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ABSTRACT 

The CO-ethene copolymerization has been efficiently carried out in the water/CH2Cl2 emulsion by using water insolv- 
able Pd(II) complexes. By using the surfactant SDS very high molecular weight copolymers have been obtained with 
high productivity (ca. 13,000 g/(gPd.h)). 
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1. Introduction 

The perfectly alternated poly(1-oxo-trimethylene), com- 
monly called polyketone (PK in reaction 1), is a thermo- 
plastic that has peculiar chemical, physical and me- 
chanical characteristics of considerable interest for a 
wide range of applications [1-5]. 

    
2 2

Pd II cat.
2 2 n

nCO nCH CH

C CH CHO 

 



PK

    (1) 

The most active catalyst are cationic Pd(II) complexes 
having two coordination sites occupied by a chelating 
diphosphine ligand [6-13]. The catalytic activity (but also 
the PK molecular weight), however, strongly depends 
also by the reaction conditions (temperature, pressure of 
monomers and batch time [14-20]), and by the nature of 
the solvent [21]. On regard to the solvent, methanol is the 
most widely used even though water, which represents 
the ideal choose in terms of sustainability, is used too. 
The reactions carried out in water, however, usually lead 
to PK with higher molecular weight in comparison to the 
polymer obtained in methanol as a solvent [19-22]. As 
matter of fact, the more active catalysts (used for the re- 
action in methanol) are inactive or poorly active in water, 
because unsolvable. Therefore, water-solvable Pd(II)- 
diphosphine complexes have to be used which some time 

shows a lower catalytic activity. These are mainly ob- 
tained by sulfonation of the diphosphine ligands (ca. 7 kg 
PK/(gPd·h) [22-28]), but also by fitting the phosphorus 
atoms with hydroxyl alkyl groups [29,30], or generally 
by using tenside phosphorus ligands [31]. 

In some papers it is reported, however, the use of wa- 
ter-insolvable Pd(II) complexes in reactions carried out 
in emulsion copolymerization (productivity ca. 650 g/ 
(gPd·h) of PK) [32], or by using acetic or formic acid as 
a co-solvent (ca. 26,000 g/(gPd·h) of PK) [33]. 

As a means of implementing the emulsion CO-ethene 
copolymerization and with the aim to suggest new more 
sustainable reaction conditions to obtain high molecular 
weight PK, in the present paper we solubilise the wa- 
ter-insoluble Pd(II)-complexes [PdCl2(dppp)] (dppp = 1,3- 
bis(diphenylphosphino)propane) in an water/dichlorome- 
thane emulsion, formed by using the commercial sodium 
dodecylsulfate (SDS), as surfactant. 

2. Experimental Section 

2.1. Reagents 

The complexes [PdX2(dppp)] X = Cl, TsO (tosilate), 
OAc (acetate), were prepared as reported in literature 
[4,7]. Carbon monoxide and ethene were supplied by 
SIAD Company Italy (“research grade”, purity > 99.9%). 
Dppp, TsOH (p-toluenesulfonic acid), and SDS were 
Aldrich products. *Corresponding author. 
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2.2. Equipments and Characterization 

The catalyst precursor was weighted on a Sartorious Mi- 
cro balance (precision 0.001 mg). The polymers were 
analyzed by FTIR and NMR spectroscopies. FTIR spec- 
tra were recorded on a Nicolet Magna 750 instrument in 
KBr powder. The IR spectra show typical stretching sig- 
nals of CO groups at 1695 cm−1 and -CH2- groups at 
2915 cm−1. All the NMR spectra were recorded on a 
Bruker Avance 300 spectrometer. The 1H NMR and 13C 
NMR spectra of the polyketone were recorded in 1,1,1,3, 
3,3-hexafluoroisopropanol/CDCl3 (10/1) using the In- 
verse 1H-Gated Decoupling Technique. The 13C NMR 
spectra, show a single carbonyl absorption at 212.65 ppm 
(-C(O)CH2CH2-) and a single resonance for the -CH2- 
groups at 35.73 ppm (-C(O)CH2CH2-) in the ratio 1:2 
due to the exclusive perfectly alternated structure. 

