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ABSTRACT 

The advances of digital arithmetic techniques permit computer designers to implement high speed application specific 
chips. The currently produced digital circuits have demonstrated high performance in terms of several criteria, such as, 
high clock rate, short input/output delay, small silicon area, and low power dissipation. In this paper, we implement 
several sinusoidal generation methods to optimize their performance and output using advanced digital arithmetic tech-
niques. In this paper, the implementations of advanced digital oscillator structures with and without pipelining are pro-
posed. The synthesis results of the implementation with pipelining have proven that it is superior to other sinusoidal 
generation methods in terms of the maximum frequency and signal resolution. Hence, this method is used in the design 
of the proposed digital oscillator chip. 
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1. Introduction 

A sinusoidal oscillator can be designed using analog or 
digital components. The sinusoidal parameters such as 
the frequency, amplitude and phase, are easier to control 
in digital oscillators than in analog ones. On the other 
hand, the amount of harmonic distortion in digital oscil-
lators is higher than that in analog ones. This is obviously 
attributed to the resulting quantization error and digital 
arithmetic round-offs. 

Digital sinusoidal oscillators are used in many applica-
tions, including communications, music synthesis, con-
trol, radar, and several digital signal processing applica-
tions. As the design and fabrication of digital integrated 
circuits are getting very systematic and relatively simple, 
the choice of the digital approach for sinusoidal oscilla-
tors has become very desirable. 

The development of high speed digital signal process-
ing units is very important in the implementation of 
real-time applications. This paper uses advanced digital 
arithmetic techniques along with advanced hardware 
design techniques to produce high-speed, high-frequency 
and digital oscillator chips. The organization of the paper 
will be as follows. Section 2 presents the motivation for 
this work, Section 3 discusses some of the approaches 

used in the design of digital oscillators, Section 4 intro-
duces the number representation used, Section 5 presents 
some digital oscillators found in the literature, Section 6 
analyses the oscillators used, Section 7 gives the imple-
mentation and results, and Section 8 concludes the paper. 

2. Motivation 

In the fields of communications, digital signal processing, 
and digital image processing, which are known to be 
computationally intensive, the performance of an imple-
mentation is decided by the efficiency of the critical 
arithmetic operations. Like most DSP applications, the 
performance of a digital oscillator is highly dependent on 
the efficiency of the multiplication unit. In other words, 
the optimization of the multiplication algorithm is critical 
in the implementation of the digital sinusoidal oscillators; 
especially, when the design is based on recursive algo-
rithms.  

In this paper, we will work on two issues to implement 
an efficient digital oscillator. In the first, we will device a 
methodology to implement a very fast multiplier, a criti-
cal component of the digital oscillator. In the second, we 
propose pipelined implementation of the entire design to 
enable a fast clock rate. 
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3. Digital Oscillator Generation Methods 

In literature, several methods to implement a digital os-
cillator had been proposed. Among the most known 
methods are the following. 

3.1. Look-Up-Table (LUT) 

The samples of a general sinusoidal signal are stored in a 
ROM-like memory, and re-generated at a rate that is 
necessary to produce the desired frequency [1,2]. 

3.2. Recursive Method 

In this method, a second-order recursive digital filter is 
used to generate the sequence of the output samples of 
the required waveform [3-10]. One of these methods is 
based on the following difference equation. 

     2cos 1 2 , 0y n y n y n n     



      (1) 

where y is the output sample number n, and
  n

2cos  is a multiplier coefficient. The value of this 
coefficient plays an important role in determining the 
frequency of the generated sinusoidal signal. The Z- 
transform of (1) is given by: 
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By comparing (3) with (4), the Z-inverse of (3) will be 
given by 

     2
sin 1

y
n

sin
y n 


 

  

2πS ST f T

           (5) 

Equation (5) shows that θ carries information about 
the frequency of the sinusoidal signal generated by the 
digital oscillator. The angle θ can be rewritten as: 

                   (6) 

where TS is the time interval between consecutive sam-
ples of the generated sinusoidal signal, and f the desired 
frequency. The value of TS determines the maximum 
frequency of the digital oscillator chip, that is  sf  

1 sT . The generated sinusoidal signal is represented in a 
discrete form with a number of samples per cycle that is 
given by 

2π
N                     (7) 



Combining (6) and (7), the number of samples can 
also be expressed as 

1
N

sf T
                    (8) 



The above equations show that the frequency of the 
generated sinusoidal signal has a linear relationship with 
the maximum frequency of the digital oscillator. 

