
Engineering, 2013, 5, 537-542 
doi:10.4236/eng.2013.56064 Published Online June 2013 (http://www.scirp.org/journal/eng) 

Copyright © 2013 SciRes.                                                                                 ENG 

Finite Element Modeling of Shop Built  
Spherical Pressure Vessels 

Oludele Adeyefa, Oluleke Oluwole 
Department of Mechanical Engineering, University of Ibadan, Ibadan, Nigeria 

Email: oluwoleo2@asme.org 
 

Received January 29, 2013; revised March 1, 2013; accepted March 9, 2013 
 

Copyright © 2013 Oludele Adeyefa, Oluleke Oluwole. This is an open access article distributed under the Creative Commons Attri-
bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. 

ABSTRACT 

This work builds on an earlier work done which used global coordinates where a large number of elements were needed 
to form a convergence of results for shop built spherical pressure vessels. In this work area coordinates were used. Any 
action that leads to an inability on the part of a structure to function as intended is known as failure. This research, 
therefore, investigates stresses developed in a shop built carbon steel spherical storage vessels using finite element ap-
proach as the analytical tool. 3-D finite element modeling using 3-node shallow triangular element with five degrees of 
freedom at each node is employed. These five degrees of freedom are the essential nodal degrees of freedom without 
the sixth in-plane rotation. The resulting equations from finite element analysis are coded using FORTRAN 90 com-
puter programme. Spherical storage vessels are subjected to various internal loading pressures while nodal displace-
ments, strains and the corresponding maximum Von-mises stresses are determined. The calculated maximum Von- 
mises stresses are compared with the yield strength of the shell plate material. Using specified safety factor, safety in-
ternal pressures with the corresponding shell thicknesses for shop built spherical pressure vessels are determined. The 
finite element modeling carried out in this research can be used to predict in-service stresses, strains, and deformations 
of shop built spherical pressure vessels using Von-mises yield stress as the failure criteria. The results obtained were 
validated by analytical method and it showed there was no significant difference (P > 0.05) with values obtained 
through analytical method. 
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1. Introduction 

Considerable attention has been given to applying the 
finite element method in the analysis of curved structures. 
[1] developed conical segments for the analysis of shell 
of revolution. [2] modified the method and used merid-
ional elements which were found to lead to considerably 
improved results for the stresses. Curved rectangular and 
cylindrical shell elements were also developed [3-5]. 
Applications have been in the area of membrane, thermal 
and pressure analysis [6-11].  

However, to model a shell of spherical shape using the 
finite element method triangular and rectangular spher- 
ical shell elements are needed. [12] used curved shallow 
triangular element in curvilinear coordinates system to 
model spherical storage pressure vessels. The assumed 
polynomial function for the bending behaviour in their 
model is in term of x and y without the term x2y while 
the function for membrane behaviour is linear. The 3- 
node shallow triangular element has five degrees of free- 

dom at each node without the in-plane rotation.  
This approach gives considerable and acceptable results 

but at the expense of many elements leading to higher 
storage and computational efforts. It is observed that ex-
clusion of tenth term in the polynomial function for the 
assumed polynomial represent deformation pattern for the 
bending of shell element accounted for the requirement 
for more elements. Meanwhile, to analyse the plate 
bending behaviour using triangular elements, in [13] 
classified such element as non-conforming element due to 
the incomplete polynomial terms in representing bending 
deformation pattern. [13] proposed polynomial function 
for the bending behaviour to be represented using area 
coordinated. It is said of this element derived in [13] that it 
passes all the patch tests and performs excellently. Indeed 
if the quadrature is carried out in a “reduced manner” using 
three quadrature points, then the element is one of the best 
triangles with 9 degrees of freedom that is currently 
available in [13]. This approach is being employed in this 
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work for the FE modelling of spherical shell. The mem-
brane deformation of shallow triangular shell element is 
represented with polynomial linear function using area 
coordinates. The bending deformation is assumed as it is 
given by in [13] for plate bending using 9 degree of 
freedom using area coordinates for non-conforming ele-
ments.  

2. Finite Element Methodology  

A detailed study of stress analysis of shop built sphe- 
rical pressure vessel subjected to different internal and 
external pressures is carried out with the help of finite 
element method, which is perhaps the best currently 
known method available for the stress analysis of pres- 
sure vessel problems. 

2.1. Displacement Field Requirements  

The assumed displacement method was employed in this 
work to develop a shallow triangular spherical shell ele-
ment without an in-plane rotation as a sixth degree of 
freedom. A shallow shell formulation was used to obtain 
the displacement fields. The element (Figure 1) has five 
degrees of freedom at each of the three corners [12]. 
Therefore, there are fifteen degrees of freedom per ele-
ment. However, the assumed deformation pattern for 
bending of the shallow triangular shell element was ac-
cording to the one given by Zienkiewicz et al. [13] in area 
coordinates while the deformation for the membrane is 
represented by linear polynomial using area coordinates 

as opposed to an earlier work that used global coordinates 
[12].  

