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ABSTRACT 

Individual metallic single-wall carbon nanotubes show unusual non-Ohmic transport behaviors at low and high bias 
fields. For low-resistance contact samples, the differential conductance d dI V  increases with increasing bias, 

reaching a maximum at ~100 mV. As the bias increases further, d dI V

k

 drops dramatically [1]. The higher the bias, 

the system behaves in a more normal (Ohmic) manner. This low-bias anomaly is temperature-dependent (50 - 150 K). 
We propose a new interpretation. Supercurrents run in the graphene wall below ~150 K. The normal hole currents run 
on the outer surface of the wall, which are subject to the scattering by phonons and impurities. The currents along the 
tube length generate circulating magnetic fields and eventually destroy the supercurrent in the wall at high enough bias, 
and restore the Ohmic behavior. If the prevalent ballistic electron model is adopted, then the temperature-dependent 
scattering effects cannot be discussed. For the high bias (0.3 - 5 V), (a) the I-V curves are temperature-independent (4 - 
150 K), and (b) the currents (magnitudes) saturate. The behavior (a) arises from the fact that the neutral supercurrent 
below the critical temperature is not accelerated by the electric field. The behavior (b) is caused by the limitation of the 
number of quantum-states for the “holes” running outside of the tube. 
 
Keywords: Metallic SWNT; Orthogonal Unit Cell Model; Supercurrent; Cooper Pair (Pairon); Bloch Electron  

Dynamics 

1. Introduction 

In 2000, Yao, Kane and Dekker [1] reported the low- 
field and high-field transports in metallic Single-Wall 
carbon NanoTubes (SWNT). In Figure 1, their I-V 
curves are reproduced, after Ref. [1], Figure 1. At low 
fields (voltage ~30 mV), the currents show temperature- 
dependent dips near the origin, exhibiting non-Ohmic 
behaviors. The original authors discussed the low-field 
behavior in terms of one-dimensional (1D) Luttinger 
liquid (LL) model. Many experiments however indicate 
that the electrical transports in SWNT have a two-di- 
mensional (2D) character [2]. In fact, the conductivity in 
individual nanotubes depends on the circumference and 
the pitch characterizing a space-curve (2D). Hence the 
nanotube physics requires a 2D theory. Carbon nano- 
tubes are discovered by Iijima [3]. The important ques- 
tions are how the electrons or other charged particles 
traverse the nanotubes and whether these particles are  

scattered by impurities and phonons or not. To answer 
these questions, we need the electron energy band struc- 
tures. Wigner and Seitz (WS) [4] developed the WS cell 
model to study the ground state of a metal. Starting with 
a given lattice, they obtain a Brillouin zone in the - 
space and construct a Fermi surface. This method has 
been successful for cubic crystals including the face- 
centered cubic (fcc), diamond and zincblende lattices. If 
we apply the WS cell model to graphene, we then obtain 
a gapless semiconductor, which is not experimentally 
observed [2]. We will overcome this difficulty by taking 
a different route in Section 2. 

SWNTs can be produced by rolling graphene sheets 
into circular cylinders of about one nanometer (nm) in 
diameter and microns  m  in length [5,6]. The electrical 
conduction in SWNTs depends on the circumference and 
pitch, and can be classified into two groups: either semi- 
conducting or metallic [2]. In our previous work [7], we 
have shown that this division in two groups arises as  
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Figure 1. Typical current I and differential conductance 
dI/dV vs voltage V obtained using (a) low-resistance con- 
tacts (LRC) and (b) high-resistance contacts (HRC). The 
inset to (b) plots dI/dV vs V on a double-log scale for the 
HRC sample. After Yao et al. [1]. 
 
follows. A SWNT is likely to have an integral number of 
carbon hexagons around the circumference. If each pitch 
contains an integral number of hexagons, then the system 
is periodic along the tube axis, and “holes” (not “elec- 
trons”) can move along the tube length. Such a system is 
semiconducting and its electrical conductivity increases 
with the temperature (semiconductor-like), and is char- 
acterized by an activation energy 3  [8]. The energy 

3  has a distribution since both pitch and circumference 
have distributions. The pitch angle is not controlled in 
the fabrication processes. There are far more numerous 
cases where the pitch contains an irrational number of 
hexagons. In these cases, the system shows a metallic 
behavior experimentally observed [9]. 

In the present work, we present a unified microscopic 
theory of both low- and high-field conductivities. We 
primarily deal with the metallic SWNTs in the present 
work. Before dealing with high-field transports, we 
briefly discuss the micro-field (~mV) transports. Tans et 
al. [10] measured the electrical currents in metallic 
SWNTs under bias and gate voltages. Their data from 
Ref. [10], Figure 2, are reproduced in Figure 2. The 
currents versus the bias voltage are plotted in Figure 2 at 
three gate voltages: A (88.2 mV), B (104.1 mV), C 
(120.0 mV). Significant features are: 

1) A non-Ohmic behavior is observed for all, that is, 
the currents are not proportional to the bias voltage ex- 
cept for high bias. The gate voltage charges the tube. The 
Coulomb (charging) energy of the system having charge  

Bias voltage (mV) 

-0.5

-4 -2 0 2 4

A B C 

Q

 

Figure 2. Current-voltage curves of metallic SWNT at gate 
voltages of 88.2 mV (trace A), 104.1 mV (trace B) and 120.0 
mV (trace C). After Tans et al. in Ref. [10], Figure 2. 
 

 is represented by 
2

Coul 2 ,E Q C

C

88.2 mV

gate 104.1 mVV 
120.0 mVV

               (1) 

where  is the total capacitance of the tube. 
2) The current near the origin is nearly constant for 

different gate voltages gateV , (A)-(C). This feature was 
confirmed by later experiments [9,11]. The current does 
not change for small varying gate voltage in a metallic 
SWNT (while the current (magnitude) decreases in a 
semiconducting SWNT). 