4. Fixed-Point Number Representation and 
Fraction Manipulation 

Some of the commercially available digital signals proc-
essing units have no hardware support for floating-point 
arithmetic, usually called Floating Point Unit (FPU), due 
to the cost limitation. Instead, they use software emula-
tion for the implementation of floating-point operations. 
This can significantly limit the rate at which iterative 
real-time applications can execute. 

The cost of digital operations and the simplicity of the 
arithmetic design are highly affected by the choice of the 
numbering representation system. The fixed-point num-
ber representation is typically used when the hardware 
cost, speed, and hardware complexity are considered in 
the implementation of DSP processing units [3]. 

It should be noted that any digital arithmetic operation 
using fixed-point representation can be performed as 
integer digital arithmetic operation. This significantly 
improves the execution speed of the digital signal proc-
essing units and alleviates the software complexity due to 
software emulation used for implementing floating-point 
operations. On the other hand fixed-pint arithmetic suf-
fers from the quantization error due to the finite-preci- 
sion representation. However, in most digital signal 
processing application, such as digital oscillators and 
digital filters, the data and coefficients can be scaled to 
reduce the effect of the quantization error on the accu-
racy of the implemented systems [11]. 

In this study, we have chosen the sign-magnitude fixed 
point number representation for the implementation of 
the digital oscillator. It has been shown that the hardware 
implementation of sign-magnitude fixed point number 
representation is required less area compare to 1’s com-
plement or 2’s complement [11]. This can be clearly seen 
that only one inverter is required to generate a negative 
number. 

The format of the number representation, which is 
shown in Figure 1, is composed of a sign bit, I bits for 
the integer part, and F bits for the fraction part. 

The number of fraction bits determines the upper and 
lower bounds of both the frequency range and the total  
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S I F 

S: sign 
I: number of integer bits 

F: number of fraction bits  

Figure 1. The sign-magnitude fixed-point number repre-
sentation. 
 
harmonic distortion of the implemented oscillator as will 
be shown later. 

5. Digital Arithmetic Techniques and  
Related Work 

The multiplication is a basic arithmetic operation in al-
most all digital signal processing applications. Digital 
signal processing systems require hardware multipliers to 
implement DSP algorithms efficiently. The speed of the 
multiplier directly impacts the speed of the digital proc-
essing units [12-14]. 

There are many fast multipliers in the literature that 
can be used in the design of an efficient digital oscillator 
[11,15-18]. Regardless of the multiplication method, the 
basic operation of a multiplication algorithm is the addi-
tion. In this section we consider the most common adder 
structures. To further optimize the addition operations of 
a multiplication, multi-operand addition techniques are 
used [19]. 

5.1. Carry Save Adder (3:2 Adder/3:2 Counter) 

The Carry Save Adder (CSA) is classified as a redundant 
number system adder. The CSA Adder is used to add 
more than two numbers—binary vectors-together, say x, 
y, and z, and generate two binary numbers—vectors- 

 such that CS    x y z S C



. This addition can be 
done in O(1) time, since the carry bits are saved in the C 
vector and no carry propagation is required. The result of 
the multi-operand addition can be obtained by adding the 
finial binary vectors S C  together using a conven-
tional number system adder like the carry look-ahead 
adder. 

The full adder (FA) can be thought of as a 1-bit CSA, 
as shown in Figure 2 [14,19]. 