The average viscosity molecular weight of polymer 
has been evaluated as Limit Viscosity Number (LVN). 
The LVN (or [η]) of a dilute PK solution was determined 
by using the Huggins relationship between the viscosity 
number and the polymer concentration by extrapolation 
to zero concentration [34]. The PK solution was prepared 
in m-cresol as a solvent and the viscosity was measured 
by using a Cannon-Fenske type capillary viscosimeter, 
thermostated at 25˚C. The average viscosity molecular 
weight (Mw) of the polyketone was derived from the 
LVN using the Mark-Houwink equation [35]. 

The solubility of gases was measured using an absorp- 
tion technique in a high pressure stainless steel autoclave 
of 300 mL capacity as described in literature [36]. 

2.3. Copolymerization 

The copolymerization reactions were carried out by using 

a Hastelloy C autoclave of ca. 250 mL provided with a 
four-blade self-aspirating turbine. In a typical experiment, 
0.724 mg of [PdCl2(dppp)] (1.23 × 10−3 mmol) was 
added to 80 mL of water containing the dosed amount of 
surfactant and then placed in the autoclave. The mixture 
was subjected to high shear till a homogeneous liquid is 
obtained. The autoclave was washed by pressurizing with 
a 1/1 mixture of CO/C2H4 (ca. 0.5 MPa) and then de- 
pressurizing to atmospheric pressure (this cycle was re- 
peated 5 times, at room temperature with stirring). The 
washed autoclave was pressurized with 0.5 MPa of the 
gas mixture and heated to 90˚C in ca. 10 min without 
stirring. At the reaction temperature the pressure was 
adjusted to the desired value (typically 4.5 MPa total 
pressure) and, while stirring, maintained constant through- 
out the experiment (rate stirring 700 rpm). At the end of 
the experiment the autoclave was quickly cooled and 
carefully depressurized. The polymer is insoluble in H2O 
and the slurry obtained was filtered, washed several 
times with acetone and dried under vacuum at 70˚C. The 
dried polymer was weighted and the productivity was 
calculated as gPK.(gPd·h)−1; the reproducibility was wi- 
thin ca. 5%. 

3. Results and Discussion 

The water insolvable [PdCl2dppp] complex is used to 
carried out the CO-ethene copolymerization in the 
CH2Cl2/H2O reaction medium. The Figure 1 shows the 
influence on the catalytic activity of the CH2Cl2/H2O 
ratio and of the SDS addition. 

Although CH2Cl2 readily dissolves the Pd(II) complex 
and is also a good solvent for both monomers (compara- 
ble to methanol), as suggested by the Henry’s law con- 
stants in the Table 1, we found that the catalyst is 

 

0 10 20 30 40 50 60 70 80 90 100 110
0

1000

2000

3000

4000

5000

pr
od

uc
ti

vi
ty

, g
P

K
/(

gP
d.

h)

CH
2
Cl

2
, molar % in H

2
O

 without SDS
 with SDS

 

Figure 1. Influence of the CH2Cl2/H2O on the productivity. Run conditions: [PdCl2(dppp)] = 8.5 × 10−3 mmol; O: without SDS; 
: with SDS 5 mM; volume = 80 mL; T = 90˚C; P = 4.5 MPa (CO/C2H4 = 1/1); reaction time = 1 h; stirrer = 700 rpm. Δ 
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inactive, according with the suggestion that in pure 
CH2Cl2 the initiating Pd-H species cannot form in ab- 
sence of any H-donors species (for instance H2O or al- 
cohol, see mechanism). 