3) The current at gate voltage gateV  (A) 
reverts to the normal resistive behavior after passing the 
critical bias voltages on both (positive and negative) sides. 
Similar behaviors are observed for  (B) 
and gate  (C). 

4) The flat current is destroyed for higher bias voltages 
(magnitudes). The critical bias voltage becomes smaller 
for higher gate voltages. 

5) There is a restricted gate -range (view window) in 
which the horizontal stretch can be observed. 

V

0V
Tan et al. [10] interpreted the flat currents near 

bias   in Figure 2 in terms of a ballistic electron 
model [2]. 

We propose a different interpretation of the data in 
Figure 2 based on the Cooper pair (pairon) [12] carrier 
model. Pairons move as bosons, and hence they are pro-
duced with no activation energy factor. All features (1) - 
(5) can be explained simply with the assumption that the 
nanotube wall is in the superconducting state as ex-
plained below. 

The supercurrents run without obeying Ohm’s law. 
This explains the feature (1). The supercurrents can run 
with no resistance due to the phonon and impurity scat- 
tering and with no bias voltage. Bachtold et al. [13] ob- 
served by scanned probe microscopy that the currents run 
with no voltage change along the tube in metallic 
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SWNTs. The system is then in a superconducting ground 
state, whose energy g  is negative relative to the 
ground-state energy of the Fermi liquid (electron) state. 
If the total energy  of the system is less than the con-
densation energy : 

E

E

gE

Coul g ,E E 

K

E K E           (2) 

where  is the kinetic energy of the conduction elec-
trons and the pairons, and 

biasE QV                   (3) 

is the Coulomb field energy, then the system is stable. 
Experiments in Figure 2 were done at 5 mK. Hence, we 
may drop the kinetic energy K  hereafter. The super-
conducting state is maintained and the currents run un-
changed if the bias voltage bias  is not too large so that 
the inequality (2) holds. This explains the horizontal 
stretch feature (2). 

V

V
Q Q

A B C .Q Q Q 

 

If the bias voltage is high enough so that the inequality 
symbol in Equation (2) is reversed, then normal currents 
revert and exhibit the Ohmic behavior, which explains 
the feature (3). 

The feature (4) can be explained as follows. For higher 

gate  there is more amount of charge, and hence the 
charges A , B , C  for the three cases (A, B, C) 
satisfy the inequalities: 

Q

               (4) 

The horizontal stretches are longer for smaller bias 
voltages. At the end of the stretch bias,m  the system 
energy equals the condensation energy g . Hence, we 
obtain from Equation (1.2) after dropping the kinetic 
energy 

axV
E

K  

,max bias,max

g Coul

E QV

E E

  

 
max

2
g 2 .

QV

E Q C 

max,B max,C ,V 

V gateV

       (5) 

Using Equation (1.4), we then obtain 

max,AV V              (6) 

which explains the feature (iv). 
The horizontal stretch becomes shorter as the gate 

voltage gate  is raised; it vanishes when  is a little 
over 120.0 mV. The limit is given by 

2 2 0.E Q C 

E

E

,max g Coul gE E E         (7) 

If the charging energy Coul  exceeds the condensa-
tion energy g , then there are no more supercurrents, 
which explains the feature (v). Clearly the important 
physical property in our pairon model is the condensation 
energy . 

E

g

In the currently prevailing theory [2], it is argued that 
the electron (fermion) motion becomes ballistic at a cer- 
tain quantum condition. But all fermions are subject to 
scattering. It is difficult to justify the reason why the bal-

listic electron is not scattered by impurities and phonons, 
which naturally exist in nanotubes. Yao, Kane and Dek- 
ker [1] emphasized the importance of phonon scattering 
effects in their analysis of their data in Figure 1. The 
Cooper pairs [12] in supercurrents, as is known, can run 
with no resistance (due to impurities and phonons). The 
experiments on the currents shown in Figure 1 are visi- 
bly temperature-dependent, indicating the importance of 
the electron-phonon scattering effect. If the ballistic elec- 
tron model is adopted, then the phonon scattering cannot 
be discussed within the model’s framework. We must go 
beyond the ballistic electron model. 

Yao et al. [1] extended the I-V measurements up to 5 
V as shown in Figure 3, reproduced from Ref. [1], Fig- 
ure 2. The resistance R versus the bias voltage V shows a 
relation: 

 0 0 high ,R R V I V 

R

         (8) 

where 0  and 0I  are constants. Strikingly, the I-V cur- 
ves at great bias measured at different temperatures be- 
tween 4 K and room temperatures overlap with each 
other. From the shape of the I-V curves, it is clear that the 
trend of decreasing conductance continues to high bias. 
Extrapolating the measured I-V curves to higher voltage 
would lead to a current saturation, that is, a vanishing 
conductance. 

In the present work, we present a quantum statistical 
theory of the transports, starting with the crystal structure, 
establishing the electron energy bands, electron-phonon 
interaction, the BCS-like Hamiltonian and calculating 
everything steps by steps. 

