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Abstract 
 
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed 
method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct 
time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with 
the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-
posed extraction method and comparative results with other methods are demonstrated via experimental 
Doppler velocimetry measurements. 
 
Keywords: Buried Signals, Stationary Non-Ergodic Processes, Spectral Analysis, White Noise, Colored 

Noise, Correlated Noise, Doppler Velocimetry 

1. Introduction 
 
Quality of signal information in different areas of science 
is degraded by encountered various natures of noises. 
This degradation may take different forms and evolves to 
observations where the time-averaged correlation func-
tion of a process is different from the ensemble-averaged 
function [1,2]. Non-linear filtering and their correspond-
ing asymptotic stability are generally proposed to handle 
such processes [3-5]. 

In situations where signals are totally buried in noise 
and for which no a-priori information is available, er-
godic hypothesis cannot be validated. Moreover, none of 
the above methods is suitable for extraction of such bur-
ied signals. In real world situations, non-ergodic proc-
esses in which a desired signal is buried may occur as 
shown by Doppler velocimetry measurements [6-11] 
used in this work. 

It is crucial to notice that by the terms extraction of 
signals, we mean extraction of clean spectra of buried 
signals in noise and by buried signals, we mean signals 
defined for low or extreme low signal-to-noise ratio. In 
[12,13], we proposed two equivalent extraction methods, 
called respectively “modified frequency extent denoising 
(MFED)” and “constant frequency extent denoising 
(CFED)”. For easy reference, let us recall that the fre-
quency extent is the interval  0, ef  where ef  is the 

sampling frequency of the buried continuous-time signal 
to be extracted. The first procedure (MFED) is based on 
modifying the sampling frequency and the second one 
(CFED) is suited to a collection of available sample 
noisy processes for which the sampling frequency is 
constant. Clearly, CFED offers implementation simplic-
ity since in most applications, signals are defined for a 
constant sampling frequency. Proposed extraction does 
not use any a-priori information on the signal to be ex-
tracted, works without averaging or smoothing in the 
direct time or dual frequency space, and it is achieved 
independently of the nature of noise (colored or white, 
Gaussian or not) and locations of its spectral extent. 

Extraction methods in [12,13] are based on the theory 
of ergodic stationary processes. Extension of these re-
sults to extraction of signals correlated with noise in 
which they are buried are reported in [14]. We have 
shown that extraction of signals correlated with noise is 
achieved without averaging and independently of the 
nature of noise (correlated or not, correlated or not with 
the signal, colored or white, Gaussian or not) and loca-
tions of its spectral extent. 

In this work, we extend results of one of the afore-
mentioned extraction methods (CFED), to a more gen-
eral case where ergodic hypothesis, given experimental 
conditions, cannot be validated, which is a fact and an 
issue. 
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In Section 2, we recall principal definitions and results 
of the CFED extraction method since this method offers 
implementation simplicity as mentioned above. In Sec-
tion 3, expression of extracted spectra of buried signals 
from non-ergodic processes is derived without any sort 
of averaging or smoothing in the time or frequency do-
main and without assuming the signal uncorrelated with 
noise. Extraction performances and comparative results 
with other methods [15-18] are discussed and illustrated 
in Section 4. It is shown that CFED extracts the Doppler 
mean frequency from experimental Doppler velocimetry 
measurements for which ergodic hypothesis is not vali-
dated or satisfied. 
 
2. Fundamentals [12,13] 
 
In this section, we recall some principal results reported 
in [12,13].  
 
2.1. Signal Representation 
 
Let us consider a finite observation  of  Tz t  z t , a 
process containing a band-limited signal buried in 
zero-mean wide sense stationary noise , in the in-
terval of length  with m . The process 

b t 
T 1axTf ≫  tTz , 

available at the output of a low-pass filter of cut-off fre-
quency maxf , is given by, 

       , 0,
=

0, otherwise,
T T

T

b t s t t T
z t

  



       (1) 

where  and  Tb t  Ts t  represent respectively the 
additive noise (white or colored) and the signal observed 
in the time interval of length . T

By considering the instants =n et n  where m xf 2e af f  
is the sampling frequency, we can define the discrete- 
time process  with . ( )Nz n = eN Tf
 
2.2. The Sample Power Spectral Density (SPSD) 

[12] 
 
Given , we can form the 
estimate, 

      0 , 1 , , 1N N Nz z z N  

       2
, , = 1 DFT ,ef f T T z n N




      (2) 

where DFT  denotes Discrete Fourier Transform 
of . Here the estimate 

  Nz n
 Nz n  , ,ef f T  depends on 

the frequency, f , the sampling frequency, ef , and the 
length of the observation interval, . T

It is crucial to notice that (2) is not a power spectral 
density in the usual sense. In [12], (2) is defined as the 
“Sample” power spectral density or the sample spectrum 
of the process . In the following, we recall for 

easy reference the CFED extraction method. 