5.2. 4:2 Compressor 

The “4-2 carry-save module” was proposed in [20]. It 
contains a combination of FA cells, which are intercon-
nected to generate the output signal faster than the tradi-
tional CSA Adder, 3:2 Adder. The structure actually 
compresses five bits (input signals) into three bits (output 
signal); however, it is connected in such a way that four 
of the inputs are coming from the same bit position and 

one from the preceding bit position (known as carry-in, 
Cin). The output of such a 4:2 Compressor consists of one 
bit in the succeeding bit position (known as carry-out, 
Cout) and two output bits in the same bit position. The 
basic 4:2 Compressor structure is depicted in Figure 3. 

This Compressor is widely used in a multiplier unit, 
since it compresses four partial product bits into two bits, 
and produces one carry bit. The structure of the com-
pressor reduces the number of partial product bits by one 
half at each stage. The speed of such a 4:2 Compressor is 
represented by the speed of three XOR gates in series 
[15,21]. 

5.3. Multiplier Design 

The digital arithmetic multiplication techniques can be 
divided into three stages: partial products generation 
stage, partial products summation stage, and the final 
addition stage. In this section we explain different im-
plementations for the second stage. The second stage is 
the most critical in the determination of the overall speed 
of the multiplier. In this stage we can use one of 
multi-operand addition techniques (Linear tree, Wallace 
tree, and Compressor tree) to design a multiplier with the 
minimum area and a low latency. The final stage; how-
ever, is an addition using one of the fastest conventional 
adders, such as the carry look-ahead adder [11]. 

5.4. Array of Full Adder (FA) 

In the multiplier, an array of FA’s is used to add the par-
tial products. The multiplier (X) and multiplicand (A) are 
 

 

Figure 2. Full adder to carry save adder. 
 

 

Figure 3. 4:2 Compressor. 
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unsigned integers with the same word-length, n bits. The 
product requires 2n bits to be represented, as shown in (9) 
(We refer to such multiplication by n-by-n multiplica-
tion). 
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5.5. Linear Carry-Save Adder (CSA) Tree 

The multiplier generates partial products using the modi-
fied Booth's recoding algorithm proposed in [14]. The 
generated partial products are summed up using Linear 
Carry-Save Adder Tree (LCSAT) as shown in Figure 4. 
In each level, we generate two bits of the final product 
result. The Carry Look-ahead Adder (CLA) is used in the 
final stage to generate the remaining bits of the result 
[11]. 

5.6. Wallace CSA Tree 

In the multiplication operation, the addition of the partial 
products is the most time consuming process. We present 
a multi-operand addition technique to handle the proce-
dure of repetitive addition, which is referred to as the 
Wallace tree, illustrated in Figure 5. 

A Wallace Tree is composed of (3, 2) counters [14]. It 
achieves the highest degree of parallelism with a delay 
that grows with  logO n3 2 . Traditionally, Wallace 
Trees were not embraced by designers, because they are 
much harder to design and layout due to their irregular 
structures [11,14]. 

5.7. Compressor Tree 

The 4:2 Compressor Tree has a more regular structure 
than the ordinary CSA tree. It is made of “3:2 Counter” 
counters, as the partial products are added up in the form 
of a binary tree. The compressor structure can be ex-
tended to the wanted number of partial products by cre-
ating a new structure or combining some existing ones.  

In [16-18], the proposed algorithms differentiate be-
tween the fast and the slow inputs and outputs of the 3:2 
CSA counter. Moreover, the 4:2 Compressor adders were 
used in the partial product summation tree, so as to re-
duce the delay of the parallel multipliers. 

6. Digital Oscillator Analysis and Related 
Work 

The most common methods to generate sinusoidal sig-
nals are the recursive methods using a second-order dif-
ference Equation (1). It has been shown in [1-10] that  

 

Figure 4. Multiplier based on the Linear Carry-Save adder. 
 