If the SWNT is unrolled, then we have a graphene 
sheet, which can be superconducting at a finite tempera- 
ture. We first study the conduction behavior of graphene 
in Section 2, starting with the honeycomb lattice and  
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Figure 3. Large-bias I-V curves at different temperatures 
using low-resistance contacts for a sample with an electrode 
spacing of 1m. Note: The curves overlap for different 
temperatures. The currents (magnitudes) saturate on both 
sides. 
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    ,mnV V r R r

1 2mn m n

introducing “electrons” and “holes” based on the or- 
thogonal unit cell. Phonons are generated based on the 
same orthogonal unit cell. In Section 3, we treat pho- 
nons and phonon-exchange attraction. In Section 4, we 
construct a Hamiltonian suitable for the formation of the 
Cooper pairs. We derive, in Section 5, the linear disper- 
sion relation for the center-of-mass motion of the pairons. 
The pairons moving with a linear dispersion relation un- 
dergoes a Bose-Einstein condensation (BEC) in 2D, 
which is shown in Section 6. Low-bias anomaly is dis- 
cussed in Section 7. Current saturation and the tempera- 
ture behavior are discussed in Section 8. Summary and 
discussion are given in Section 9. 

2. Graphene 

Following Ashcroft and Mermin [14], we adopt the semi-
classical model of electron dynamics in solids. In the 
semiclassical (wave packet) theory, it is necessary to 
introduce a -vector: k

ˆ ˆ ˆ ,x x y y z zk k ke e k e             (9) 

where ˆxe , ˆye ˆ and ze  are Cartesian orthonormal vec- 
tors since the -vectors are involved in the semiclassi- 
cal equation of motion: 

k

  , E v B
d

d
q

t
 

k
k           (10) 

where E  and  are the electric and magnetic fields, 
respectively, and the vector 

B





v
k

                  (11) 

is the electron velocity where   is the energy. The 2D 
crystals such as graphene can also be treated similarly, 
only the -components being dropped. The choice of 
the Cartesian axes and the unit cell is obvious for the 
cubic crystals. We must choose an orthogonal unit cell 
also for the honeycomb lattice, as shown below. 

z

 V r

Graphene forms a 2D honeycomb lattice. The WS unit 
cell is a rhombus shown in Figure 4(a). The potential 
energy  is lattice-periodic: 

 

a
2

a
1

(a)

y

(b)

-axis

x-axis
0

 

Figure 4. (a) WS unit cell, rhombus (dotted lines) for 
graphene. (b) The orthogonal unit cell, rectangle (dotted 
lines). 

           (12) 

where 
 R a a                (13) 

are Bravais vectors with the primitive vectors ,a a1 2  
and integers  ,m n

r

,nm

. In the field theoretical formulation, 
the field point  is given by 

 r r R               (14) 

where r

k

 is the point defined within the standard unit 
cell. Equation (12) describes the 2D lattice periodicity 
but does not establish the -space, which is explained 
below. 

To see this clearly, we first consider an electron in a 
simple square (sq) lattice. The Schrödinger wave equa-
tion is 

       
2

2
sqi ,

2
V

t m
  


   


r r r r



m

  (15) 

where   is the effective electron mass. The Bravais 
vector for the sq lattice, , is  0

mnR

 

 

0

ˆ ˆ lattice constant .

mn x y

x y

m n

ma na a

 

  

R a a

e e

 

    (16) 

The system is lattice periodic: 

   0
sq sqmnV V r R r .            (17) 

 If we choose a set of Cartesian coordinates x, y

 

 
along the sq lattice, then the Laplacian term in Equation 
(15) is given by 

 
2 2

2
2 2

, ,x .y x y
x y

 
  

     

Na N

     (18) 

If we choose a periodic square boundary with the side 
length ,  integer, then there are 2D Fourier 
transforms and (2D) -vectors. k

We now go back to the original graphene system. If 
we choose the x -axis along either 1  or 2a , then the 
potential energy field 

a
 r

y

k k

V  is periodic in the x-direc- 
tion, but it is aperiodic in the -direction. For an infi-
nite lattice the periodic boundary is the only acceptable 
boundary condition for the Fourier transformation. Then, 
there is no 2D -space spanned by 2D -vectors. If we 
omit the kinetic energy term, then we can still use Equa- 
tion (12) and obtain the ground state energy (except the 
zero point energy). 

We now choose the orthogonal unit cell shown in 
Figure 4(b). The unit has side lengths 

1 0 2 03 , 3 ,b a b a 

a

           (19) 

where 0  is the nearest neighbor distance between two 
C’s. The unit cell contains 4 C’s. The system is lat-
tice-periodic in the x - and -directions, and hence y
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there are 2D -space. k
The “electron” (“hole”) is defined as a quasi-electron 

that has an energy higher (lower) than the Fermi energy 

F  and “electrons” (“holes”) are excited on the positive 
(negative) side of the Fermi surface with the convention 
that the positive normal vector at the surface points in the 
energy-increasing direction. 

The “electron” (wave packet) may move up or down 
along the -axis to the neighboring hexagon sites pass-
ing over one C+. The positively charged C+ acts as a 
welcoming (favorable) potential valley for the negatively 
charged “electron”, while the same C+ acts as a hindering 
potential hill for the positively charged “hole”. The 
“hole”, however, can move horizontally along the x-axis 
without meeting the hindering potential hills. Thus the 
easy channel directions for the “electrons” (“holes”) are 
along the y-(x-)axes. 

y

1 2 .

