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Abstract 
 
The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo 
law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied 
using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity 
boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The in-
fluences of various micropolar fluid parameters are analyzed on the onset of convection. The classical ap-
proach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a 
wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable draw-
back of infinite heat propagation speed. It is found that the results are noteworthy at short times and the crit-
ical eigenvalues are less than the classical ones. 
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1. Introduction 
 
The Classical Fourier law of heat conduction expresses 
that the heat flux within a medium is proportional to the 
local temperature gradient in the system. A well known 
consequence of this law is that heat perturbations propa-
gates with an infinite velocity. This drawback of the 
classical law motivated Maxwell [1], Cattaneo [2], 
Lindsay and Straughan [3], Straughan and Franchi [4], 
Lebon and Cloot [5], Siddheshwar [6] and Pranesh [7], 
Dauby et al. [8] and Straughan [9] to adopt a non-cla- 
ssical heat flux Maxwell-Cattaneo law in studying Ray-
leigh-Bénard/Marangoni convection to get rid of this un- 
physical results. This Maxwell-Cattaneo equation con-
tains an extra inertial term with respect to the Fourier 
law.  

TQ
dt

Qd
 


 

where Q


 is the heat flux,  is a relaxation time and  is 
the heat conductivity. This heat conductivity equation and 
the conservation of energy equation introduce the hyper-
bolic equation, which describes heat propagation with fi- 
nite speed. Puri and Jordan [10,11] and Puri and Kythe 
[12,13] have studied other fluid mechanics problems by 
employing the Maxwell-Cattaneo heat flux law.  

The theory of micropolar fluid is due to Eringen (see 
[14-16]), whose theory allows for the presence of par-
ticles in the fluid by additionally accounting for particle 
motion. The motivation for the study comes from many 
applications involving unclean fluids wherein the clean 
fluid is evenly interspersed with particles, which may 
be dust, dirt, ice or raindrops, or other additives(see [17, 
18]). This suggests geophysical or industrial convection 
contexts for the application of micropolar fluids. Many 
authors (see [19-28]) have investigated the problem of 
Rayleigh-Bénard convection in Eringen’s micropolar 
fluid and concluded that the stationary convection is the 
preferred mode. The reported works on convection in 
micropolar fluid concern with classical Fourier heat 
flux law. 

The objective of this paper is to study the Rayleigh- 
Bénard magneto-convection in micropolar fluid by re-
placing the classical Fourier law by non-classical Max-
well-Cattaneo law using Galerkin technique. 
 
2. Mathematical Formulation  
 
Consider an infinite horizontal layer of a Boussinesquian, 
electrically conducting fluid, with non-magnetic sus-
pended particle, of depth‘d’. Cartesian co-ordinate system 
is taken with origin in the lower boundary and z-axis ver-
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tically upwards. Let T be the temperature difference 
between the upper and lower boundaries. (See Figure 1) 

The governing equations for the Rayleigh-Bénard situa-
tion in a Boussinesquian fluid with suspended particles are  
Continuity equation: 

. 0,q 


                       (1) 

Conservation of linear momentum: 

 

   2
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Conservation of angular momentum: 

     
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Conservation of energy:  

. . ,
o v

T
q T Q

t C

 


 
        


       (4) 

Maxwell-Cattaneo heat flux law: 

.

1 ,Q Q Q T  
 

      
 

  
               (5) 

Magnetic induction equation: 

    2. . ,m

H
q H H q H

t


     


    
         (6) 

Equation of state: 

 1o oT T       .                   (7) 

where q


 is the velocity, 


 is the spin, T  is the tem- 
perature, P  is the hydromagnetic pressure, H


 is the 

magnetic field,   is the density, o  is the density of 
the fluid at reference temperature oTT  , g is the acce-
leration due to gravity,   is the coupling viscosity co- 
efficient or vortex viscosity,   is the shear kinematic 
viscosity coefficient,  I is the moment of inertia,   
and are the bulk and shear spin viscosity coefficient,   
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Figure 1. Schematic diagram of the Rayleigh-Bénard situa-
tion for micropolar fluid. 