 Nz n

 
2.3. CFED Extraction Method 
 
Here, we have a collection of   realizations of dura-
tion  of a noisy process so that the length of the total 
observation interval is 

T
T . These   realizations de-

noted  where    p
Tz t = 0p , , 1   are now con-

catenated, i.e., 

   
1

( )

=0

= p
T T

p

z t z t pT






 .           (3) 

 
2.3.1. Sample Spectrum of Noise 
We found that the sample spectrum of noise obtained by 
Fourier transformation of (3) is given by [12], 

      
1

=0

, , = , , ,e p
p

f f T f p T f T


     


 e   (4) 

where   , ,ef p T f T   are translated copies of 
the original sample spectrum of noise whose components 
are spaced with the mutual distance 1/  on the fre-
quency axis. 

T

It is crucial to notice that  p   in (4) are reduction 
factors defined by, 

 
1

=0

= 1.p
p



 


                (5) 

For the sake of simplicity and without loss of general-
ity, we let, 

 = 0, , 1, = 1 .pp             (6) 

Notice that a justification of (6) is found in [14]. Fac-
tors  p   reduce indifferently translated copies the 
original sample spectrum of noise independently of their 
nature (white or colored, Gaussian or not) and act indif-
ferently at all frequencies.  
 
2.3.2. Spectral Distribution 
Spectral lines of each copy of the original sample spec-
trum of noise   , ,ef p T f T   of noise are sepa-
rated by the mutual distance . As these copies are 
shifted by 

1/ T
 1 T  with respect to each other (see (4)), 

the resulted sample spectrum  , ,e f f T   will exhibit 
spectral lines separated by the mutual distance  1 T . 
Hence original spectral lines of noise separated by the 
mutual distance 1 T  are now distributed in new   
frequency locations created in each frequency interval of 
length 1 T . 

On the other hand, the spectrum of the signal  Ts t  
as given by the transformation of concatenated realiza-
tions (3), is specified by  , ,ef f T . Since   zeros 
are distributed in   frequency locations created in each 
interval of length 1 T  (see [12]) then, 
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e  , , = , , .ef f T f f T            (7) depicted by (10), is given by,  

    
  
   

*

*

, , = , , , ,

, , , ,

, , , , ,

e e

e e

e e




ef f T f f T f f T

S f f T f f T

S f f T f f T

   

  

  

  





   (11) 

 
2.3.3. Extraction Procedure 
Extraction of the sample spectrum of the buried signal is 
obtained by decimation. This decimation by the factor 
  is applied in the frequency domain to the Fourier 
transformation of (3). The signal-to-noise ratio   of the 
decimated spectrum written as a function of the sig-
nal-to-noise ratio of the original spectrum  is given 
by,   



where  , ,eS f f T  and  , ,e f f T   represent the 
amplitude spectra of respectively the signal and noise. 
Here  * x  is the complex conjugate of  x  and 
 , ,ef f T   is the sample spectrum of   concate-

nated realizations of noise.  .                    (8) Now, let us find the optimal form under which expres-
sion of the CFED sample spectrum is written only as a 
function of the sample spectrum of the signal and noise 
independently of any correlation between the signal and 
noise and without averaging in the time or frequency 
domain. 

We have shown in [12] that increasing   increases 
the signal-to-noise ratio  of the original noisy spec-
trum 


 , ,e f f T  in which the desired signal is buried. 

Moreover, the variance of sample spectral estimates of 
noise tends to zero as   increases. 

  
3.1.1. Sample Spectrum of Noise 3. Non-Ergodic Processes 
Expression of the sample spectrum of noise of a 
non-ergodic process is obtained by using the above ex-
pression (4) derived under the ergodic assumption. In 
(4), one finds translated copies of the original sample 
spectrum of noise, denoted in the ergodic case by 

  , ,ef p T f T  , of each realization or sample 
process for = 0, , 1p   . 