Let us consider the system (graphene) at 0 K. If we put 
an electron in the crystal, then the electron should occupy 
the center O of the Brillouin zone, where the lowest en-
ergy lies. Additional electrons occupy points neighboring 
the center O in consideration of Pauli’s exclusion princi-
ple. The electron distribution is lattice-periodic over the 
entire crystal in accordance with the Bloch theorem [14]. 
Carbon (C) is a quadrivalent metal. The first few low- 
lying energy bands are completely filled. The uppermost 
partially filled bands are important for the transport 
properties discussion. We consider such a band. The 
Fermi surface, which defines the boundary between the 
filled and unfilled k-spaces (area) is not a circle since the 
x-y symmetry is broken. The “electron” effective mass is 
lighter in the y-direction than perpendicular to it. Hence 
the electron motion is intrinsically angle-dependent (ani-
sotropic). The negatively charged “electron” is near the 
positive ions C+ and the “hole” is farther away from C+. 
Hence, the gain in the Coulomb interaction is greater for 
the “electron”. That is, the “electron” is more easily ac- 
tivated. Thus, the “electrons” are the majority carriers at 
zero gate voltage. 

We may represent the activation energy difference by 
[7] 

                   (20) 

The thermally-activated (or excited) electron densities 
are given by 

  Be ,j k T
j jn



1j 

n T            (21) 

where  and 2 denote the “electron” and “hole”, 
respectively. The prefactor jn  is the density at the 
high-temperature limit. 

3. Phonons and Phonon Exchange Attraction 

Phonons are bosons corresponding to the running normal 

modes of the lattice vibrations. They are characterized by 
the energy  , where   is the angular frequency, and 
the momentum vector , whose magnitude is q 2

q
q

 
times the wave numbers. The q-vector for phonons is 
similar to the k-vector for the conduction electrons. The 
phonon with  represents a plane-wave proceeding in 
the -direction. The frequency   is connected with 
the q-vector through the dispersion relation: 

 .  q                   (22) 

The excitation of the phonons can be discussed based 
on the same rectangular unit cell introduced for the con-
duction electrons. We note that phonons can be discussed 
naturally based on the orthogonal unit cells. [It is diffi-
cult to describe phonons in the WS cell model.] For ex-
ample, longitudinal (transverse) phonons proceeding 
upwards are generated by imagining a set of plates each 
containing a number of rectangular cells executing small 
oscillations vertically (horizontally). A longitudinal wave 
proceeding in the crystal axis x , is represented by 

   exp i i exp i i ,q q q qu t u t qx      q r

u

v
6 110 ms

   (23) 

where q  is the displacement in the x-direction. If we 
imagine a set of parallel plates containing a great number 
of ions fixed in each plate, then we have a realistic pic- 
ture of the lattice vibration mode. The density of ions 
changes in the x-direction. Hence, the longitudinal modes 
are also called the density-wave modes. The transverse 
wave mode can also be pictured by imagining a set of 
parallel plates containing a great number of ions fixed in 
each plate executing the transverse displacements. Notice 
that this mode generates no charge-density variation. 

The Fermi velocity F  in a typical metal is of the 
order   while the speed of sound is of the order 

3 110 ms . The electrons are likely to move quickly to 
negate any electric field generated by the density varia-
tions associated with the lattice wave. In other words, the 
electrons may follow the lattice waves instantly. Given a 
traveling normal wave mode in Equation (21), we may 
assume an electron density variation of the form: 

 exp i i .qC t  q q r         (24) 

Since electrons follow phonons immediately for all 

q , the coefficient q  can be regarded as independent 
of q

C
 . If we further assume that the deviation is linear 

in the scalar product q qu u q q  and again in the elec-
tron density  n r

 C A qu nq q q r

, we then obtain 

.              (25) 

This is called the deformation potential approximation 
[15]. The dynamic response factor Aq  is necessarily 
complex since the traveling wave is represented by the 

Copyright © 2013 SciRes.                                                                                 JMP 



S. FUJITA  ET  AL. 

                                                                             JMP 

891

 i it  q r

.

pers [18-22]. Following this theory, we construct a gen-
eralized BCS Hamiltonian in this section. 

Copyright © 2

expC
q

exponential form. Complex conjugation of Equation (24) 
yields q . Using this form we can re- 
formulate the electron’s response, but the physics must 
be the same. From this consideration, we obtain 

In the ground state there are no currents for any system. 
To describe a supercurrent, we must introduce moving 
pairons, that is, pairons with finite center-of-mass (CM) 
momenta. Creation operators for “electron” (1) and “hole” 
(2) pairons are defined by 

A A
q q

 , q

                  (26) 

Each normal mode corresponds to a harmonic oscilla- 
tor characterized by q uq. The displacements  
can be expressed as 

      (32) 

013 SciRes.    

 
1 2

†i ,a aq q


†

† †

, ,

0.

a a

a

We calculate the commutators among  and , 
and obtain 

B †B

      2

12 34 12, 0, 0,j j jB B B   2 q

u


 
   

 
q


         (27) 

where q  are operators satisfying the Bose com- 
mutation rules: 

 †,a aq

† †

, ,

a a a a

a a a

  
  

q p q

q p q

  

   

p p q pq

p

        (28) 

Let us now construct an interaction Hamiltonian FH , 
which has the dimensions of an energy and which is 
Hermitian. Using Equations (22) and (23), we obtain 