is the micropolar heat conduction coefficient, vC  is the 
specific heat,   is the thermal conductivity,   is the  

coefficient of thermal expansion, 
mm

m 
 1

  is the  

magnetic viscosity :( m electrical conductivity and m :  

magnetic permeability), 1

1
,

2
q Q  

 
is the heat  

flux vector and   is the constant relation time. 
The basic state of the fluid being quiescent is de-

scribed by 

   
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Equations (2), (4), (5) and (7) in the basic state speci-
fied by “(8)” respectively become 
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      (9) 

Equations (1), (3) and (6) are identically satisfied by 
the concerned basic state variables. We now superpose 
infinitesimal perturbations on the quiescent basic state 
and study the instability. 
 
3. Linear Stability Analysis 
 
Let the basic state be disturbed by an infinitesimal ther-
mal perturbation. We now have  

, ,

, ,

, ,

b b

b b

b b

b

q q q
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
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  

  
          (10) 

The primes indicate that the quantities are infinitesim-
al perturbations and subscript ‘b’ indicates basic state 
value. 

Substituting “(10)” into “(1)-(7)” and using the basic 
state (9), we get linearised equation governing the infini-
tesimal perturbations in the form 

,0.  q


                     (11) 
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.To                             (17) 

Operating divergence on the “(15)” and substituting in 
“(14)”, on using “(11)”, we get 
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where 


. The perturbation “(12), (13), (16) 
and (18)” are non-dimensionalised using the following 
definition: 
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Using “(17)” in “(12)”, Operating curl twice on the 
resulting equation, operating curl once on “(13)” and           
non-dimensionalising the two resulting equations and 
also “(16)-(18)”. 
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where the asterisks have been dropped for simplicity and 
the non-dimensional parameters 1 3 5, , , , , Pr,N N N R Q  
Pm  and C  are as defined as 
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The infinitesimal perturbation , andzW T   are as-
sumed to be periodic waves (see Chandrasekhar 1961) 
and hence these permit a normal mode solution in the 
form  
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where l and m are horizontal components of the wave 
number a


, Substituting “(24)” into “(20)-(23)”, we get 
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where 
dz

d
D  . 

The set of ordinary differential “(25)-(28)” are ap-
proximations based on physical considerations to the sys-
tem of partial differential “(20)-(23)”. Although the rela-
tionship between the solutions of the governing partial 
differential equations and the corresponding ordinary dif- 
ferential equations has not been established, these linear 
models reproduce qualitatively the convective phenomena 
observable through the full system. 

Eliminating zH  between “(25) and (27)”, we get 
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      (29) 

We now apply the Galerkin method to “(26), (28) and 
(29)” that gives general results on the eigen value of the 
problem using simple, polynomial, trial functions for the 
lowest eigen value. We obtain an approximate solution 
of the differential equations with the given boundary 
conditions by choosing trial functions for velocity, mi-
crorotation and temperature perturbations that satisfy the 
boundary conditions but may not exactly satisfy the dif-
ferential equations. This leads to residuals when the trial 
functions are substituted into the differential equations. 
The Galerkin method requires the residual to be ortho-
gonal to each individual trial function. 

In the Galerkin procedure, we expand the velocity, 
microrotation and temperature by, 
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where )()(),( zTandzGzW iii are polynomials in z that 
generally have to satisfy the given boundary conditions. 

For the single term Galerkin expansion technique we 
take i = j = 1. Multiplying “(29)” by W, “(26)” by G and 
“(28)” by T, integrating the resulting equation with re-
spect to z from 0 to 1 and taking W = AW1, G = BG1 and 
T = ET1 in which A, B and E are constants with W1, G1 
and T1 are trial functions. This procedure yields the fol-
lowing equation for the Rayleigh number R:  

 2 2 2
1 1 1 2 1 3

2
1 1 4

. .T D a T Y Y N Y
R

a W T Y

          (30) 

where  

   

 
   

 
 

22 2
1 1 1 1

2
1 1

2 2 2
2 3 1 1 1 1

2 2 2 2
3 1 1 1 1

2 2
4 1 5 1 1 1 1

2 2
2 1 1 1 1

1

,

2 ,

,

.