 
Here, we extend above results obtained for ergodic sta-
tionary processes to processes for which ergodic hy-
pothesis cannot be validated or satisfied. We consider 
therefore that we have a collection of   sequences 
whose probability density functions that describe noise 
affecting them are different from sequence to an other 
one. This means that any sample process can be put un-
der the form,  

Now, in the non-ergodic framework, as depicted by 
(10), it is crucial to notice that we have   realizations 
defined for different and unknown noise distributions. As 
in (10) the index (p) identifies each noise distribution, 
here, we introduce the index (p) in order to identify their 
corresponding   original and different sample spectra. 
We can therefore rewrite (4) by identifying translated 
copies of original sample spectra of noise by their corre-
sponding upper script  p  (for = 0, , 1p   ) as 
follows,   

         =p
T T Tt s t b t  ,p            (9) 

where  Ts t

t

 is the signal defined above and  
is the additive noise specified for the realization (p). 
Moreover, probability density functions describing 

 for 

   p
Tb t

  p
Tb = 0, , 1p    are assumed unknown. 
Clearly the process from which samples  are 

taken is stationary and not ergodic. Covariances of the 

 p
T  t

  sample processes  are dependent on the 
sample process  (see p. 89 of [19], for the definition 
of non-ergodic processes). For implementation simplicity, 
we use hereafter the CFED method, recalled above, 
where those 

   p
T t

 p

  samples of a non-ergodic process are 
concatenated, i.e.,  

    
1

( )

=0

, , = , , ,p
e p p

p

ef f T f f T


    


    (12) 

where, 

    ( ) ( ), , = , , .p p
p e ef f T f p T f T     (13) 

 

  
1

( ) ( )

=0

( ) = .p
T T T

p

t s t pT b t pT





    p     (10) 
3.1.2. Decimated CFED Sample Spectrum 
The decimated N-point sample spectrum applied to 
 , ,ef f T , as depicted by (11), yields (14). 

   is the  -decimation applied to  . where  
3.1. CFED Sample Spectrum Notice that since the power spectral density of the sig-

nal is assumed constant in collected   sequences then 
decimated sample spectrum of the signal yields the same 

 
The sample spectrum of the process of duration T , as  
 

     
       * *

, , = , , , ,

, , , , , , , , ,

e e e

e e e e

f f T f f T f f T

S f f T f f T S f f T f f T

  



   

     

            
   

  


           (14)
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result as (7). 
On the other hand, since we have   translated and 

different copies of original sample spectra of noise then 
decimation in the frequency domain yields a spectrum in 
which contribute coefficients of those   copies of 
original spectra of noise. This means that the  coeffi-

cients of the decimated spectrum described by (12) are 
those of the translated copies 

N

    , ,p
ef p T f T   

for = 0, , 1p   . Notice that this applies also to the 
amplitude spectra of noise  , ,e f f T  . This means 
that by setting   = 1p   , the decimated sample 
spectrum of noise in (14) becomes, 

      

   

1
( )

=0

(0) ( 1)

, , = , ,

= 1 , , ; , , ,

p
e p

p

e

ef f T f p T f T

f f T



 



     

   





 
    

 




 
                      (15) 

 
where the set of the copies  is given by     0 , ,    1

    , ,p
ef p T f T   for = 0, , 1p  

(0), , ;ef f T 
. 

Since Fourier coefficients of  
are those of the translated copies 
noise variance 

 ( 1), ,  
   0 1, ,     then the 

2
  of  is given 

by,  

    0 1; , ,T     
,

, ,ef f

2 2 2
min max< <                (16) 

where 2
min  and 2

max  are respectively the smallest and 
the greatest noise variances contained in the collection of 
  sequences. 

It is crucial to notice that (16) is at the heart of this work. 
According to (16), we can assume, for the sake of sim-
plicity and without loss of generality, that the decimated 
sample spectrum of noise  
approaches the average sample spectra of the translated 
copies  of noise. Under this assumption, 
justified by (16), we can write the variance of the deci-
mated sample spectrum of noise 

    0, , ; , ,ef f T    

    0, , ; , ,ef f T 

as follows,  

   
11

2 2

=0 =0

= = 1
N

,p
k

k p

c


  


            (17) 

where  p
kc for = 0 1k N   and = 0 1p  

  , ,
 are Fou-

rier coefficients of the translated copies  0 1  . 
Now, according to (17), the sample spectrum 

    0, , ; , ,ef f T     1  written as a function of its 
Fourier coefficients, yields,   

  
1

(0) ( 1)

=0

, , ; , , = ,
N

e k
k

f f T c f k T   


     (18) 

1

1

1

   0 , ,   

      

where     0 1=k k kc c c     represents the average 
of coefficients of translated copies    0 , ,   1 . Notice 
that the ergodic case [12,13] can be obtained from (18) 
by setting    0 1= =k kc c   . 