 

Figure 5. Adding 9-operands using WCSA. 
 
using recursive method, it is difficult to generate a given 
desired frequency, and this difficulty increases as the 
desired frequency is reduced where the sensitivity and 
round-off errors increase by reducing the frequency. 
Many of recursive digital oscillators have been proposed 
in literature to increase the range of frequency that can be 
generated and to reduce the effect of round-off errors. 
These digital oscillators can be classified into the fol-
lowing: 
 Single-Output Direct-Form Digital Oscillator 
 Multiple-Output Direct-Form Digital Oscillator 
 Complex Digital Oscillator with Integrator 
 Combined Digital Oscillator  

The direct-form oscillator is a single output oscillator 
that generates a sinusoidal signal using a second-order 
difference Equation (1) suffers from a round-off quanti-
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zation error. The use of recursive methods increases the 
impact of this error on the output accuracy in the worst 
case, the quantization errors may accumulate to unde-
sired levels, leading to major discrepancy between the 
generated output and the ideal output. 

To improve the output signal generated from the di-
rect-form oscillator is a single output oscillator, the feed-
back circuit of the first or second order is used to reduce 
the effect of the round-off error and increase the number 
of samples of the generated sinusoidal signal. The feed-
back circuit has improved the generated sinusoidal signal 
by reducing the amount of noise in the generated signal 
[3].  

The Multiple-Output Direct-Form Digital Oscillator 
generates sine and cosine waveforms, namely  y n

 cy n
s  

and , with a stable amplitude and fixed phase 
shift π 2

e

. The multiple-output direct-form digital oscil-
lator suffers from a round-off quantization error; the 
round-off error can be reduced by using a second order 
error feedback as shown in [4].  

The combined digital oscillator depends on combining 
both oscillators that are capable of generating both the 
real (cosine) and imaginary (sine) components of the 
sinusoidal signal j . It should be emphasized that each 
oscillator in the combined digital oscillator can generate 
sinusoidal signals independently from the other oscillator. 
In other words, the amplitude and frequency of each os-
cillator output can be designed separately.  

The combined digital oscillator is capable to generate 
sinusoidal signals with lower frequencies compared to 
the multiple-output direct-form oscillator. This implies 
that the generated signal from the combined digital os-
cillator has more samples than the generated signal from 
individual multiple-output direct-form oscillator. It should 
be emphasized that the multiple-output direct-form os-
cillators that are used to build the combined digital oscil-
lator have no error feedback circuits [5]. 

An enhancement on structure of combined digital os-
cillator has been introduced in [6] as shown in Figure 6. 
The proposed digital oscillator represents the multiplier 
coefficient  2cos   using b + 2 bits; 1 bit for the sign, 
1 bit for the integer part and b bits for the fractional part. 
It has been shown that the number of samples per cycle 
depends on the smallest value of θ, which is given by 

 1
2 2

2
b    

 

  
1

2

2

3,4, , 2

b

b

m  



 



1
min cos              (10) 

In the proposed structure, the value of the multiplier 
coefficient can be increased in steps of 2−b over a specific 
range as given by: 

cos

1, 2,

m

m




            (11) 

 

Figure 6. Block diagram of combined digital oscillator pro-
posed in [6]. 
 
where  m  represents a quantized value of the actual 
analog value of θ at a certain value of m. When the value 
of m is small,  m  will be close to π 2 . The combined 
digital oscillator evaluates the difference between the 
phases of both sinusoidal signals generated by the multi-
ple-output direct-form oscillator and the two sinusoidal 
differential components,   sin π 2n  and cos π 2n . 
The phase of the generated sinusoidal signal will then be 
evaluated using the formula  π 2   g m . The value 
of g is very small in comparison with both  and π 2
 m ; therefore, the generated sinusoidal signal has a rela-
tively large number of samples, 2π  g . N

e

The complex digital oscillator with integrator structure 
consists of two digital integrators and two multipliers, 
arranged in a closed-loop fashion proposed in [7]. The 
gains for the integrators and multipliers coefficient val-
ues have been equivalently distributed over the whole 
structure of the digital oscillator to increase the fre-
quency resolution and simplify the implementation of the 
structure. The proposed structure has a quantization error 
that is less than that of the direct-form digital oscillator. 
The real and imaginary components (the cosine and sine) 
of the signal j are generated.  