Y N W D a W

Q W D W

Y N G D a G N G

Y G D a W W D a G

Y N N G D a W T G

Y C T D a W TW

   

  

  

  

   

 

In the “(30)”,  denotes integration with respect to 
z between 0z and 1z . We note here that R in equa-
tion (30) is a functional and the Euler-Lagrange equa-
tions for the extremisation of R are “(26), (28) and (29)”. 

The value of critical Rayleigh number depends on the 
boundaries. In this paper we consider various boundary 
combinations and these are discussed below. 

1) Free – Free isothermal/adiabatic, no spin. 
2) Rigid – Rigid isothermal/adiabatic, no spin. 
3) Rigid – Free isothermal/adiabatic, no spin. 

Critical Rayleigh number for free-free isothermal 
boundaries, No spin: 
The boundary conditions are 

.1,0,02  zatGTWDW    (31) 

The trial functions satisfying “(30)” are  
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Substituting “(32)” in “(30)” and performing the integra-
tion, we get 
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R attains its minimum value Rc at a = ac. 
Critical Rayleigh number for rigid-rigid isothermal 
boundaries, No spin: 
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The boundary conditions are 

.1,0,0  zatGTDWW         (34) 

The trial functions satisfying “(34)” are  
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Substituting “(35)” in “(30)” and performing the integra-
tion, we get 

 2
1

2

10

9

a M
R

a


                (36) 

where  

 
 

 

2 2
2 1 1 1 3

1
2 3 1 5 3

2 4
1

2
2 3 1

2
3

28. 1 12 3 .
,

. 3 . .

504 24 ,

10 2 ,

28 3 .

K N K Q N K
M

K C K N N K

K a a

K N a N

K a

    
 

  

  

 

 

R attains its minimum value Rc at a = ac. 
Critical Rayleigh number for rigid-free isothermal 
boundaries, No spin: 
The boundary conditions are  

2

0, 0

0, 1

W DW T G at z

W D W T G at z

     


     
     (37) 

The trial functions satisfying “(37)” are  

 
 

4 3 2
1

1

1

2 5 3 ,

1 ,

1

W z z z

T z z

G z z

  


  
  

            (38) 

Substituting “(38)” in “(30)” and performing the integra-
tion, we get 

 2
1

2

10

39

a M
R

a


                 (39) 

where 

 
 

 

2 2
2 1 1 1 3

1
2 3 1 5 3

2 4
1

2
2 3 1

2
3

28. 1 216 3 .
,

. 13 . .

4536 432 19 ,

10 2 ,

126 13 .

K N K Q N K
M

K C K N N K

K a a

K N a N

K a

    
 

  

  

 

 

R attains its minimum value Rc at a = ac. 
Critical Rayleigh number for free-free adiabatic boun-
daries, No spin: 

The boundary conditions are 

.1,0,02  zatGDTWDW       (40) 

The trial functions satisfying “(40)” are  

 

4 3
1

1

1

2 ,

1,

1

W z z z

T

G z z

  


 
  

              (41) 

Substituting “(41)” in “(30)” and performing the integra-
tion, we get 









42

5 1M
R                   (42) 

where  

 
 

 

2 2
2 1 1 1 3

1 2
2 1 5 3

2 4
1

2
2 3 1

2
3

28. 1 306 3 .
,

84 . 10 1 5 . .

3024 612 31 ,

10 2 ,

168 17 .

