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ABSTRACT 

The effect of external magnetic field and internal heat generation or absorption on a steady two-dimensional natural 
convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface has been investigated. 
The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimen-
sionless variables. The transformed boundary layer equations are solved numerically using the implicit finite difference 
method, known as Keller-box scheme. Numerical results for velocity, temperature, skin friction, the rate of heat transfer 
are obtained for different values of the selected parameters, such as viscous dissipation parameter (Vd), heat generation 
parameter (Q), magnetic parameter (M) and presented graphically and discussed. Streamlines and isotherms are pre-
sented for selected values of heat generation parameter and explained. 
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1. Introduction 

The natural convection boundary layer flow about a 
heated vertical wavy surface has received a great deal of 
attention due to its relation to practical applications of 
complex geometries. There is also a model problem for 
the investigation of heat transfer from roughened sur-
faces in order to understand heat transfer enhancement. 
The natural convection along a vertical wavy surface was 
first studied by Yao [1] and used an extended Prantdl’s 
transposition theorem and a finite-difference scheme. He 
proposed a simple transformation to study the natural 
convection heat transfer from isothermal vertical wavy 
surfaces, such as sinusoidal surface. Moulic and Yao [2] 
also investigated mixed convection heat transfer along a 
vertical wavy surface. Alam et al. [3] have also studied 
the problem of free convection from a wavy vertical sur-
face in presence of a transverse magnetic field. The com-
bined effects of thermal and mass diffusion on the natural 
convection flow of a viscous incompressible fluid along 
a vertical wavy surface have been investigated by Hos-
sain and Rees [4]. Wang and Chen [5] investigated tran-  

sient force and free convection along a vertical wavy 
surface in micropolar fluid. Hossain et al. [6] have stud-
ied the problem of natural convection of fluid with tem-
perature dependent viscosity along a heated vertical 
wavy surface. Natural and mixed convection heat and 
mass transfer along a vertical wavy surface have been 
investigated by Jang [7,8]. Recently, Molla et al. [9] have 
studied natural convection flow along a vertical wavy 
surface with uniform surface temperature in presence of 
heat generation/absorption. Tashtoush and Al-Odat [10] 
investigated magnetic field effect on heat and fluid flow 
over a wavy surface with a variable heat flux. Hossain 
[11] investigated the natural convection flow past a per-
meable wedge for the fluid having temperature depend-
ent viscosity and thermal conductivity. Very recently, 
Parveen and Alim [12] investigated Joule heating effect 
on Magnetohydrodynamic natural convection flow along 
a vertical wavy surface with viscosity dependent on 
temperature. The present study is to incorporate the ef-
fects of the viscous dissipation on MHD natural convec-
tion flow along a uniformly heated vertical wavy surface 
with heat generation. 
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Numerical results have been obtained in terms of local 
skin friction coefficient and the rate of heat transfer in 
terms of local Nusselt number, and the velocities as well 
as the temperature profiles for a selection of relevant 
physical parameters are shown graphically.  

2. Formulation of the Problem 

Steady two dimensional laminar free convection bound-
ary layer flow of a viscous incompressible and electri-
cally conducting fluid along a vertical wavy surface in 
presence of uniform transverse magnetic field is consid-
ered. It is assumed that the wavy surface is electrically 
insulated and is maintained at a uniform temperature Tw. 
The fluid is stationary above the wavy plate and is kept at 
a temperature T. The surface temperature Tw is greater 
than the ambient temperature T that is, Tw > T. The 
flow configuration of the wavy surface and the two-di- 
mensional cartesian coordinate system are shown in 
Figure 1. 

The boundary layer analysis outlined below allows 
 X  being arbitrary, but our detailed numerical work 

assumed that the surface exhibits sinusoidal deformations. 
The wavy surface may be defined by 

  π
sinw

n X
Y X

L
    

 

            (1) 

where  is the amplitude and L is the wave length asso-
ciated with the wavy surface. 