2.2. Basic Assumptions of the Analysis  

The spherical shallow shell under investigation is as-
sumed to have the following properties and to be 
loaded in the following manner: 
 The spherical shell is taken as thin shell.  
 The loads to be considered are internal pressure and 

external pressure. 
 The displacements of the vessel are assumed to be 

so small that the equilibrium conditions for an ele- 
ment in the spherical shell is the same before and 
after deformation.  

2.3. Displacement Functions  

The assumed displacement relationships for the proposed 
triangular shallow shell are expressed in curvilinear co-
ordinates in area coordinates. The use of so-called “area 
coordinates” is made to represent the transverse dis-
placement, w, as a polynomial function of degree 3 as it 
was given by [13]. Linear polynomial equations are then 
used to represent the membrane displacements u and v 
using area coordinates, resulting in a constant strain tri-
angle for the membrane action. The assumed displace-
ment equations are: 
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and il  is the length of the side opposite node i. The 
modified interpolation for displacement is taken as 

Pa                 (6) 

to determine constants as, known displacements at 
nodes are substituted and the equations become 

   1a C              (7) 

where [δ] is the nodal degrees of freedom, [C–1] is 
inverse of transformation matrix and [a] is vector of 
independent constants. 

2.4. Strain-Displacement Equations  

Strain-displacement relationships for shallow thin 
shells as given by [14] are simplified for the shallow 
shell and expressed as follows in curvilinear coor-  
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Figure 1. Shallow triangular element. 
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The above strain Equation (8) which can be written in 
matrix form after necessary substitutions of u, v and w 
given in Equations (1)-(3) into the above strain equations. 

2.5. Stress in a Curved Triangular Element  

Stress varies from point to point along the shell profile and 
also through the thickness of the shell. It is thus in reality 
an unknown function of two variables, therefore leads us 
to the equations below as it were given by [15]: 

2

6
,b m

M N

tt
                (9) 

where: M is the moment per unit length, M and b  is the 
bending stress at the surface. 

N is to be force per unit length and m  which is 
membrane stress. 

2.6. Strain Energy  

The strain energy equation for an isotropic linear shell 
is 
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where, t = thickness of the shell, v = Poisson’s ratio 
and E = Modulus of elasticity. 

After substitution for strains in the above expression 
and integration with respect to, the strain energy can be 
separated into the membrane energy Um and the bend-
ing energy Ub. 
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The potential energy is then written as: U W    
where W represents the work done by the external load on 
the system. In the finite element method, the potential 
energy of a shell is expressed as:  

1

n

k
k




              (14) 

where k  is the potential energy of the kth element. 

2.7. Stiffness Matrix  

The stiffness matrix of the elements is derived from the 
principle of minimum potential energy, using the theory 
of shallow shells, which is more accurate enough for the 
shallow curved triangular elements considered. By writ- 
ing strain energy equations in terms of area coordinates, 
element stiffness matrix can be determined in the usual 
manner,  

T1 T 1dm m mA
k t C B D B A C                (15) 

T1 T 1db b bA
k t C B D B A C                (16) 

km and kb are element stiffness matrices due to mem-
brane and bending stresses respectively.  

Dm and Db are elasticity matrices for membrane and 
bending stresses respectively. 

Bm and Bb are strain matrices for membrane and bend-
ing stresses respectively. 

Therefore, element total stiffness matrix is 

b mk k k             (17) 

Element stiffness matrix is then combined to give sys-
tem stiffness matrix. It is to note that stiffness matrices kb 
and km are in terms of area coordinates which can be in-
tegrated explicitly or in a reduced “manner” using three 
Gauss quadrature points. To integrate explicitly, the inte-
gral equation below as it is in [13] is very useful. 
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!

! ! !
d 2

2
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A
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L L L A

a b c
 
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where   is the area of triangular element. 

2.8. Consistent Load Vector  

It is well known fact that the best and accurate approach 
for dealing with distributed loads in FEM is the use of a 
consistent load vector which is derived by equating the 
work done by the distributed load through the displace- 
ment of the element to the work done by the nodal gen-
eralized loads through the nodal displacements. If a 
shallow triangular shell element is acted upon by a dis-
tributed load q per unit area in the direction of w, the work 
done by this load is given by:  

1 d d
A

P qw x y           (19) 

If w is taken to be represented by: 
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and   is as defined in Section 2.2. 

The work done by the consistent nodal generalized 
force through the nodal displacements {δ} is given by: 

  T
2P F             (22) 

Hence, from Equations (19)-(22), the nodal forces are 
obtained  

T1 T d dF C P q x y               (23) 

Equation (23) gives the nodal forces for a single ele- 
ment; and the nodal forces for the whole structure are 
obtained by assembling the elements’ nodal forces. 