K N K Q N K
M

K C a N N K

K a a

K N a N

K a

    
    

  

  

 

 

R attains its minimum value Rc at a = ac. 
Critical Rayleigh number for rigid-rigid adiabatic 
boundaries, No spin: 
The boundary conditions are 

.1,0,0  zatGDTDWW          (43) 

The trial functions satisfying “(43)” are  

 

4 3 2
1

1

1

2 ,

1,

1

W z z z

T

G z z

  


 
  

               (44) 

Substituting “(44)” in “(30)” and performing the integra-
tion, we get 











42

30 1M
R                   (45) 

where 

 

 

2 2
2 1 1 1 3

1 2
2 1 5 3

2 4
1

2
2 3 1

2
3

28. 1 12 3 .
,

14 . 1 5 . .

504 24 ,

10 2 ,

28 3 .

K N K Q N K
M

K C a N N K

K a a

K N a N

K a

    
   

  

  

 

 

R attains its minimum value Rc at a = ac. 
Critical Rayleigh number for rigid-free adiabatic 
boundaries, No spin: 
The boundary conditions are 
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







1,0

0,0
2 zatGDTWDW

zatGDTDWW
      (46) 

The trial functions satisfying “(46)” are 

 

4 3 2
1

1

1

2 5 3 ,

1,

1

W z z z

T

G z z

  


 
  

            (47) 

Substituting “(47)” in “(30)” and performing the integra-
tion, we get 









126

20 1M
R                  (48) 

where  

 
 

 

2 2
2 1 1 1 3

1 2
2 1 5 3

2 4
1

2
2 3 1

2
3

28. 1 216 3 .
,

21 . 20 3 1 5 . .

4536 432 19 ,

10 2 ,

126 13 .

K N K Q N K
M

K C a N N K

K a a

K N a N

K a

    
    

  

  

 

 

R attains its minimum value Rc at a = ac. 
 
4. Results and Discussions 
 
In this paper we study the onset of Rayleigh-Bénard 
Magneto Convection in a micropolar fluid by replacing 
the classical Fourier heat flux law by non-classical 
Maxwell-Cattaneo law. 

Figures 2 (a)-(c) is the plot of critical Rayleigh num-
ber Rc versus coupling parameter N1, Couple stress pa-
rameter N3 and micropolar heat conduction parameter N5 
respectively for different values of Cattaneo number C 
and Chandrasekhar number Q for free-free isothermal, 
no- spin boundary conditions. It is observed that as N1 
and N5 increases, Rc increases, that is an increase in N1 
and N5 is to stabilize the system. The increase in N3 de-
creases Rc, that is increase in N3 destabilizes the system. 
Why and how micropolar parameters N1, N3 and N5 sta-
bilizes/destabilizes the system are given in the Table 1. 
Figures 3-4 are the plot of Rc versus N1, N3 and N5 for 
rigid-rigid and rigid-free velocity boundary combination 
with isothermal temperature and spin vanishing bounda-
ries. Figures 5-7 are the plot of Rc verses N1, N3 and N5 
for free-free, rigid-rigid and rigid-free velocity boundary 
combination respectively, with adiabatic temperature 
and spin vanishing boundaries. The results of these 
graphs, i.e., the effects of N1, N3 and N5 on the onset of 
convection are qualitatively similar to free-free isother-
mal case. 

It is also observed from the above figures that the in-
crease in Q increases the Rc, from this we conclude that 
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Figure 2. Plot of critical Rayleigh number Rc Vs. (a) coupl-
ing parameter N1, (b) couple stress parameter N3, (c) 
coupling parameter N5 with respect to free-free isothermal 
no spin boundary condition for different values Chandra-
sekhar number Q and different values of Cattaneo number 
C. 
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Figure 3. Plot of critical Rayleigh number Rc Vs. (a) coupl-
ing parameter N1, (b) couple stress parameter N3, (c) 
coupling parameter N5 with respect to rigid-rigid isother-
mal no spin boundary condition for different values Chan-
drasekhar number Q and different values of Cattaneo 
number C. 
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Figure 4. Plot of critical Rayleigh number Rc Vs. (a) coupl-
ing parameter N1, (b) couple stress parameter N3, (c) 
coupling parameter N5 with respect to rigid-free isothermal 
no spin boundary condition for different values Chandra-
sekhar number Q and different values of Cattaneo number 
C. 
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Figure 5. Plot of critical Rayleigh number Rc Vs. (a) coupl-
ing parameter N1, (b) couple stress parameter N3, (c) 
coupling parameter N5 with respect to free-free adiabatic 
no spin boundary condition for different values Chandra-
sekhar number Q and different values of Cattaneo number 
C. 
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Figure 6. Plot of critical Rayleigh number Rc Vs. (a) coupl-
ing parameter N1, (b) couple stress parameter N3, (c) 
coupling parameter N5 with respect to rigid-rigid adiabatic 
no spin boundary condition for different values Chandra-
sekhar number Q and different values of Cattaneo number 
C. 
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Figure 7. Plot of critical Rayleigh number Rc Vs. (a) coupl-
ing parameter N1, (b) couple stress parameter N3, (c) 
coupling parameter N5 with respect to rigid-free adiabatic 
no spin boundary condition for different values Chandra-
sekhar number Q and different values of Cattaneo number 
C. 