The linear relationship between the generated fre-
quency of sinusoidal signal and the maximum operation 
frequency of digital oscillator chip has been proven in [10], 
the combined digital oscillator of the multiple-output 
direct-form oscillator is proposed. The generated fre-
quency values are expressed by: 

 

2

2

2π

1,2, , 2 1

b

d clk

b

m
f f

m




               (12) 

   

where clkf represents the maximum operating frequency. 
It is shown in (12) that the generated frequency and the 
maximum frequency are linearly related. 

7. Hardware Implementation and Results 

The digital oscillator structures discussed in the previous 
section is described in VHSIC hardware description lan-
guage (VHDL) [22,23]. To validate the functionality of 
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these oscillators, we have simulated their implementa-
tions using the Mentor Graphic simulation tool Model 
Sim [24]. After simulation, we synthesized the structures 
using the Xilinx synthesis tool. The Synthesis process 
takes the conceptual VHSIC Hardware Description Lan-
guage (VHDL) design definitions, and generates the 
logical or physical representation for the targeted silicon 
device. The FPGA implementation using VIRTEX-5 
family was chosen for the synthesis process [25]. 

7.1. The Use of Pipelining 

Pipelining is an advanced hardware technique that, in 
most cases, significantly improves the performance of 
digital arithmetic units. The cost of pipelining is usually 
embedded in the inter-stage buffers (registers). The per-
formance gain is attributed to the large throughput ob-
tained by breaking up the computation path over multiple 
logic stages with shorter latencies. This enables a faster 
clock rate but at the expense of a higher hardware com-
plexity [26,27].  

7.2. Synthesis Parameters 

The following synthesis metrics are considered.  
 Maximum combinational path delay: This metric 

represents the total combination delay of the critical 
path of the digital arithmetic unit. 

 Number of slice Look-Up-Tables (LUT): The look- 
up-table represents the direct form implementation of 
a Boolean function. This metric measures the number 
of slices used for implementing the look-up-table. It 
is usually used as an indicator to the utilized layout 
area. 

 Number of slice registers: This metric measure the 
number of slices used for implementing the required 
registers, which also indicates the utilized area. 

 Number of fully used bit slices: This metric meas-
ures the actual number of used slices.  

 Maximum frequency: The maximum operating fre-
quency of the digital arithmetic unit. 

It should be emphasized that the FPGAs are built from 
a grid of cells, called Configurable Logic Block (CLBs). 
Each CLB contains a number of Look-Up Tables (LUTs) 
and Flip-Flops. This grid is arranged into slices. 

7.3. The Sign-Magnitude Multiplier  
Implementation and Synthesis Results 

The multiplication algorithms have been studied in de-
tails for four fast multiplier schemes in terms of the 
maximum combinational path delay and the number of 
slice LUTs. Tables 1 and 2 summarize the results for 
different multiplier schemes. 

The synthesis results (Figure 7) show that the Com-  

Table 1. Sign-magnitude multipliers, maximum combina-
tional path delay (ns). 

Number of bits 

 
9 bits (s, 8) 

17 bits  
(s, 16) 

33 bits 
(s, 32) 

Array of full 
adder 

13.157 25.487 49.986 

LCSA 8.810 13.680 23.397 

Wallace tree 10.411 14.743 21.376 

M
u

lt
ip

li
er

 s
ch

em
a 

Compressor 
tree 

8.975 13.415 21.233 

 
Table 2. Sign-magnitude multipliers, number of slices LUTs. 