On the other hand, in pure H2O the catalyst is inactive 
too, probably due to the poor solubility of the Pd(II) 
complex, which floats on the solvent. By mixing CH2Cl2- 
H2O together, in the absence of any surfactant, two stable 
immiscible phases readily form where under vigorous 
stirring the catalyst become active. The productivity was 
ca. 150 - 200 gPK/(gPd h), at CH2Cl2 concentration 
within the range of 15 - 20 molar %. 

The addition of a dosed amount of the surface active 
agent SDS increases the catalytic activity, which passes 
through a maximum of ca. 4500 gPK/(gPd h) at CH2Cl2 
20 molar %. 

The surfactant favors the formation of droplets in 
which the monomers and the catalyst are highly parti- 
tioned (see solubility) into the CH2Cl2 phase relatively to 
the aqueous phase. It can form CH2Cl2 droplets in water 
(O/W emulsion) or vice versa H2O droplets in CH2Cl2 
(W/O emulsion). 

In any cases the formation of an emulsion leads to an 
increase of the contact area between the two phases fa- 

voring, therefore, the catalysis which occurs at the 
CH2Cl2/H2O interfaces (H2O or TsOH have to react on 
the metal center, see the Figure 2). 

The Figure 1 shows that at CH2Cl2 higher than 20 
molar % the productivity decreases, suggesting a correla- 
tion with the phase inversion. According to this, under 
W/O emulsion conditions (high CH2Cl2 concentration) 
the catalyst and the monomers are diluted in the organic 
bulk with a negative consequence on the reaction kinetic. 

The addition of the acid promoter (TsOH) to the SDS- 
CH2Cl2/H2O (20 molar %) emulsion increases the produc- 
tivity up to a plateau of ca. 8000 g/(gPd·h) (Figure 3). 

As widely described in literature, the addition of acid 
promoters avoids the catalyst deactivation to inactive or 

 
Table 1. Henry’s law constant measured at 90˚C in different 
solvents. 

Solvent HCO(90˚C) Hethene(90˚C) 

 MPa MPa 

Methanol 248.6 51.6 

Dichloromethane 236.0 52.1 

Water 5540.0 1538.8 
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Figure 2. Schematic representation of CH2Cl2 droplet in water. 
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less active Pd(0) species, Pd metal included, which nor- 
mally occurs under the reductive conditions of the reac- 
tion [6-12]. 

The Figure 4 shows that by optimizing the SDS con- 
centration, the productivity passes through a maximum, 
which was ca. 13,000 g·PK/(gPd·h) at SDS concentration 
of ca. 10 mM. 

The increase of productivity confirms that the catalysis 
is favored by the formation of an increasing amount of 
stable droplets (critical micelle concentration is 8.3 mM 
for SDS at 25˚C [37]. As matter of facts, the emulsion 

increases the O/W interface area, where the Pd(II) acti- 
vation can occur more efficiently (see Figure 2). 

At SDS concentration higher than ca. 10 mM, how- 
ever, the decrease of productivity suggests the influence 
of two possible phenomena: the droplets coalescence and 
the formation of foams [38]. The surfactant can favor the 
coalescence which causes a decrease of the O/W inter- 
face area and, at the same time, can favor the formation 
of foams, negative for the catalysis as the reaction me- 
dium becomes inefficiently stirred and reaction rates 
limited by diffusion phenomena. 
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Figure 3. Influence of p-toluenesulfonic acid concentration on the productivity. Run conditions: [PdCl2(dppp)] = 8.5 × 10−3 
mmol; SDS: 5 mM; SDS; volume = 80 ml; T = 90˚C; P = 4.5 MPa (CO/C2H4 = 1/1); reaction time = 1 h; stirrer = 700 rpm. 

