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ABSTRACT 

The linear stability of the triangular points was studied for the Robes restricted three-body problem when the bigger 
primary (rigid shell) is oblate spheroid and the second primary is radiating. The critical mass obtained depends on the 
oblateness of the rigid shell and radiation of the second primary as well as the density parameter . The stability of the 
triangular points depends largely on the values of . The destabilizing tendencies of the oblateness and radiation fac- 
tors were enhanced when  and weakened for 

k
k

0k  0k  . 
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1. Introduction 

Robe [1] introduced a new kind of restricted three-body 
problem that incorporates the effect of buoyancy force. 
One of the primaries 1  is a rigid shell of mass filled 
with homogeneous incompressible fluid of density 1

m
 . 

The second primary 2  is a point mass located outside 
the shell. The third body 3  is the particle of negligible 
mass of density 3

m
m

  which moves inside the shell under 
the influences of the gravitational attraction of the prima-
ries and the buoyancy force of the fluid of density 1 . 
Robe studied the motion of the infinitesimal mass when 

2  describes both circular and elliptic orbits. He ob-
tained the equilibrium points and showed that, for the 
circular case, the equilibrium point is linearly stable 
when 

m

3 1   and unstable when 1 3  . 
Robes model may be useful for studying the small os- 

cillations of the earth’s inner core by taking into consid- 
eration the moon’s attraction. The model is also applica- 
ble to the study of the motion of the artificial satellite 
under the influence of the earth’s attraction. 

Robes problem has been modified to define a new 
problem (Shrivastava and Garain [2], Plastino and Plas- 
tino [3], Giordano, Plastino and Plastino [4], Hallan and 
Rana [5] and Hallan and Mangang [6]). 

In our model we consider a rigid shell which is oblate 
spheroid and the second primary which radiates to study 
the effect of oblateness of the first primary and radiation 
of the second primary on the stability of the triangular 

equilibrium points of the Robes restricted three-body 
problem. 

The paper consists of four sections. Section one estab- 
lishes the relevant equations of motion that incorporates 
the effect of buoyancy force using some basic assump- 
tions. In the second section we obtained the equilibrium 
points. Section three deals with the variational equations 
of motion of the problem and solutions of the resulting 
characteristic equation obtained. In section four, we ob- 
tained the critical mass of the mass parameter. This is 
followed by the conclusion on the findings. 

2. Equations of Motion 

Let the mass of the rigid shell be 1  and the point mass 
be 2 . Let the density of the incompressible fluid inside 
the shell be 1

m
m

  and that of the infinitesimal mass be 3  
and it’s mass . Let m A  denote the oblateness coeffi-
cient of the first primary such that  and  
the radiation force of the second primary which given by 

0 1A  q

 1p gF F q 0 1 1q   such that . 
Let 1M , 2M  and 3M  be the centers of ,  

and  respectively such that 1 3 1

1m 2m
m M M r  and 2 3M M

r
 

2  x, . Let G be the gravitational constant and y
m

m m

 the 
coordinates of the infinitesimal mass . Let the line 
joining 1  and 2  be the x axis

m
. Then the total po- 

tential acting on  is 

22 1 1 1
1 1 3

2 3 1 1

4
π 1

3 2

Gm q Gm Gm A
G r

r r r





 

    
 

   (1) 
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where 

 
 

22 2
1

22 2
2 2

r x x y

r x x y

  

  

1
              (2) 

Let the coordinates of 1m  and 2  be m 1  and ,0x
 2  respectively. In the dimensionless rotational 
coordinate system we choose the unit of mass to be the 
sum of the masses of the primaries ( 1

,0x

1m  
m

 and 

2 
1G

). We take the unit of length equal to the distance 
between the primaries and is chosen such that  . 

