be reduced by replacing 

 21 H
n RN Q X  by  X

 11 H
GLMMSEJ tr

 Λ XX          (38) 

Also, the total transmitted training power constraint in 
(28) can be rewritten in the following form:  

   2 2

1H H H

n R n R

p
tr tr

N N 
 XX Q XX Q     (39) 

Using lemma 1 of [4], the minimum of (38) will be 
obtained if X̃X ̃H has the following diagonal structure: 
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 222

1 2, , ,
T

H
Ndiag x x xXX          (40) 

Then, the optimal training matrix for the GLMMSE 
channel estimation method can be found by solving the 
following constrained optimization problem: 

    11
2

min .H H

n R

p
tr S T tr

N
 

X
Λ XX XX


       (41) 

Using Lagrange multiplier method and taking into ac-
count (40), the optimal training matrix of the GLMMSE 
method can be found by minimizing the following func-
tion: 
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

    (42) 

where λi for i = 1, 2, , NT are the nonnegative eigen-
values of the CH. Differentiating (42) with respect to |xi|

2 
for i = 1, 2, , NT and setting the results equal to zero 
yields 

 221

1
, 1, 2, , T

i i

i
x


 

 





N        (43) 

The water-filling-type solution of this problem is 

1 1

1

,

0,

i
i

i

if
x

if

i   

 

 



   


 



         (44) 

The constant η◦ = η–0.5 should be adjusted so that the 
transmitted power constraint (39) is satisfied. If NP = NT, 
then the optimal X ̃ can be written in the following matrix 
form: 

 1/2
1

TN
   X I Λ

           (45) 

where the operator [٠]+ is interpreted as meaning that all 
negative entries of a real matrix are replaced by zeros 
and all nonnegative entries are leaved unchanged. Finally, 
the optimal training matrix can be written as 

 1/2
2 Q

Tn R NN 
   X I I

1       (46) 

The matrices Q and Λ are obtained from the EVD of 
CH and the constant η◦ should be adjusted so that the 
transmitted power constraint in (28) is satisfied. 

5. Simulation Results 
 
In this section, our goal is to compare the performance of 
the LS and GLMMSE channel estimators in the Rayleigh 
and Rician flat fading channels, numerically. Also, we 
contrast the results with the LMMSE channel estimator 
of [4] and SSLS channel estimator of [21]. For the sake 
of simplicity and without loss of generality, we assume a 
2 × 2 MIMO channel, i.e., NT = NR = 2. It is also sup-
posed that the spatially correlated Rician fading MIMO 
channel has the covariance matrix (9). Hence, the ele-
ments of the covariance matrix of the channel can be 
written in the following form: 

  ,
; 0 1

1
R k l

H k l

N
 


  


C        (47) 

where k, l are the indexes of the array sensors. As a per-
formance measure, we consider the channel MSE, nor-
malized with the average channel energy as: 

 
 

2

2

ˆ
F

F

E
NMSE

E




H H

H
           (48) 

The signal to noise ratio (SNR) is defined as: 

2
n

p
SNR


                 (49) 

Figure 1 shows the normalized MSE (NMSE) of the 
LS channel estimator with optimal training versus SNR 
for various Rice factors of the channel. As it is expected, 
this estimator cannot exploit the knowledge of the chan-
nel Rice factor; a phenomenon that is confirmed by this 
figure. In [4] and [9], it is demonstrated that the LS esti-
mator does not require any knowledge about the channel. 
Hence, it is also clear that the performance of this esti-
mator is independent of ρ and the type of channel fading.  

The numerical and analytical results coincide when the 
number of independent simulation runs reaches to 5000. 
Using (20), the NMSE of the LS channel estimator is 
plotted in Figure 1. As depicted in this figure, the ana-
lytical and numerical results are almost identical. 

Figures 2 and 3 indicate the NMSE of the LS, 
LMMSE of [4] and GLMMSE channel estimators with 
orthogonal training of (19) versus SNR in the case of ρ = 
0.1 and ρ = 0.8, respectively. It is observed that the pro-
posed GLMMSE estimator has the best performance 
among the methods tested. Increasing the channel Rice 
factor and/or the correlation coefficient of the array sen-
sor elements improves the performance of this estimator 
especially at low SNRs compared with the fixed per-
formance of the LS estimator. Moreover, increasing ρ 
improves the performance of the LMMSE channel esti-
mator. These results are due to the fact that the Bayesian  
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Figure 1. NMSE of the LS channel estimator for various 
Rice factors of the channel, NR = NT = 2 (Numerical and 
analytical results). 

 

 

Figure 2. NMSE of the LS, LMMSE [4] and GLMMSE (κ = 
1, 10) channel estimators in the case of orthogonal training 
signals (NR = NT = 2, ρ = 0.1). 