 

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

pr
od

uc
tiv

ity
, g

P
K

/(
gP

d
.h

)

SDS, mM  

Figure 4. Influence of SDS concentration on the productivity. Run conditions: [PdCl2(dppp)] = 8.5× 10−3 mmol; O: TsOH/Pd: 
800/1, mol/mol; volume = 80 ml; T = 90˚C; P = 4.5 MPa (CO/C 4 = 1/1); reaction time = 1 h; stirrer = 700 rpm. 2H 

Copyright © 2013 SciRes.                                                                                 MRC 



A. VAVASORI  ET  AL. 97

 
The PK obtained had a Limiting Viscosity Number 

(LVN) of 1.8 dL/g which is higher respect to the LVN 
obtained in methanol (0.5 dL/g). Table 2 shows the LVN 
and the respective viscosity average molecular weight of 
the PKs obtained in different solvents. 

Among the solvents used in the Table 2, the SDS/ 
CH2Cl2/H2O emulsion copolymerization leads to the 
highest LVN, suggesting the following considerations on 
the reaction mechanism. It is accepted that in water the 
neutral Pd(II)-H intermediate is firstly generated from the 
precursor by a reaction strictly related to the water gas 
shift [6-12], and then converted into the catalytically ac- 
tive cationic Pd(II)-H+ species by a water-controlled sol- 
volysis process [8] (Scheme 1, reactions a-b). 

The fast migratory insertion of ethene into the Pd-H 
bond starts the copolymerization (Step c). The alternate 
and successive insertions of CO and ethene lead to the 
growth of the polymer chain (Steps d-e): the chain- 
swollen drops quickly turn into insoluble polymer parti-
cles and the final result is a dispersion of PK particles in 
water. 

Termination occurs, as proposed in literature [6-12], 
via protonolysis with H2O of the Pd-(CH2CH2-polymer)+ 
species (Step f), which gives the PK and the Pd-OH+ spe- 
cies. The latter can insert CO to form the Pd-C(O)OH+ 
intermediate (Step g), which gives β-hydride elimination 
with CO2 evolution (Step h). The active Pd-H+ species 
are formed again, which restart the catalytic cycle. 

According with the literature and supported by the 
NMR analysis, which indicate the presence of only 

-C(O)CH2CH3 end-groups, in the SDS/CH2Cl2/H2O emul- 
sion the termination can occur only through reaction with 
H2O (protonolysis) or with the acid. Protonolysis with 
H2O or TsOH are slower than with methanol and under 
emulsion condition occur mostly at the interface, being 
H2O and TsOH in the bulk, out of the droplets in the 
O/W emulsion. On the contrary, the propagation occurs 
inside the droplets where the monomers concentration is 
higher (see Introduction) in accord with the high produc- 
tivity obtained. Furthermore, the high propagation rate 
together with the slow termination rate favor the forma- 
tion of PKs with high average molecular weight. 
 
Table 2. LVN and viscosity average molecular weight of PK 
in different solvents. 

Solvent LVN MW 

 dL/g g/mol 

Methanol 0.5 22,215 

SDS/CH2Cl2/H2O 1.8 100,258 

dioxane/H2O 1.20 62,223 

nitromethane/H2O 1.18 61,000 

HCOOH/H2O (70%) 0.63 29,156 

CH3COOH/H2O 0.93 46,102 

Run conditions: O: [PdCl2(dppp)] = 8.5× 10−3 mmol; volume = 80 ml; T 
= 90˚C; P = 4.5 MPa (CO/C2H4 = 1/1); reaction time = 1 h; stirrer = 700 
rpm. 
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Scheme 1. Proposed reaction mechanism. 
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4. Conclusion 

The catalyzed CO-ethene copolymerization has been ef- 
ficiently performed in a SDS/H2O/CH2Cl2 emulsion by 
using Pd(II) water insolvable complexes. The optimiza- 
tion of such reaction systems shows a catalytic activity 
higher (ca.13,000 g/(gPd·h)) than in methanol as a sol- 
vent (ca. 8000 g/(gPd·h)). The best catalyst performance 
was reached with SDS 10 mM and 20 molar % of 
CH2Cl2 in H2O. Under conditions of the maximum pro- 
ductivity the PK obtained showed a molecular weight 
higher than in methanol (LVN was 1.8 dL/g respect to 
0.5 dL/g in methanol). 
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