By using (7) and (15), the decimated sample spectrum 
of the process, as given by (14), is therefore given by,  

       
       

(0) ( 1)

* (0) ( 1) * (0) ( 1)

, , = , , 1 , , ; , ,

, , , , ; , , , , , , ; , , ,

e e e

e e e e

D f f T f f T f f T

S f f T f f T S f f T f f T




 

    

     



 

    

 



 
       (19) 

where decimated power spectrum of noise written as a function of its amplitude spectra yields, 

     (0) 1 (0) ( 1) * (0) ( 1) , , ; , , = , , ; , , , , ; , , .e e ef f T f f T f f T                         (20) 

 
3.2. Optimal CFED Sample Spectrum 
 
Let us in the following find a condition under which the 
decimated sample spectrum as depicted by (19) can be 
written without rectangular terms (cross-products). The 
optimal form is that for which the sample spectrum is 
described only as function of the spectra of the signal 
and noise. 

Let k  be Fourier coefficients of the amplitude 
spectrum  of the signal and let  , ,eS f f T  k  be 
Fourier coefficients of the amplitude noise spectrum 

. Since,    0; , ,   

 , , =f f T

 f f 

S

1

e

, ,e T

   *, , , , ,e ef f T S f f T     (21) 

then according to (20) and (21), we have,  

 

*

*

=

= ,

k k k

k k kc

  

  
              (22) 

where kc  is defined in (18). 
By using (22), the sample spectrum, as given by (19), 

yields therefore explicitly,   

     
   

(0) 1

1 * *

=0

, , = 1 , , ; , ,

.

e e

N

k k k k k
k

f f T f f T

f k T


     

     





  

      



 (23) 

 
3.2.1. The Optimal Reduction Factor 
In the following, we derive the optimal reduction factor 
or the optimal number of concatenated sample processes 
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  under which contribution of the cross-products in (19) 
is made negligible. Coefficients of the last right-hand 
side of (23) can be put under the form,   

 
*

* * = 1 k k
k k k k k k

k k

.
 

     
 

  
     
  





 (24) 

Let  *
=k k k k k       and note that,  

1 1k ,k                 (25) 

where k  rewritten as a function of k  and k  
yields,  

*

2
kk k

k k k

.
 

  
 

  
 

           (26) 

By setting  *=k kc k   , (26) becomes,   

*

2k k k

k k k

c 
.

  
 

  
 

         (27) 

Now, let us find the condition that defines the mini-
mum value of   under which (27) is smaller than unity, 
i.e.,  

2 k

k

c


≪1.              (28) 

We propose to find   as a function of the mean sig-
nal-to-noise ratio of the   collection of different proc-
esses. Let us define the mean signal-to-noise ratio of the 
collected   sample processes by,  

2= ,sp   

where sp  represents the mean power of the signal 
and     2 2 2

0 1=      is the mean variance of 
noise of the collected   sample processes. Here  p

2  
is noise variance of the sample process  p  (for 

= 0, 1p ,  ). 
The mean signal-to-noise ratio can be written under 

the form,  
2=

= ,

s

k

k c

p

I

c I









              (29) 

where k  and kc  are arbitrary chosen coefficients and,  
1

=0,

1

=0,

= 1

= 1 / ,

s k
s s k

c q
q q k

I

kI c c

  



















            (30) 

where  and    represent respectively the number 

of components of the signal and noise. 
It is easy to see that I  is bounded by,   

  , min max ,s k s kk I           (31) 

where  min s k   and max s k   denote respec-
tively the minimum and the maximum values of the set 
formed by s k  , for  and = 0,1, , 1s   k . 

Since k  is an arbitrary chosen coefficient and ac-
cording to (31), we can consider that, 

, =k I .                  (32) 

Similarly, =cI  . The signal-to-noise ratio, as de-
picted by (29), becomes,   

= .k

kc







                 (33) 

Now, the expression (28) is satisfied if,   

4
.