   1
d exp i . . ,

2
3

FH r A qu n h c     q q
q

q r r

F

   (29) 

where h.c. denotes the Hermitian conjugate. This Hamil-
tonian H  can be expressed as 

 . . ,†
F

1

2 qH V c c a h c  k q k q
k q

       (30) 

where  1 2
2 c †c

 

 

3†
,, ,

0.

c c  

 



 

k k k k

iqq q q , and ,  are electron 
operators satisfying the Fermi anticommutation rules: 

V A

 
 

† †

† †, ,

c c c c

c c c c

  k k k k

k k k k

        (31) 

The FH  in Equation (30) is the Fröhlich Hamil- 
tonian [16]. In the process of deriving Equation (30), we 
found that the FH  is applicable for the longitudinal 
phonons only. As noted earlier, the transverse lattice 
normal modes generate no charge density variations, 
making its contribution to FH  negligible. 

4. The Full Hamiltonian 

Bardeen, Cooper and Schrieffer (BCS) published a his-
toric theory of superconductivity in 1957 [17]. Following 
BCS, Fujita and his collaborators developed a quantum 
statistical theory of superconductivity in a series of pa-  

    
   

   

   

   

†
12 34

1 2 1 3 2 4

†
2 4 1 3 2 4

†
1 3 1 3 2 4

,

1 if and

if and

if and

0 otherwise.

j j

j j

j j

j j

B B

n n

c c

c c

   


           (33) 

   

  

  



k k k k

k k k k

k k k k

j

   , 0 if ,j iB B j i 

   (34) 

Pairon operators of different types  always com- 
mute: 

  

           
1 1 2 2

† †
1 2,

           (35) 

and 
j j j j j jn c c n c c    k k k k

        (36) 

 1jrepresent the number operators for “electrons”   
and “holes”  2j  . 

Let us now introduce the relative and net momenta 
 ,k q  such that 

1 2 1

1 2 2

2
2

.
2

      
      

q
k k k k

k

q
q k k k k

        (37) 

Alternatively we can represent pairon annihilation op-
erators by 

       

     
1 2

1 1 1 1

2 2

2 2 2

2 2

,

.

B B c c

B c c

      

    

  

 

kq k k k q k q

kq k q k q

B

      2

, 0, 0,j i jB B B 
   

        (38) 

The prime on  will be dropped hereafter. In the k-q 
representation the commutation relations in Equations 
(33) and (34) are re-expressed as 

    kq k q kq

   

     (39) 

 
   

   

2 2

†
† /2 /2

†

/2 /2

1 if and

if 2 2 and 2 2
,

if 2 2 and 2 2

0 otherwise.

ji

j j
j i ji

j j
ji

n n

c c
B B

c c







    

     
 

   

     

                           



k q k q

k q k' q'
kq k q

k q k' q'

k k q q

k q k q k q k q

k q k q k q k q
        (40) 
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Using the new notations, we can write the full Hamil-

tonian as 

 (41) 

This is the full Hamiltonian for the system, which can 
describe moving pairons as well as stationary pairons. 
Here, the prime on the summations indicates the restric- 
tion arising from the phonon exchange attraction, see 
below. The connection with BCS Hamiltonian [17] will 
be discussed in Section 6. 

5. Moving Pairons 

The phonon exchange attraction is in action for any pair 
of electrons near the Fermi surface. In general the bound 
pair has a net momentum, and hence it moves. The en-
ergy  of a moving pairon can be obtained from: qw

       

 
 20

2

, 2

d ,
2

qw a

v
k a

    

  
 

k q k q k q

k q

2 ,

,

a  k q

k

(42) 

which is Cooper’s equation, Equation (1) of his 1956 
Physical Review Letter [12]. The prime on the  - 
integral means the restriction on the integration domain 
arising from the phonon exchange attraction, see below. 
We note that the net momentum  is a constant of mo-
tion, which arises from the fact that the phonon exchange 
attraction is an internal force, and hence cannot change 
the net momentum. The pair wavefunctions  are 
coupled with respect to the other variable , meaning 
that the exact (or energy-eigenstate) pairon wavefunc-
tions are superpositions of the pair wavefunctions 

. 

q

 ,a k q
k

 ,a k q

qw

0.qw 

Equation (42) can be solved as follows. We assume 
that the energy  is negative: 

                   (43) 

Then, 

  2 2 0qw      k q k q .      (44) 

Rearranging the terms in Equation (1.42) and dividing 
by    2 2 qw     k q k q

 

, we obtain 

 
   

, ,
2 2 q

C
a

w 


    

q
k q

k q k q
   (45) 

where 

 
 

 2 , ,d k a k q0
2

2

v
C 


q


          (46) 

which is k-independent. 
Introducing Equation (45) in Equation (42), and drop-

ping the common factor C q

 

, we obtain 

   
3

0
2

d
1 .