2.9. Boundary Conditions  

Before the system equations are ready for solution, they 
must be modified to account for the boundary conditions 
of the problem. At this junction, there is a need to give 
known displacement. For this system, it is assumed that 
displacements in all directions with the exception of radial 
direction are known to be zero. Also, symmetry nature of 
the system is taking into consideration by using 1/6th of 
the spherical vessel and thereby reducing the computing 
time. Shown in Figure 2 is a sample of the mesh with 4 
elements and 6 nodes. Using area coordinates, the need 
for different sector angles was eliminated as was the case 
in [12]. 

3. Problem Considered  

3.1. Case One  

Maximum equivalent Von-Mises stresses and factor of 
safety determined for a spherical vessel with the material 
properties and simulation conditions: 

Shell material specified minimum yield stress = 240 
Mpa; 

Shell material allowable stress = 128 Mpa; 
Shell material = A516M Grade 65; 
Shell material density = 7850 kg/m3; 
Spherical vessel radius = 1.0 m; 
Internal pressure = 10,000 N/m2; 

Factor of safety based on allowable stress = 1.875. 

3.2. Case Two  

Maximum equivalent Von-Mises stresses and factor of 
safety determined for a spherical vessel with the material 
properties and simulation conditions: 

Shell material specified minimum yield stress = 240 
Mpa; 

Shell material allowable stress = 128 Mpa; 
Shell material = A516 M Grade 65; 
Shell material density = 7850 kg/m3; 
Spherical vessel radius = 1.0 m; 
Internal pressure = 20,000 N/m2; 
Factor of safety based on allowable stress = 1.875. 

3.3. Case Three  

Maximum equivalent Von-Mises stresses and factor of 
safety determined for a spherical vessel with the material 
properties and simulation conditions: 

Shell material specified minimum yield stress = 240 
Mpa; 

Shell material allowable stress = 128 Mpa; 
Shell material = A516 M Grade 65; 
Shell material density = 7850 kg/m3; 
Spherical vessel radius = 0.5 m; 
Internal pressure = 30,000 N/m2; 
Factor of safety based on allowable stress = 1.875. 

4. Results and Discussions  

By examining Tables 1-3, element thicknesses given 
 

 

Figure 2. Typical spherical shell mesh. 
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Table 1. Corresponding equivalent maximum Von-Mises stress, thickness and factor of safety internal pressure of 10.0 MPa. 

 Thickness (m) 
Developed  

Stress × 109 (N/m2) 
Von-Mises Stress × 109 (N/m2) 

Factor of Safety Based on 
Von-Mises 

Element 1 0.0039 0.1286 0.1818 1.32 

Element 2 0.0039 0.1274 0.1802 1.33 

Element 3 0.0039 0.1235 0.1747 1.37 

Element 4 0.0039 0.1278 0.1807 1.33 

 
Table 2. Corresponding equivalent maximum Von-Mises stress, thickness and factor of safety internal pressure of 20.0 MPa. 

 Thickness (m) 
Developed Stress 

× 109 (N/m2) 
Von-Mises Stress × 109 (N/m2) Factor of Safety Based on Von-Mises

Element 1 0.0079 0.1239 0.1752 1.36 

Element 2 0.0079 0.1316 0.1861 1.29 

Element 3 0.0079 0.1246 0.1762 1.36 

Element 4 0.0079 0.1278 0.1808 1.33 

 
Table 3. Corresponding equivalent maximum Von-Mises stress, thickness and factor of safety internal pressure of 30.0 MPa. 

 Thickness (m) 
Developed  

Stress × 109 (N/m2) 
Von-Mises Stress × 109 (N/m2) 

Factor of Safety Based on 
Von-Mises 

Element 1 0.0059 0.1281 0.1811 1.33 

Element 2 0.0059 0.1317 0.1862 1.29 

Element 3 0.0059 0.1304 0.1844 1.30 

Element 4 0.0059 0.1277 0.1807 1.33 

 
in each case are uniform. This is expected because; the 
spherical pressure vessels in each of the cases considered 
was subjected to uniform internal pressure. Also, devel-
oped and Von-mises stresses calculated in each of the 
cases are well below the material allowable stress values 
as it is given by ASME sec VIII, Part D. This can be de-
duced from the values of factor of safety in the above 
tables Tables 1-3. 

The thicknesses calculated are the minimum thick- 
nesses required by the spherical shell to withstand the 
internal pressure. It is required of the design engineer to 
have the overall idea of all the possible loads/forces to 
act on the spherical pressure vessels. And also, the over- 
all effects of the combination of various loads/forces. 

In some cases, it is advisable to add corrosion allow- 
ance to the minimum calculated thickness. The value of 
corrosion allowance depends on many factors. Some of 
the factors are: 
 The corrosion rate of the stored gas/fluid on the shell 

material. 
 Design life of the spherical pressure vessel. 
 External corrosion agents at the site. 
 Corrosion control and prevention methods adopted.  

Having put all these into consideration by the design 

engineer, minimum shell thickness due to various loads/ 
forces can then be determined. It is of notes that if this 
shell thickness is lower than the minimum shell thickness 
recommended by ASME code, minimum shell thickness 
recommended by ASME code has to be used. 
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