The governing equations of such flow of magnetic 
field in presence of heat generation/absorption with vis-
cosity variation along a vertical wavy surface under the 
usual Boussinesq approximations can be written in a di-
mensional form as: 

Continuity Equation 
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Figure 1. Physical model and coordinate system. 
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where  ,X Y  are the dimensional coordinates along 
and normal to the tangent of the surface and  ,U V


 are 

the velocity components parallel to  ,X Y , g is the ac-
celeration due to earth gravity, P is the dimensional pres-
sure of the fluid, T is the temperature of the fluid in the 
boundary layer, CP is the specific heat at constant pres-
sure, μ is the dynamic viscosity of the fluid in the bound-
ary layer region depending on the fluid temperature, ρ is 
the density,   is the kinematic viscosity, where  
   ,, k is the thermal conductivity of the fluid, β is 
the volumetric coefficient of thermal expansion, 0 is the 
strength of magnetic field,

 0  is the electrical conduc-
tivity of the fluid and 2  is the Laplacian operator,  

where 
2 2

2
2 2
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The boundary conditions for the present problem are 
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Using Prandtl’s transposition theorem to transform the 
irregular wavy surface into a flat surface as extended by 
Yao [1] and boundary layer approximation, the following 
dimensionless variables are introduced for non-dimen- 
sionalizing the governing equations 
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where θ is the dimensionless temperature function and 
 ,u v  are the dimensionless velocity components paral-
lel to  ,x y and Gr is the Grashof number. Now intro-
ducing the dimensionless dependent and independent 
variables into Equations (2)-(5), and the following di-
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mensionless form of the governing equations is obtained 
after ignoring terms of smaller orders of magnitude in the 
Grashof number Gr. 
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It is worth noting that the σx and σxx indicate the first 
and second derivatives of σ with respect to x, therefore,  

d d d dx X x     and d dxx x x  . 

In the above equations Pr, Vd, M and Q are respec-
tively known as the Prandtl number, viscous dissipation 
parameter, magnetic parameter and heat generation pa-
rameter which are defined as: 
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For the present problem the pressure gradient 
 0p x     is zero. Thus, the elimination of p y   
from Equations (9) and (10) leads to 
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The corresponding boundary conditions for the present 
problem then turn into  

0, 1, at 0
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Now we introduce the following transformations to 
reduce the governing equations to a convenient form:  
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where  , f x   is the dimensionless stream function, η 
is the dimensionless similarity variable and ψ is the 

stream function that satisfies the continuity Equation (8) 
and is related to the velocity components in the usual 
way as  
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Introducing the transformations given in Equation (15) 
and using (16) into Equations (13) and (11) are trans-
formed into the new co-ordinate system. Thus the result-
ing equations are  
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The boundary conditions (14) now take the following 
form: 
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Here prime denote the differentiation with respect to η. 
However, once we know the values of the functions f 

and  and their derivatives, it is important to calculate the 
values of the rate of heat transfer in terms of local Nus-
selt number Nux and the shearing stress w in terms of the 
local skin friction coefficient Cfx from the following rela-
tions: 
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
 is the unit normal to the surface.  

Using the transformation (15) and (21) into Equation (20) 
the local skin friction coefficient Cfx and the rate of heat 
transfer in terms of the local Nusselt number Nux take the 
following forms: 
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5.5   velocity becomes constant that is velocity pro-
files meet at a point and then cross the side and increas-
ing with magnetic parameter M. This is because of the 
velocity profiles having lower peak values for higher 
values of magnetic parameter M tend to decreases com-
paratively slower along -direction than velocity profiles 
with higher peak values for lower values of magnetic 
parameter M. The maximum values of velocities are re-
corded as 0.49091, 0.47285, 0.43933, 0.40912 and 
0.34643 for magnetic parameter M = 0.00, 0.50, 1.50, 
2.50, 5.00 respectively which occur at the same position 