2 22 q

v k

w 


    
 k q k q

 

 (47) 

We now assume a free electron moving in 3D. The 
Fermi surface is a sphere of the radius (momentum) 

1 2

F 1 F2 ,k m 

1m

              (48) 

where  represents the effective mass of an electron. 
The energy   k  is given by 

     2 2
F 12 .k k k m   k

k

        (49) 

The prime on the -integral in Equation (47) means 
the restriction: 

    D0 2 , 2 .       k q k q

2 k

 

    (50) 

We may choose the polar axis along q as shown in 
Figure 5. The integration with respect to the azimuthal 
angle simply yields the factor . The -integral can 
then be expressed by 

 
F D

F

3

0

1 2cos2
2

1 1 20 cos
2 1

2

d
4 sin d ,

2 4

k k q

k q
q k

v

k k

w m q




 



 










 



1
D 1 D F .k m k  

 (51) 

                 (52) 

After performing the integration and taking the small-q 
and small-  D Fk k  limits, we obtain 

F
0 ,

2q

v
w w q 

0w

                (53) 

where the pairon ground-state energy  is given by 

 
D

0
0

2
.

exp 2 0 1
w

v




  




       (54) 

 
Z 

q/2
k

-k kF

k kF D+

k 
 θ 

q/2 kF 
-k 

kF + kD  

Figure 5. The range of the integration variables (k, θ) is 
limited to a spherical shell of thickness kD. 
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As expected, the zero-momentum pairon has the low-
est energy 0 . The excitation energy is continuous with 
no energy gap. Equation (53) was first obtained by Coo- 
per (unpublished), and it is recorded in Schrieffer’s book 
[23], Equation (15). The energy q  increases linearly 
with momentum (magnitude)  for small . This be- 
havior arises from the fact that the density of states is 
strongly reduced with the increasing momentum , and 
dominates the  increase of the kinetic energy. The 
linear dispersion relation means that a pairon moves likes 
a massless particle with a common speed 

w

w
q

q

q

2q

F . This 
relation plays a vital role in the B-E condensation of pai-
rons (see next section). 

2v

0 .qw w cq 

Such a linear energy-momentum relation is valid for 
pairons moving in any dimension (D). However, the co-
efficients slightly depend on the dimensions; in fact 

                (55) 

Fc v 1 2  and    for 3D and 2D, respectively. 

6. The Bose-Einstein Condensation of 
Pairons 

In Section 4, we saw that the pair operators  †,B B  
appearing in the full Hamiltonian H  in Equation (41) 
satisfy rather complicated commutator relations in    
Equations (39) and (40). In particular part of Equation 
(39) 

2 2† †
0B b       k k

2† † 0c c  
   k k

† †B b

      (56) 

reflect the fermionic natures of the constituting electrons. 
Here, 0k k  represents creation operator for zero 
momentum pairons. BCS [17] studied the ground-state of 
a superconductor, starting with the reduced Hamiltonian 

0H , which is obtained from the Hamiltonian H  in 
Equation (41) by retaining the zero momentum pairons 
with , written in terms of  by letting  0q  b

   
0
j jB bk k , 

 (57) 

Here, we expressed the “electron” and “hole” kinetic 
energies in terms of pairon operators. The reduced Ham- 
iltonian 0H  is bilinear in pairon operators , and 
can be diagonalized exactly. BCS obtained the ground- 
state energy  as 

 †,b b

0E

 0 D 00 ,E w                (58) 

where  0  is the density of states at the Fermi en-
ergy. The 0  is the ground-state energy of the pairon, 
see Equation (54). Equation (58) means simply that the 
ground state energy equals the numbers of pairons times 

w

wthe ground-state energy 0  of the pairon. Our Hamilto-
nian H  in Equation (41) is reduced to the original BCS 
Hamiltonian (see Ref. [17], Equation (24)). There is an 
important difference in the definition of “electron” and 
“hole” here. BCS called the quasi-electron whose energy 
is higher (lower) than the Fermi energy F , the “elec- 
tron” (“hole”). In our theory the “electrons” (“holes”) are 
defined as quasiparticles generated above (below) the 
Fermi energy and circulates counterclockwise (clockwise) 
viewed from the tip of an external magnetic field vector 

. They are generated, depending on the energy contour 
curvature signs. For example, only “electrons” (“holes”) 
are generated for a circular Fermi surface with negative 
(positive) curvature whose inside (outside) is filled with 
electrons. Since the phonon has no charge, the phonon 
exchange cannot change the net charge. The pairing in-
teraction terms in Equation (41) conserve the charge. The 
term 

B

, where   1
V A0 0v V

 q q , A   
sample area, generates a transition in the “electron” states. 
Similarly, the exchange of a phonon generates a transi-
tion in the “hole” states, represented by . 
The phonon exchange can also pair-create or pair-anni- 
hilate “electron” (“hole”) pairons, and the effects of these 
processes are represented by , 0

   1 2
s sv B B 

q
†n n B B 

kq k q , 
as shown in Feynman diagrams in Figures 6(a) and (b). 
At 0 K the system must have equal numbers of – (+) 
zero-momentum (ground) pairons. 

To describe a supercurrent, we must introduce moving 
pairons. We now show that the center-of-masses of the 
pairons move as bosons. That is, the number operator of 
pairons having net momentum  

 q kq kq kq
k k

0,1,2, .n

           (59) 

have the eigenvalues 

                (60) q 

The number operator for the pairons in the state 
 ,k q  is 

† † †
2 2 2 2 ,n B B c c c c      kq kq kq k q k q k q k q    (61) 

 

-q 

-k-q -k
-q

-k
time 

-k-q
kk' = k + q

k k' = k + q 
(a) (b)  

Figure 6. Feynman diagrams representing (a) pair-creation 
of ± ground pairons from the physical vacuum, and (b) pair 
annihilation. The time is measured upwards. 
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where we omitted the spin indices. Its eigenvalues are 
limited to zero or one: 

  F2 0 .cp v p                (71) 

We divide Equation (69) by the norm
an

2while .NL n        (72) 

We then obtain 

 

0 or 1.n kq

B B q kq
k

               (62) 

To explicitly see this property in Equation (60), we in-
troduce 

                (63) 

and obtain 

1 1

2 2

,B B


 
 


kq q

q

n
n B

† †

, 1

, .