The equations of motion of the infinitesimal body are 
(AbdulRaheem and Singh, [7]), 

2

2
x

y

x ny

y nx

  

  

 
                  (3) 

where 

 2 2 2 2
1

1

2
n x y kr

r r 3
1 2 1

1 1

2
q A

r

   
         (4) 

1 2

3 1 2

,

1

m

m m

n A

  


 
 

22 2

22 21

y

y







 

0x y   

  

1

2

4
π 1 ,

3

1 3
0 ,

2 2

k





 
  

 

   

 

1

2

r x

r x

 

 
                        (5) 

3. Equilibrium Points 

Equilibrium points exist when 

                   (6) 

For  we have 0k 

 

    

2 1
2

1 3

x n x k x 

 

    

 
 

3
1

3 5
2 1

1

2

x

r

x x
q A

r r

 

 

 

 

 

        (7) 

 2
3 3

1 2

2y 5
1

1 3 1

2

y yy
A

r

  


0x  0y  0y 

n y ky q
r r

     .  (8) 

Triangular Points 

The triangular points are given by the equations 

, , . 

That is 

and 

 

 

 

2
5

1

5
1

11 3

13
0

A
r

A
r

 



 
 
 

 




3 3
1 2

3 3
1 2

2
2

1 1
2

2

x n k q
r r

k q
r r

 

   

  
   



      (9) 

2
3 3 5

1 2 1

11 3
2 0

2
y n k q A

r r r

   
     

 
.    (10) 

Equations (9) and (10) give 

2
3 5

1 1

1 3
2 0

2

A
n k

r r
                (11) 

2
3

2

2 0
q

n k
r

  

r r

                 (12) 

Knowing 1  and 2  from Equations (11) and (12) 
the exact coordinates of the triangular points are obtained 
by using Equation (5) for x  and . y

Thus 

 

   

2 2
1 2

1

222 2 2 2
1 2 1 2

1 1

2 2

1 1 1

2 4 4

x r r

y r r r r

   

    (13) 
        

1 3

When the bigger primary is not oblate, the smaller 
primary is not radiating and    

 1 1,2ir i 

 1 1,2i ir i  

.                (14) 

We assume the solutions of equations (11) and (12) are 

             (15) 

where 1  and 2  are very small perturbations. Using 
Equations (11) and (12) and restricting ourselves to lin- 
ear terms in 1 qA ,   and k , we obtain 

 

   

1 3 4 1 1
1

2 3 2 3 2

9 16 3 1 1
1 1

12 2 3 2 3 2

k
x q A

k

k
y q A

k

               
        

 (16) 

  
    

The coordinates  x y,  obtained in Equation (16) 
are the triangular points and are denoted by  and . 4L 5L

x x

4. Stability of Triangular Points 

Putting 0  y y, 0   
L

5L

 in Equation (3), in order 
to study the motion near the triangular points  4  and 

, we obtain the variational equations of motion as 

   
   

0 0 0 0

0 0 0 0

2 , ,

2 , ,

xx xy

xy yy

n x y x y

n x y x y

   

   

   

   

 


   24 0 0 2 2 0 0 04 0xx yy xx yy xyn 

     (17) 

The characteristic equation is 

 (18)         


where the superscript 0 indicates that the partial deriva- 
tives are evaluated at the triangular points 0 0,x y , and 
are given by 
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0

3 3

1 2 16
3 3

3 4 3

3 3

4 2

xy

k
k

k

a b
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0 1 2

3
3 4xx

k

k

     
1 1

3

4
a b    
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0 1 2 3 16
3 3

3 4 4 3yy

k

k

         
2 2k a b     

 

       

 

   
where 

 

 5 2 9 4 9 3 4
4 1

2 3 4 3 2 3 4 3 2

k k A k
a A A q

k k k k

                            
1

1 9

4
 

 1

1 9 16 9 9 16
3 2 1

4 3 2 3 4 3 2

k A k
b A q

k k k

                    
 

   9 3 41 16 9 7 4 3 8 3 4
4 1

3 4 3 2

kk k k
A A q

k k

                 
2 3 3

12 3 2 3 2 3 2
a k A

k k
             

 

 2 3 1
12 3 3 2

b k q
k

      

1 16 18  
 

   9 3 41 3 57 20 3 16 3 4
1

kk k k
q

k

            
3 3 4

12 2 3 2 3 2 3 8 3 2
a A A A

k k k
              

 

   9 3 41 11 4 3 8 3 4
9 3 2 1

3 2 3 8 3 2

kk k k
A A q

k k k k

                         
3 4 3 2

b A


                     (19) 

 

iaEach , ib  is very small. 