1.73814  . Here, it is observed that at 1.73814  , 
the maximum velocity decreases by 29.43% as the mag-
netic parameter M change from 0.0 to 5.0. The values of 
temperature are recorded as 0.70911, 0.71666, 0.73133, 
0.74536 and 0.77742 for magnetic parameter M = 0.00, 
0.50, 1.50, 2.50, 5.00 at the same position of    
1.23788 and the temperature increases by 9.63%. In 
Figures 3(a) and (b) the effects for different values of 
the viscous dissipation parameter Vd on the velocity and 
temperature profiles with 0.2, Pr 0.72, 0.1M     
and 0.4Q   have been shown graphically. It has been 
seen from Figure 3(a) that as the viscous dissipation 
parameter Vd increases, the velocities rising up to the 
position of 1.73814  for viscous dissipation parame-
ter Vd = 0.0, 5.0, 10.0, 20.0, 30.0 and from that position 
of  velocities fall down slowly and finally approaches to 
zero. It is also observed from Figure 3(b) that as the 
viscous dissipation parameter Vd increases, the tempera-
ture profiles increases. The maximum values of veloci-
ties are recorded as 0.48686, 0.48888, 0.49091, 0.49499 
and 0.49909 for viscous dissipation parameter Vd = 0.0, 
5.0, 10.0, 20.0, 30.0 respectively which occur at the same 
position 1.73814   and the maximum velocity in-
creases by 2.51%. Temperatures are recorded as 0.69855, 
0.70380, 0.70911, 0.71991 and 0.73095 for viscous dis-
sipation parameter Vd = 0.0, 5.0, 10.0, 20.0, 30.0 respec-  

For the computational purpose the period of oscilla-
tions in the waviness of this surface has been considered 
to be π. 

3. Results and Discussion 

We have investigated the effects of viscous dissipation 
on natural convection flow of viscous incompressible 
fluid along a uniformly heated vertical wavy surface. 
Although there are five parameters of interest in the pre-
sent problem, the effects of Prandtl number Pr, viscous 
dissipation Vd, magnetic parameter M, the heat genera-
tion parameter Q and the amplitude of the wavy surface 
 on the surface shear stress in terms of local skin fric-
tion coefficient, the rate of heat transfer in terms of the 
local Nusselt number, the velocity and temperature pro-
files, the streamlines and the isotherms. Numerical values 
of local shearing stress and the rate of heat transfer are 
calculated from Equations (22) and (23) in terms of the 
skin-friction coefficients Cfx and Nusselt number Nux 
respectively for a wide range of the axial distance vari-
able x starting from the leading edge for different values 
of the parameters Pr, Vd, M, Q and . Solutions are ob-
tained in terms of velocity profiles, temperature profiles 
against  and the skin friction coefficients Cfx, the rate of 
heat transfer in terms of the Nusselt number Nux at any 
position of x presented graphically for selected values of 
magnetic parameter M = 0.0, 0.5, 1.5, 2.5, 5.0, viscous 
dissipation parameter Vd = 0.0, 5.0, 10.0, 20.0, 30.0 and 
heat generation parameter Q = 0.0, 0.5, 1.0, 1.5, 2.0. 

The effects for different values of magnetic parameter 
M on the velocity and temperature profiles with 0.2  , 

 and  have been presented 
graphically in Figures 2(a) and (b). It is seen from the 
Figures 2(a) that for the values of magnetic parameter M 
= 0.0, 0.5, 1.5, 2.5, 5.0 the velocity decreasing upto the 
position of 

Pr 0.72, 10.0Vd 

5.5
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(a)                                                 (b) 

Figure 2. (a) Velocity and (b) Temperature profiles against  for different values of M with Pr = 0.72,  = 0.2, Vd = 10.0 and 
Q = 0.4. 
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Figure 3. (a) Velocity and (b) Temperature profiles against  for different values of Vd with Pr = 0.72,  = 0.2, M = 0.1 and Q 
= 0.4. 
 
tively at the same position of 1.23788 

.55722

 and the tem-
perature profiles increases by 4.64%. Both the velocity 
and temperature profiles accumulate nearly in the fol-
lowing points where 7   and 7.86828   
respectively for viscous dissipation parameter Vd = 0.0, 
5.0, 10.0, 20.0, 30.0. That is, velocity boundary layer 
thickness and thermal boundary layer thickness are un-
changed. The effects for different values of the heat gen-
eration parameter Q = 0.0, 0.5, 1.0, 1.5, 2.0 on the veloc-
ity and temperature profiles with 0.2  , Pr 0.72 , 

 and Vd  have been presented graphi-
cally in Figures 4(a) and (b) respectively. For the higher 
values of the heat generation parameter Q both the veloc-
ity and the temperature increases. 