B n n n

n B B

 
      


   

q q
k q kk

q q q

  (64) 

Although the occupation number q  is not connected 
with  as q q q , the eigenvalues nBq

†B q  of q  
satisfying Equation (64) can be shown straightforwardly 
to yield [24] 

n

0,1, 2, , q n               (65) 

with the eigenstates 
†0 , 1 0 , 2 † † 0 ,B B B q q q 

k q

nq
0,1 

.     (66) 

In summary, pairons with both  and  specified 
are subject to the Pauli exclusion principle, see Equation 
(62). Yet, the occupation numbers  of pairons having 
a CM momentum  are . q , 2,

The most important signature of many bosons is the 
Bose-Einstein Condensation (BEC). Earlier we showed 
that the pairon moves in 2D with the linear dispersion 
relation, see (53): 

 0 Fpw w  02 ,v p w cp 

q

        (67) 

where we designated the pairon net momentum (magni-
tude) by the more familiar  rather than . p

Let us consider a 2D system of free bosons having a 
linear dispersion relation: cp  ,  2c v  F . The 
number of bosons, , and the Bose distribution func- 
tion 

N

       B 0f f  

 

 B

0

,

p

p
p p

f



B

1
; ,

e 1  
  


 


    (68) 

are related by 

 B 0; ,pN f N    



     (69) 

where   is the chemical potential,   1

Bk T 

 e 1 

we write 

, and 
1

0N                (70) 

is the number of zero-momentum bosons. The prime on 
the summation in Equation (69) indicates the omission of 
the zero-momentum state. For notational convenience, 

alization area 
2L , 

d take the bulk limit: 

,N L

 2
0 B2

1
d ,

2
n pfn  




        (73) 

where 2
0 0n N L  is the number density of zero-mo- 

 bosons an
 

mentum d n  the total boson density. After 
performing the angular integration and changing integra-
tion variables, we obtain from Equation (73): 

  2 2 22 d
x

c n n x x 0 10
,

e 1x
 

 
  (74) 

where the fugacity 

e


   

                   (75) 

is less than unity for all temperatures. After expanding 
the integrand in Equation (74) in powers of  e 1x   , 
and carrying out the x-integration, we obtain 

 2 2
B 2 ,

k T
n n n0 2 22x c

 
       


      (76) 

   2 2
1

0 1 .
k

k k

  




            (77) 

Equation (76) gives a relation among  , n , and T . 
The function  2   monotonically ncreases fr m

um v
 i o  

ze  aro to the maxim lue 

 2 1 1.645               (78) 

as   is raised from zero to one. I
it,

n the low-temperature 
lim  1  ,    2 2 1 1.645    , and the density of 
excited b onsos , xn , varies as T  

m av

2 as seen from Equa-
tion (76). This te perature beh ior of xn  persists as 
long as the right-hand-side (r.h.s.) of Eq ation (76) is 
smaller than n ; the critical temperature cT  occurs at 

u

 2 2 2 2
B c 2 1 2cn k T c  . Solving this, we ob n tai

 1 1
F1.24 .cn v n      B c 1.954k T     (79) 

The BEC of pairons moving in 2D occur
te

c

and the 

s at a finite 
mperature. This appears to contradict with Hohenberg’s 

theorem (no long range order in 2D). But this theorem is 
proved under the assumption of the f-sum rule arising 
from the mass conservation. The pairons move massless 
with the linear dispersion relation [see Equation (71)], 
and hence they are not subject to Hohenberg’s theorem 
[25]. 

If the temperature is raised beyond T , the density of 
zero momentum bosons, 0n , becomes vanishingly small, 

fugacity   can be determined  from
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 2
B 2

c2 2
, .

2

k T
T

c


 


  n T


      (80) 

In summary, the fugacity   is equal t
cond g  cT T , and it becomes s

v

e fam

o unity in the 
maller than ensed re ion:

unity for cT T , where its alue is determined from 
Equation (80). 

Formula (79) for the critical temperature cT  is 
distinct from th ous BCS formula 

B c 03.53 2 ,k T               81) 

where   is the zero temperature electron e

 (

0 nergy gap 
in the weak coupling limit. The 

an

0v , w  

r
ne

h
 r (

u

th

electron energy gap 
 T  d the pairon ground-state energy 0w  both de- 

pend on the phonon-exchange coupling energy parameter 
hich appears in the starting Hamiltonian H in Equa- 

tion (41). The energy 0w  is negative (bound-state en- 
e gy). Hence, this 0w  cannot be obtained by the pertur-
bation theory. The con ction between 0w  and 0v  is 
very complicated. T is makes it difficult to discuss the 
critical temperature cT  based on the BCS elation 81). 
Unlike the BCS formula, formula (79) is directly con-
nected with the meas rable quantities: the pairon density 

0n  and the Fermi speed Fv . 
We emphasize here that both formulas (79) and (81) 

were derived, starting wi  the Hamiltonian H  in Eq- 
ua

bias in Figure 1 may be 
his effect is clearly 

tion (41) and following statistical mechanical calcula- 
tions, see the reference [27] for details. 