 

 

Figure 3. NMSE of the LS, LMMSE [4] and GLMMSE (κ = 
1, 10) channel estimators in the case of orthogonal training 
signals (NR = NT = 2, ρ = 0.8). 

estimators, e.g., the proposed GLMMSE channel esti-
mator can employ more a priori knowledge about the 
channel. As depicted in Figures 2 and 3, at high SNRs, 
the performances of the LS, LMMSE and GLMMSE 
channel estimators are nearly identical, particularly for 
low Rice factors and spatial correlations. However, at 
higher κ and ρ, the performance of the GLMMSE 
estimator is still better than that of the LS estimator. Note 
that in the special case, κ = 0, the proposed estimator is 
the same as the LMMSE estimator of [4]. However, in 
the presence of LOS paths, it is obvious that the pro-
posed GLMMSE channel estimator outperforms the 
LMMSE estimator of [4].  

The NMSE of the LS, LMMSE and GLMMSE chan-
nel estimators with optimal training in the case of ρ = 0.1 
and ρ = 0.8 is shown in Figures 4 and 5, respectively. 
Figures 6 and 7 compare the NMSE of the LS and  
 

 

Figure 4. NMSE of the LS, LMMSE [4] and GLMMSE (κ = 
1, 10) channel estimators in the case of optimal training 
signals (NR = NT = 2, ρ = 0.1). 
 

 

Figure 5. NMSE of the LS, LMMSE [4] and GLMMSE (κ = 
1, 10) channel estimators in the case of optimal training 
signals (NR = NT = 2, ρ = 0.8). 

Copyright © 2010 SciRes.                                                                                IJCNS 



H. NOORALIZADEH  ET  AL. 
 

969

 

Figure 6. NMSE of the GLMMSE and LS channel estima-
tors forκ = 5 with optimal and orthogonal training signals 
(NR = NT = 2, ρ = 0.1). 
 

 

Figure 7. NMSE of the GLMMSE and LS channel estima-
tors forκ = 5 with optimal and orthogonal training signals 
(NR = NT = 2, ρ = 0.8). 
 
GLMMSE estimators with optimal and orthogonal train-
ing for κ = 5 in the case of ρ = 0.1 and ρ = 0.8, respec-
tively. It is observed that at high spatial correlation the 
performance of the GLMMSE channel estimator with 
optimal training is better than that of orthogonal training. 
At low spatial correlation, the performance of the 
GLMMSE channel estimator with optimal training and 
orthogonal training is closely identical. In order to obtain 
the advantage of the optimal training sequence design, 
long-term statistics of the channel need to be estimated at 
the receiver and fed back to the transmitter. Hence, when 
the GLMMSE channel estimator is used to estimate 
MIMO channel with low spatial correlation, the trans-
mitter has no need to the channel knowledge.  

 

Figure 8. NMSE of the LS, SSLS [21] and GLMMSE chan-
nel estimators in the case of optimal training signals (NR = 
NT = 2, ρ = 0.1, κ = 10). 
 

 

Figure 9. NMSE of the LS, SSLS [21] and GLMMSE chan-
nel estimators in the case of optimal training signals (NR = 
NT = 2, ρ = 0.8, κ = 10). 
 
estimator is smaller than that of the SSLS channel esti-
mator, particularly at higher spatial correlations, because 
the GLMMSE estimator can employ more a priori 
knowledge about the channel than the SSLS estimator. It 
is notable that the NMSE of the SSLS channel estimator 
is independent of ρ. 
 
6. Conclusions 
 
We have proposed a new channel estimator (GLMMSE) 
that is suitable for spatially correlated Rician fading 
MIMO channel estimation. This estimator has better 
performance than the SSLS estimator of [21] and 
LMMSE estimator of [4]. Analytical and numerical re-
sults confirm the superiority of the GLMMSE estimator 
in the mentioned channel model. It is demonstrated that 
increasing κ and/or ρ decreases the NMSE of the of-

Finally, we compared the performance of the LS, 
SSLS of [21] and GLMMSE channel estimators in Fig-
ures 8 and 9. Clearly, the NMSE of the proposed channel  
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fered estimator. Hence, to obtain the given value of MSE, 
the required SNR can be reduced in the Rician channel 
estimation. Clearly, increasing the number of antennas in 
MIMO systems leads to decreasing the performance of 
estimators. In the Rician fading MIMO channel, the un-
favorable effect of increasing the number of antennas on 
the performance of GLMMSE channel estimator can be 
compensated. In other words, for the given values of 
SNR and MSE, the number of antennas possibly in-
creases. Therefore, the Rician fading MIMO channels 
result in a higher capacity than the Rayleigh fading 
MIMO channels without increasing MSE. Moreover, 
training length can be reduced in the presence of the spa-
tially correlated channel and/or Rician model to improve 
the bandwidth efficiency without increasing MSE. It is 
noteworthy that Rician fading is known as a more ap-
propriate model for wireless environments with a domi-
nant direct LOS path; and, in the microcellular mobile 
systems, this model is better than the Rayleigh one.  
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Appendix     
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Proof of Equation (24): 

Using (22), the MSE (23) can be written as follows: 
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where (٠)T denotes the matrix transpose. Finally, we 
have  

  12
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H n R N HN


 A X C X I X C    (A-4) With some calculations, the MSE (A-1) is given by  

 