0.1M  10 .0

In Figures 5(a) and (b) effects of magnetic parameter 
M = 0.0, 0.5, 1.5, 2.5, 5.0 on skin friction and the rate of 
heat transfer with 0.2, Pr 0.72, 10.0Vd     and v 
have been presented. From Figure 5(a) it is found that 
skin friction decreases significantly for greater magnetic 
field strength. This is physically realizable as the mag-
netic field retards the velocity field and consequently 
reduces the frictional force at the wall. However rate of 
heat transfer opposite pattern due to the higher values of 
magnetic parameter M which are presented in Figure  
5(b). The different values of viscous dissipation parame-
ter Vd with 0.2, Pr 0.72, 0.1M     and 0.4Q  . of 
the skin friction coefficients and the rate of heat transfer 
are shown graphically in Figures 6(a) and (b) respec-
tively. In this case the values of local skin friction coeffi-
cient Cfx are recorded to be 1.12663, 1.48796, 2.03818, 
4.01586 and 7.94542 for Vd = 0.0, 5.0, 10.0, 20.0, 30.0 
which occur at same point 1.51x  . From the Figure 
6(a), it is observed that at 1.51x  , the skin friction co-
efficient increases by 605.23% due to the higher value of 
viscous dissipation parameter Vd. However, the values of 
rate of heat transfer are found to be −0.07240, −3.63124, 
−11.82060, −66.89554, and −284.88541 for Vd = 0.0, 5.0, 

10.0, 20.0, 30.0 which occur at same point 1.51x  . The 
rate of heat transfer coefficient decreases by 393.39% 
due to the increased value of viscous dissipation parame-
ter Vd = 0.0, 5.0, 10.0, 20.0, 30.0. It is seen from the Fig-
ure 6(b) that for higher values of viscous dissipation 
parameter the rate of heat transfer decreases that is heat 
transfer slows down for higher viscous dissipation pa-
rameter Vd. In Figures 7(a) and (b) the skin friction co-
efficient Cfx and local rate of heat transfer Nux for dif- 
ferent values of heat generation parameter Q = 0.0, 0.5, 
1.0, 1.5, 2.0 with 0.2, Pr 0.72, M 0.1  

0.2

  and Vd = 
10.0 have been displayed. It is observed from the Figure 
7(a) that for higher values of heat generation parameter 
Q, skin friction increasing up to the axial position of x = 
0.6 and then skin friction becomes constant for all values 
of Q that is, skin friction coefficient meet together at the 
position of x = 0.6 and cross the sides that means after 
the axial position of x = 0.6 skin friction is decreasing for 
higher values of heat generation parameter but frictional 
force at the wall always rising towards downstream. It is 
seen from the Figure 7(b) that for higher values of heat 
generation parameter the rate of heat transfer decreases 
down to the axial position of x = 1.3 and then rate of heat 
transfer becomes constant for all values of Q that is, rate 
of heat transfer meet together at the position of x = 1.3 
and cross the sides that means after the axial position of x 
= 1.3 rate of heat transfer is increasing up for higher val-
ues of heat generation. 