7. Low Bias Anomaly 

The unusual current-dips at zero 
called the low bias anomaly (LBA). T
seen in (a) low resistance contacts LRC sample. The dif-
ferential conductance d dI V  increases with increasing 
bias, reaching a maximum at 100 mVV  . With a fur-
ther bias increase, d dI V  d

e ll show 
k-dow

rops dramatically. See (a), 
the upper panel in Figure 1. W  wi that the LBA 
arises from the brea n of the superconducting state 
of the system. 

With no bias, the nanotube’s wall below 150 K is in a 
superconducting state. If a small bias is applied, then the 
system is charged, positively or negatively depending on 
the polarity of the external bias. The applied bias field 
will not affect the neutral supercurrent but can accelerate 
the charges at the outer side of the carbon wall. The re- 
sulting normal currents carried by conduction electrons 
are scattered by impurities and phonons. The phonon 
population changes with temperature, and hence the 
phonon scattering is temperature-dependent. The normal 
electric currents along the tube length generate circulat-
ing magnetic fields, which eventually destroy the super-
current running in the wall at a high enough bias. Thus, 
the current I   A  versus the voltage V  (mV) is 

non-linear near the origin because of the supercurrents 
running in the wall. The differential conducta e nc d dI V  
is very small and nearly constant (superconducting) for 

10 mVV   in the HRC sample, see the lower p  
Figure 1. We stress that if the ballistic electron model [2] 

 then the scatterings by phonons cannot be 
discussed. The non-linear 

anel in

is adopted,
IV  curves below 150 K 

mean that the carbon wall is superconducting. Thus, the 
clearly visible temperature effects for both LRC and 
HRC samples arise from the phonon scattering. We as-
sumed that the system is superconducting below 

150 K . The LBA arises only from the superconduct-
ing state. The superconducting critical temperature cT  

n be higher than 150 K. An experimental check 
of cT  is highly desirable. 

8. T mperature Behav

must the

e ior and Current 
Saturation 

ure-in- 
de emperature behavior is consistent with 

a
ias is raised from zero, the system 

w

The high-bias I-V curves in Figure 3 is temperat
pendent. This t

our picture that the superconducting state of the metallic 
SWNT continued throughout the temperature range meas- 
ured. Thus, the superconducting temperature cT  must 
be higher than 200 K. 

The current saturation observed in Figure 3 m y arise 
as follows. When the b

ill be charged with “holes” and the resulting “hole” 
currents run on the outer side of the tube, making an ex-
tra contribution to the current I . The number of the 
running “holes” will grow as the bias voltage is raised. 
“Holes” obey the Fermi-Dirac statistics. At 0 K the 
number of “holes” is twice the number of the “hole” 
quantum states outside of the carbon wall, which is con-
siderably smaller than the number of the orthogonal unit 
cells in the carbon wall. The number of the running 
“holes” cannot exceed twice the number of the quantum 
states because of Heisenberg’s uncertainty principle and 
Pauli’s exclusion principle. Thus, the “hole” current den- 
sity calculated by 

hole Fj en v                 (82) 

must saturate to the maximum number en v  as the 
bias is raised further. 

Ohmic transport behaviors at low (zero) 
served in metallic SWNT are explained 

max F

9. Summary 

The unusual non-
bias anomaly, ob
in terms of a two-currents model. Supercurrents run in 
the graphene wall below 150 K. The normal “hole” cur- 
rents on the outer-side of the tube are subject to scatter- 
ing by phonons and impurities. The currents along the 
tube length generate circulating magnetic fields, which 
eventually destroy the supercurrent in the wall at high 
enough bias, and restore the Ohmic behavior. The low- 
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current anomaly is temperature-dependent since the pho- 
non population changes with the temperature. 

The I-V curves for the high bias (0.3 - 5 V) are tem-
perature-independent (4 - 150 K), which arises from the
fa

m-state sites for th
“h

s: 
 

nit cell distinct from the WS

ctangular unit cells. This is important 

ice oscillations are 

 
ct that the neutral supercurrent running in the tube wall 

is not accelerated by the bias below the superconducting 
(critical) temperature. It is highly desirable to find the 
critical temperature by performing experiments above 
150 K (experimental temperature). 

The current saturation above 0.5 V observed arises 
from the limitation of the quantu e 

oles” running on the outer surface of the tube. If the 
tube’s circumference size is raised, then the saturation 
current should increase. 

In the course of our calculations we uncover several 
significant facts as follow

To establish a 2D k -space for graphene we must 
introduce a rectangular u  
unit cell (rhombus). 

 Electrons and phonons run anisotropically in gra- 
phene. 

 Electrons and phonons are generated based on the 
same re when 
dealing with the electron-phonon scattering and the 
phonon-exchange attraction. 

 Phonons (bosonic quanta) representing the running 
plane-wave modes of the latt gen-
erated. 

 The so-called Fröhlich interaction Hamiltonian FH  
was derived, with the assumption t at the electrons

 is much sm

. Findin

[1] Z. Yao, C. L. ysical Review
ters, Vol. 84, 2

h  
move in the perturbing density waves generated  
the longitudinal phonons. The transverse phonons do 
not contribute to the Fröhlich interaction. 

 “Electrons” and “holes” move as wave packets whose 
sizes are of the orthogonal unit cells. 

 by

 Phonons’ average size is much greater than the elec-
tron size. The average phonon energy aller 
than the conduction electron energy. 

 The BEC temperature for moving pairons is regarded 
as the superconducting temperature cT g T  c

for metallic SWNT which is greater than 150 K from 
the studied experiments [1] is highly desirable. 
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