≫




                 (34) 

For a useful interpretation of (34), we express the op-
timal reduction factor   only as a function of the mean 
signal-to-noise ratio  . By setting  min = 4   , 
one finds that since < 1   two conditions have to be 
considered : 4 1   and 4   1 . This gives,   

min

min

1
4 1, 1 <

1
4 1, .





 


 


 

 

          (35) 

As min ≫  in accordance with (34), then by 
choosing   exceeding the upper bound of the variation 
interval of min , or,  

1
> ,


                (36) 

the condition (28) is fulfilled. 
Here (36) depicts the optimal reduction factor   as a 

function of the mean signal-to-noise ratio   of the col-
lection of   non-ergodic sample processes. This opti-
mal reduction factor represents therefore the number of 
concatenated sample processes.  
 
3.2.2. Optimal CFED Spectrum 
According to (36), (24) yields,   

* *> 1 , .k k k k k k              (37) 

By using (37), (23) becomes,   

   

 (0) ( 1)

> 1 , , , , ,

1
, , ; , , .

e e

e

f f T f f T

f f T





 

  




      

 



  (38) 

This yields,  
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max

0 1

> 1 , , , = , ,

1
= , , , , ; , , .

e

e e 
ef f T f f T

f f T f f T





 

  




     

  



 (39) 

Here > 1   represents the number of concatenated 
sample processes under which the decimated sample 
spectrum of the process becomes optimal or be written 
under the form (39). 

It can be seen that under the condition (36) contribu-
tion of the cross-products is made negligible. Expression 
of the extracted spectrum of the buried signal from 
non-ergodic processes, as depicted by (39), can be ob-
tained without the requirement based on ensemble aver-
aging and without assuming the signal uncorrelated with 
noise. Moreover, at the limit of large values of  , (39) 
becomes,   

  max
1

, , = , , .lim e ef f T f f T
 

 
≫

      (40) 

The sample spectrum of noise, independently of its 
nature, vanishes. The decimated spectrum is identical to 
the original deterministic spectrum of the signal. Results 
(40) and (39) achieve extraction of buried spectra of sig-
nals from non-ergodic processes.  
 
4. Method and Results 
 
4.1. Experimental Signals: Doppler Velocimetry 
 
It is well known that Ultrasonic Doppler velocimetry 
provides a non-invasive method for measuring direction 
and speed of fluids. Information of interest on Doppler 
signals may be found, for example, in [6-11]. Signals 
used here are issued from a flow measurement apparatus 
that uses pulsated emitting source with a constant Pulse 
Repetition Frequency (sampling frequency) PRF = 8  
kHz. A fluid runs at constant or quasi-constant speed and 
the concern here is to measure its mean speed [6,9]. The 
Doppler mean frequency 

3.3

f  is related to the mean ve-
locity  of the flow by (see [10] among above refer-
ences),  

v

 = 2 cos ,f v c             (41) 

where  is the frequency of the pulsated emitting 
source,  is the velocity of the ultrasound wave and 

v
c   

defines the receiver position with respect to the direction 
of the flow. Here  Hz,  m/s and 6= 2 10  = 1500c

= 4  . In this experiment, the mean velocity of the 
flow is  m/s. The expected Doppler mean fre-
quency is therefore  kHz.  

= 4v
= 7.54f

 
4.2. Non-Ergodicity of Doppler Sequences 
 
In Figure 1, zero-mean four realizations (a1)-(a4) of 

Doppler velocimetry signals carrying information on the 
speed of the fluid are depicted. Here we assume that the 
nature of noise (white or colored, correlated or not) af-
fecting the Doppler mean frequency is unknown.  