The characteristic equation becomes 
 

 4
1 2

1 2 1 2 1 2 16
3 9 4 3

3 4 3 4 3 4 3

 

2 2
1 2

2
2 2 2

3 1 3 3 1 3

6

3 39 1 2 16
3 3 3 4 9 3 12 6 3 6

16 164 3 4 3 3 3

k k k
b b k a a A

k k k

b ak
k b b a b a a

k k k

   

 

                                     
  
                             

0

3 3   

 

 
Its roots are 

 

 4
1 2 1 2

1 2 1 2 1 2 1 2 1 2
3 9 4 16 3 3

3 4 3 4 3 4 3 4 3 4

k k k k
b b k a a

k k k k
                                           

6
k

A
k


    

 

 
A ,  and they depends upon the nature of the discriminant  , , qWe observe that the roots are functions of k   

and is given by 
 

  2
3 1

2 3

20 16 10 14 20 19
9 1 1 3 4 2 1 1 9 1 1

3 9 3 3 3 9

10 14 2 20 16 20 16
2 1 1 1 18 1 1 36 1 1

3 3 3 3 9 3

k k b k k k k b

k k k b k k b k


                             

         
                              

          

8
3

9
k 3a

 

2

1

2 3

20 16 14 10 14 20 16
27 1 1 1 2 1 1 9 1 1

3 9 3 3 3 3 9

10 14 28 20 16
2 1 1 3 1 18 1 1 4 3 14

3 3 3 3 9

k k k k k k k a

k k k a k k a k A





                                              
                          

        

.       (20) 
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Three cases can be sed for  : 

e ots are negative 
sh the tr

are

 

secular terms, showing that the triangular points are un-

5. Critical Mass 

quation 0   gives the critical 

discus
1) When 0  , we have that th  ro
owing that iangular points are linearly stable. 
2) When 0  , we have that the real parts of two of 

the four roots  positive and equal, showing that the 
triangular points are unstable. 

3) When 0  , we have that the double roots give 

stable. 

The solution of the e
mass value c  of the mass para r. That is mete

 

 

 

 
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21 4 1 10 14 20 19
1 2 1 1 9 1 1
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41 4

c

a b bP Q
k k k k

P PP P Q

a b b
k k k k

PP P Q

PQ



2
3 4P P Q

                                         

                                




  
 
 3 31

34 4
b a A

P P P Q P P Q   
 

4 3 142 kQ P  
    

          (21) 

here w
20 16

9 1 3
3 3

P k k
      
  

 and  

2
14

1
3

Q k
    
 

. Restricting ourselves to linear terms in  

k , 1 q  and , and neglecting the product  1 q A , A
we find t

0c br p

hat 

                   (22) 

where 

0

1 2
1

2 2
  

3

7

 
  
 

 

 2 1 13
1 1

927 69
br q A  
      

69
 
 

128 64 225073
1 (1 )

27 2208 69

98 38990441
1

81 18032 69

k k q

kA

    
 

   
 

 

 (22) gives the critical mass value c

27 69
p  

Equation   of

ateness and 

 the 
mass parameter. It reflects the effect of the oblateness of 
the first primary (rigid mass) and the radiation of the 
second primary on the critical mass of the Robes re- 
stricted three-body problem, indicating a destabilizing 
effect on the triangular equilibrium points. 

The destabilizing tendencies of both the obl
radiating factors are further enhanced when 0k   
 1 3   and weakened when 0k    1 3  . 

0k   we confirm the aWhen result of Abdul R
an  (200

heem 
d Singh 6) for 1 2 0   , 1 1q   and 2 0A  . 

When 0k  , 1q   and 0A   w tain the criticale ob
lue of the classical restric

6. Conclusions 
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