Number of bits 

 
9 bits  
(s, 8) 

17 bits  
(s, 16) 

33 bits 
(s, 32) 

Array of full 
adder 

99 401 1573 

LCSA 118 421 1618 

Wallace tree 124 446 1561 

M
u

lt
ip

li
er

 s
ch

em
a 

Compressor 
tree 

130 422 1647 
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Figure 7. Multiplier results: maximum combination path 
delay (ns) vs word sizes for different multiplier schemes. 
 
pressor tree and the Wallace tree multipliers are superior 
to the other multipliers in terms of the maximum combi-
national path delay for large number of bits. It is also 
shown that the Compressor tree multiplier slightly out-
performs the Wallace Tree multiplier. 

Figure 8 shows that increasing the number of bits re-
sults in an increase in the number of slice LUTs. This 
increase is due to the need for a larger input/output 
look-up table when the number of bits is increased. Ap-
proximately all multiplier schemes require almost the 
same number of slice LUTs. 

The Compressor tree multiplier has been used in im-
plementing all the digital oscillator structures. It outper-  
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Figure 8. Multiplier results: number of slice LUTs vs multi-
plier schemes for different word size. 
 
forms all other multiplier schemes in terms of the maxi-
mum combinational path delay without a significant in-
crease in the number of slice LUTs. The next section 
presents some digital oscillator implementation using the 
Compressor tree multiplier. 

7.4. Digital Oscillator Implementation and  
Synthesis Results 

The implementation of the four recursive digital oscilla-
tors mentioned earlier is presented in this section. Some 
digital oscillator structures are implemented with a sec-
ond-order error feedback as proposed in [3]. The error 
feedback is introduced to alleviate the quantization error 
and increase the number of samples per cycle. This will 
be further explained in the simulation section. 

To distinguish between the digital oscillator structures, 
we give name them as follows. 
 Single-output oscillator: It produces a single output. 

If feedback is employed, it will be called “single- 
output oscillator with feedback”, and if pipelining is 
employed it will be preceded by the word “pipelined”. 
The main structure of this oscillator was proposed in 
[3].  

 Multiple-output oscillators: They are based on the 
digital oscillator structures proposed in [5]. This os-
cillator can also be constructed with error feedback or 
without error feedback and with or without pipelin-
ing.  

 Basic combined oscillator: It is based on the oscillator 
proposed in [6]. This oscillator can be constructed 
using two symmetric multiple-output oscillators.  

 Basic complex oscillator and advanced complex os-
cillator: They are based on the oscillators proposed in 
[7,9], respectively. Similarly, if pipelining is used 
these digital oscillators will be called “basic complex 
pipelined oscillator” and advance complex pipelined 
oscillator, respectively. 

 Advanced combined oscillator: It is it constructed us-
ing a single modified multiple-output oscillator struc-

ture, arranged with a finite-state machine [10]. This 
oscillator can have the same variations as in the basic 
digital oscillator.  

The pipeline structures for all the digital oscillators 
mentioned earlier are proposed in this paper. The digital 
oscillator structures with pipelining are compared with 
the digital oscillator structures without pipelining for all 
digital oscillator combinations. The digital oscillator 
structures are implemented with different word-size: 8, 
16, and 32 bits. 

Figure 9 shows the value of maximum frequency for 
different digital oscillator structure types with different 
word sizes. From these results, we can deduce the fol-
lowing. 
 As number of bits is increased, the maximum fre-

quency of each of the digital oscillator structures is 
decreased.  

 The pipelined oscillator structures have higher maxi-
mum frequency than the non-pipelined structures. 

 Considering the pipelined versions of all digital os-
cillator structures (except the basic and advanced 
digital oscillator), the maximum frequency of the 
digital oscillator without error feedback is slightly 
higher than that of the digital oscillator with error 
feedback.  

Figures 10 and 11 show the number of slice register 
and the number of fully used bit slices for different os-
cillator structures, and for different number of bits, re-
spectively. Figures 10 and 11 imply the following. 
 Both the number of fully used bit slices and the num-

ber of slice registers show the same behavior for the 
different oscillator structures. 