In Figure 8(a) and (b) are shown that the effects of 
streamlines and isotherms for different values of heat 
generation parameter Q = 0.0 and 2.0 with amplitude of 
waviness of the surface  , Prandtl number Pr = 
0.72, magnetic parameter M = 0.1 and viscous dissipation 
parameter Vd = 10.0 respectively. The value of stream 
function ψ is 0.00 near the wall and then ψ increases 
gradually within the boundary layer and away from the 
wall. On the other hand the isolines of temperature (iso-    
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Figure 4. (a) Velocity and (b) Temperature profiles against  for different values of Q with Pr = 0.72,  = 0.2, M = 0.1 and Vd 
= 10.0. 
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(a)                                                 (b) 

Figure 5. (a) Skin friction coefficient and (b) Rate of heat transfer against x for different values of M with Pr = 0.72,  = 0.2, 
Vd =10.0 and Q = 0.4. 
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Figure 6. (a) Skin friction coefficient and (b) Rate of heat transfer against x for different values of Vd with Pr = 0.72,  = 0.2, 
M = 0.1 and Q = 0.4. 
 
therms) distribution shows that temperature decreases 
significantly as the values of the heat generation parame-
ter Q increases which have been presented in Figure 8(b). 

The value of isotherm is 1.0 at the wall and isotherms 
decreases slowly along the y-direction and finally ap-
roach to zero. p 
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Figure 7. (a) Skin friction coefficient and (b) Rate of heat transfer against x for different values of Q with Pr = 0.72,  = 0.2, 
M = 0.1 and Vd =10.0. 
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Figure 8. (a) Streamlines and (b) Isotherms for Q = 0.0 (Red solid lines), Q = 2.0 (Black dashed lines), with Pr = 0.72,  = 0.2, 
M = 0.1 and Vd = 10.0. 
 
4. Conclusions 

The effects of the Prandtl number Pr, the magnetic pa-
rameter M, the viscous dissipation parameter Vd, the heat 
generation parameter Q and the amplitude of wavy sur-
face  on MHD natural convection flow of viscous in-
compressible fluid along a uniformly heated vertical 
wavy surface have been studied. From the present inves-
tigation the following conclusions may be drawn:  

The temperature and the rate of heat transfer coeffi-
cient increase for increasing values of magnetic parame-
ter. The velocity decreases and at the position of 5.5   
becoming constant that is velocity profile meets at the 
point and then crosses the side and increases with mag-
netic parameter. The local skin friction coefficient de-
creases due to the increased value of magnetic parameter. 

The velocity and the temperature rise up and the local 
skin friction coefficient increase due to the higher values 
of viscous dissipation parameter Vd which cause reduc-
tion of the rate of heat transfer. 

The velocity, temperature and the skin friction coeffi-
cient enhance for higher values of internal heat genera-
tion parameter Q but for the same reason the rate of heat 
transfer reduces. 
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Nomenclature 

Cfx Local skin friction coefficient 
Cp Specific heat at constant pressure [J·kg−1·K−1] 
f  Dimensionless stream function 
g  Acceleration due to gravity [ms−2] 

Gr Grashof number 
k  Thermal conductivity [Wm−1·K−1]  
k Thermal conductivity of the ambient fluid [Wm−1·K−1] 
L Characteristic length associated with the wavy sur-

face [m] 
n  Unit normal to the surface 
Nux Local Nusselt number 
P Pressure of the fluid [Nm−2] 
Pr Prandtl number 
Q Heat generation parameter 
Q0 Heat generation constant 
qw Heat flux at the surface [Wm−2] 
T Temperature of the fluid in the boundary layer [K] 
Tw Temperature at the surface [K] 

T Temperature of the ambient fluid [K]  
u, v Dimensionless velocity components along the (x, y) 

axes [ms−1] 
x, y Axis in the direction along and normal to the tangent 

of the surface 

Greek Symbols 

 Amplitude of the surface waves 
β Volumetric coefficient of thermal expansion [K−1] 
η Dimensionless similarity variable 
 Dimensionless temperature function 
 Stream function [m2·s−1] 
 Viscosity of the fluid [kg·m−1·s−1] 
μ Viscosity of the ambient fluid 
ν Kinematic viscosity [m2·s−1] 
 Density of the fluid [kg·m−3] 
σ0 Electrical conductivity 
w Shearing stress 
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