Moreover, to accentuate non-ergodicity effect, let us 
add to the first Doppler sequence, (a1), the third one, (a3), 
and the last one (a4), three different colored noise se-
quences  1ay n ,  3ay n  and  4ay n  specified by,  

     
     

     
     

     
    

1 1

1

3 3 3

4 4 4

= 1.4 0.5 1

0.45 0.45 2

= 0.89 1 0.65 2

0.38 1 0.38

= 0.9 2 0.89 1

0.19 2 0.38 1 0.2 ,

a a

a

a a a

a a a

y n i y n

i y n e n

y n y n y n

u n u n e n

y n y n y n

e n e n e n

  

   

  

   

   

     

 (42) 

where  u n  is a random signum function (logical func-
tion which extracts the sign of a uniformly distributed 
random number) and  e n  is white Gaussian noise 
sequence. The length of these sequences is . N

We assume that signal-to-noise ratios of these Doppler 
sequences are unknown. However, mean powers of col-
lected Doppler sequences can be computed. These are 
variances of noise since the Doppler signal carrying the 
Doppler mean frequency is very weak. We have 

(1.14 dB), (–2.2 dB),  
(–1.55 dB) and a (1.5 dB). This creates varia-
tions of the signal-to-noise ratio. According to (39), we 
have 

2
1 = 1.3a

2
2 = 0.6a

= 1.46

2
3 = 0.7a

2
4

> 1  . Since = 4 , the mean signal-to-noise 
ratio for which an extraction from noise is possible is 

> 0.25  (–6 dB). If no extraction is obtained, this means 
that the mean signal-to-noise ratio of Doppler sequences 
is lower than –6 dB. 

In Figure 1, histograms (b1), (b2), (b3) and (b4) of the 
four Doppler sequences are shown. It can be seen that we 
have four different and deformed noise distributions with 
varying amplitudes. In (c1), (c2), (c3) and (c4), covari-
ance functions of the Doppler sequences are depicted in 
logarithmic scales for better visibility (low correlation 
lags) and for comparison purposes. These covariance 
functions are clearly dependent on the sample Doppler 
process. We have therefore non-ergodic Doppler veloci-
metry measurements (see p. 89 of [19]). 
 
4.3. Extraction Results 
 
In Figure 2, we propose extraction of the Doppler mean 
frequency by using CFED method, Welch PSD estima-
tion [15] and the Thomson's multi-window method 
(MTM) [17]. We recall that MTM uses a bank of win-
dows that compute several periodograms of the entire 
ignal and then averaging the resulting periodograms to  s 
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Figure 1. Four Doppler velocimetry measurements (a1), (a2), (a3) and (a4) in which the Doppler mean frequency is buried in 
white and colored noise. Non-ergodic character is shown by different histograms and corresponding different covariance 
functions (in logarithmic scale). 
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Figure 2. CFED spectrum and its decimated version are shown in (a) and (b) where the Doppler frequency is extracted 
(7.55 kHz). Comparison with Welch PSD and the Thomson's multitaper method is provided in (c) and (d). 
 
construct a spectral estimate. In order to minimize the 
bias and variance in each window, theses windows are 
chosen orthogonal. Optimal windows that satisfy these 
requirements are Slepian sequences or discrete prolate 
spheroidal sequences [18].  

Now, these four realizations   are concate-
nated and the obtained process, as given by (10), is ana-
lyzed by the above methods. The spectrum of CFED 
concatenated realizations and its decimated version 

 are respectively shown in Figures 2(a) and (b). 
The frequency of the depicted spectral line (Doppler 
mean frequency) is 





= 4

 = 4

 f  = 7.55 kHz. The obtained varia-

tion with respect to the above expected Doppler fre-
quency is 0.13%. The Welch periodogram estimation 
shows however a widened peak located at 7.4 kHz with a 
weak signal-to-noise ratio whereas the MTM method 
depicts with a much weaker signal-to-noise ratio a spec-
tral line far from the expected Doppler mean frequency. 

It can be seen that independently of the nature of noise 
(white or colored, correlated or not) affecting experi-
mental signals and variation of the signal-to-noise ratio, 
the Doppler mean frequency is clearly extracted by 
CFED from non-ergodic process with an excellent sig-
nal-to-noise ratio without any averaging in the time or 
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frequency domain and without using any a-priori infor-
mation on the signal (Doppler mean frequency) and the 
nature of noise in which the signal is buried.  
 
5. Conclusions 
 
In this work, extraction theory of signals buried in 
non-ergodic processes is proposed. We have shown that 
no a-priori information on the signal to be extracted is 
used and no averaging in the direct time or frequency 
domain is performed. Observed results on experimental 
Doppler velocimetry measurements buried in non-ergodic 
processes show that extraction of the Doppler mean fre-
quency is achieved independently of the nature of noise, 
correlated or not with the signal, colored or white, Gaus-
sian or not, and locations of its spectral extent. Observed 
results are in accordance with theoretical predictions. 
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