 As the number of bits is increased, the number of 
fully used bit slices of all digital oscillator structure 
types increases. This is also true for the number of 
slice registers. 

 All pipelined oscillator structures have higher num-
bers of fully used bit slices than the non-pipelined os-
cillator structures. This is also valid for the number of 
slice registers. This is a natural consequence of the 
use of pipelining, as it requires extra inter-stage reg-
isters. 

Figure 12 shows the number of slice LUTs versus the 
different oscillator structure and for different number of 
bits. We can deduce the following. 
 As number of bits is increased, the number of slice 

LUTs of all digital oscillator structures is increased. 
This is also valid for the number of slice registers. 

 The pipelining does not affect the number of slice 
LUTs in all oscillator structure for all word sizes.  

7.5. Digital Oscillator Simulation Results 

This sinusoidal signal is generated using the following 
assumptions. 
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Figure 10. Number of slice register vs oscillator types for different word sizes. 
 
 The number format is (s, 1, 7), that is, seven bits for 

the fraction part, one bit for the integer part, and one 
bit for the sign. 

 The multiplier coefficient 2cos  is determined us-
ing 2 2 os 255  . Hence, the theoretical value for 
both ,

cF

 N  are given by: 

   1 1255 256 cos 0.99609375 5.066

360 5.066 71.062
t

tN

   

 

cos
 (13) 

 The initial condition  2y is assumed to be equal to 
(−11). 

Figure 13 shows the sinusoidal signal generated by 
the single-output direct-form oscillator without the 2nd 
level error feedback. The generated number of samples in 
a complete cycle is 2π g gN , where g  is the gen-
erated phase. 46g  and N 7.826 

71

g . The generated 
number of samples is less than the expected theoretical 
number of samples due to the quantization error. 

Figure 14 shows the sinusoidal signal generated by 
the single-output direct-form digital oscillator with 2nd 
level error feedback. The sinusoidal signal has a number 
of samples that is approximately equal to theoretical 

umber of samples. n gN 5.07 and  g .  
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Figure 11. Number of fully used bit slices vs oscillator types for different word sizes. 
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Figure 12. Number of slice LUTs vs oscillator types for different word sizes. 
 

The sinusoidal signal generated by the advanced com-
bined digital oscillator is shown in Figure 15. The multi-
ple-output direct-form digital oscillator is used to gener-
ate a sinusoidal signal with the following parameters: 
 Multiplier coefficient 2cos : It is computed using 

cos 7  . The theoretical value for both ,2 2F  N , 
are then given by: 

 
 

1cos 7 256

4375 88.433

4.071

 

1cos 0.0273

360 88.433

t

tN



 

        (14) 

 Initial condition  2y : It is given by  2y  
248.   

The advance combined digital oscillator depends on 
the phase difference between π 2  and the generated 
phase from several multiple-output direct-form digital 
oscillators. The above combined digital oscillator gener-
ates a sinusoidal signal with 

  88.433 1.567

360 1.567 230

π 2

N

   

 
           (15) 

8. Conclusions 

We have utilized advanced architecture and arithmetic 
techniques to implement digital oscillator.  

The synthesis results have shown that the pipelined   
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[1] M. Schanerbe he Implementation

d uctures are superior in terms of the 
maximum frequency when compared with the non-pipe- 
lined ones. This has led to a significant enhancement of 
the generated sinusoidal signal in terms of the frequency 
and number of samples per cycle. 

The simulation results of osci ave 
own that the combined digital oscillators proposed in 

[10] have produced sinusoidal signals with a large num-
ber of samples in comparison with the other digital os-
cillators. This makes the combined digital oscillator 
structure proposed in [10] the preferable digital oscillator 
structure among all digital oscillator structures.  

It is to be noted that our work is sensitive to th
etic algorithms used. Thus, if faster arithmetic algo-

rithms are proposed, new implementations for digital 
oscillators should be devised. 
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