Table 1. Why and how of the stabilizing/destabilizing effects 
of the micropolar fluid parameters N1 N3 N5. 

Parameter Nature of effect Physical reason 
 

N1 
0 ≤ N1 ≤ 1 

 
Stabilizing 

(as N1 increases) 

Increase in N1 indicates the in-
crease in the concentration of 
microelements. These elements 
consume the greater part of the 
energy of the system in develop-
ing the gyrational velocities of the 
fluid and as a result the onset of 
convection is delayed. 

 
N3 

0 ≤ N3 ≤ m 
(m: finite, real)

 
Destabilizing 

(as N3 increases) 

Increase in N3, decreases the 
couple stress of the fluid which 
causes a decrease in microrotation 
and hence makes the system more 
unstable. 

 
N5 

0 ≤ N5 ≤ n 
(n: finite, real)

 
Stabilizing 

(as N5 increases) 

When N5 increases, the heat in-
duced into the fluid due to these 
microelements also increases, thus 
reducing the heat transfer from 
bottom to top. 

C 
C [0, 1] 

Destabilizing 
(as C increases) 

It is a scaled relaxation time and 
hence it accelerates the onset of 
convection. 

 
the Q has stabilizing effect on the system. When the 
magnetic field strength permeating the medium is consi-
derably strong, it induces viscosity into the fluid, and the 
magnetic lines are distorted by convection. Then these 
magnetic lines hinder the growth of disturbances, leading 
to the delay in the onset of instability. However, the vis-
cosity produced by the magnetic field lessens the rotation 
of the fluid particles, thus controlling the stabilizing ef-
fect of N1. 

From the figures it is observed that C which represents 
Cattaneo number has a destabilizing influence. Increase 
in Cattaneo number leads to narrowing of the convection 
cells and thus lowering of the critical Rayleigh number. 
It is also observed from the figures that influence of Cat-
taneo number is dominant for small values because the 
convection cells have fixed aspect ratio. 
 
5. Conclusions 
 
Following conclusions are drawn from the problem: 

1) Rayleigh-Bénard convection in Newtonian fluids 
may be delayed by adding micron sized suspended par-
ticles. 

2) By adjusting the Chandrasekhar number Q we can 
control the convection. 

3) We can conclude the following for stationary con-
vection in micropolar fluids 

PHE
c

HHE
c RR  , 

where HHE – Hyperbolic heat equation and PHE – Pa-
rabolic heat equation. 
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4) We also find that  
FF
c

RF
c

RR
c RRR   

where the superscripts correspond to the three different 
velocity boundary combinations. The above qualitative 
results are true for both isothermal and adiabatic boun-
daries. 

5) The non-classical Maxwell-Cattaneo heat flux law 
involves a hyperbolic type heat transport equation that 
predicts finite speeds of heat wave propagation (see [29]). 
Hence it does not suffer from the physically unaccepta-
ble draw back of infinite heat propagation speed pre-
dicted by the parabolic heat equation. The classical 
Fourier flux law overpredicts the critical Rayleigh num-
ber compared to that predicted by the non-classical law. 
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