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ABSTRACT 

This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external 
yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, in- 
deed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settle- 
ment of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible 
on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, 
foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry struc- 
tures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to 
some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in 
order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is 
very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in 
order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in 
a calculation software, processes the structure considering, not only the properties of constitutive material, non-homo- 
geneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a 
non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical 
and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both 
from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will 
be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, start- 
ing from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of 
the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the 
software. 
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1. Introduction 

A masonry structure is analyzed by means of a discrete 
model, previously proposed in other works, according to 
the early static theories of the mid-1700’s describing the 
behaviour of masonry arches. Such a model is still con- 
sidered by J. Heyman [1], in his basic studies about ma- 
sonry arch stability, as an appropriate and correct method 
to expound the general behaviour of masonry structures. 
Many experimental surveys, as well as the observation of 
the “real behaviour” of masonry constructions subjected 
to different kind of external actions, clearly highlighted 
the dependence of collapse mechanisms [2] on the loss of 
local strength due to the separation of the masonry ele- 
ments, considering these both as single blocks and a se- 

ries of blocks forming wider portions of masonry, that is 
composed of a certain number of elements which have 
not lost their mutual cohesion. 

Moreover, according to such a model, the shape of 
single blocks does not change when external loads are 
applied, so as their rigid displacements, due to detach- 
ments and/or sliding along the joints, which the contact 
devices allow, are prevailing in comparison with the de- 
formability of the whole structural system. The main 
features of such a model consist of the inner coherence of 
the blocks and the presence of “discontinuity” surfaces 
along which such a coherence may also not be respected: 
the constitutive material is not able to support tensile 
stresses along the surfaces where its “inner structure” is 
detached, while it is coherent with and uncompressible in 
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the other parts. Under these assumptions, the mechanical 
characterization of masonry, that is its generic construc- 
tive configuration, being both an arch and a wall, refers 
to a system of rigid blocks connected by unilateral con- 
tact and frictional [3] links. Moreover, relying on the 
general potentiality of such an approach, it is reasonable 
to think that a model which considers the rigid blocks 
linked together by means of non-deformable or deform- 
able surfaces, no tension and enriched by friction, is the 
most correct model to interpret the influences which have 
the greatest effect on the dimensions of the blocks, the 
joints’ orientation [4] and the apparatus itself on the be- 
haviour of historical masonry buildings. 

2. The Contact Constraint Device 

As previously stated, the peculiar characteristic of the 
discrete model is the description of the masonry building 
by means of a rigid system in which the elasticity is to- 
tally thought to be concentrated in the mortar joints (such 
an approach has been proposed and developed in several 
works by the authors themselves [5], as well as in scien- 
tific articles of other authors [6,7]). The hypotheses about 
the behaviour of the “material” are widely described 
through a suitable contact device (Figure 1), taking ad- 
vantage of the use of an algebraic system of equations to 
write the structural problem mathematically. In this sense, 
assuming the structure is dry assembled or built with a 
large quantity of spoiled mortar, it will be possible to 
consider a unilateral and frictional contact link (brittle- 
rigid contact device—Figures 2(a) and (b)); otherwise, if 
the mortar is very effective, the joint behaviour will be 
characterized by an elastic unilateral link. Furthermore, it 
will be possible to transfer the shear forces, which should 
not exceed any assigned value (elastic-cracking contact 
device—Figures 2(c) and (e)). In the latter case, it is im- 
portant, from both a physical and numeric point of view, 
to consider a weak tensile strength instead of the com- 
plete absence of tensile strength, defining its limit value 
(Figure 2(d)). 

The first model is designed to do a limit analysis of the 
structures; the second one, instead, for a kind of analysis 
which is able to furnish the actual stress state inside the 
structure, the position of the failure interfaces and also 

identify the shape and dimensions of the cracks. 
Thus, the contact devices are described by a set of fic- 

titious links, arranged orthogonal to the interface surfaces, 
capable of transmitting only compressive forces or, at 
most, weak tensile forces which do not exceed the as- 
signed limit values, and, by an additional link, tangent to 
the interface surface, to transmit the shear force. In case 
of brittle-rigid joint only two normal links are strictly 
necessary. In the case of elastic-cracking joint it is better 
to consider at least four normal links in order to highlight 
the actual cracking pattern with the possibility of meas- 
uring the width and depth of the cracks inside the mortar 
joints. 

3. General Formulation of the Problem 

Let us consider, therefore, the general problem of any 
masonry structure composed of a finite number of rigid 
blocks which are dry assembled or mortar layered. The 
system composed of n blocks and m interfaces, subjected 
to a load condition (represented by vector F) and inelas- 
tic displacements (represented by vector Δ) which are 
only located in the external joints, can be expressed 
through a system of equilibrium and elastic-kinematical 
equations, as follows: 
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Figure 1. Discrete model of the interface joint. 
 

 
(a)                 (b)                   (c)                  (d)                  (e) 

Figure 2. Behaviour of the interface joints: brittle-rigid joint in normal direction (a) and tangential (b) elastic-cracking joint 
in normal direction (c) or (d) and tangential (e). 
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in the case of brittle-rigid contact joint, and:   1* T TA A AA
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in the case of elastic-cracking contact joint. 
In Equations (1) and (2) the coefficients of the sub- 

vectors  nX  and  tX  of vector  X  represent the 
unknowns of the interface interactions related to the 
normal forces and to the tangential ones, to which the in 
equalities [8], written to respect the hypotheses related to 
the constitutive model of the joint, correspond (above all, 
the second inequality makes it possible to introduce a 
suitable friction coefficient  [9] in correspondence to 
the joints described through an assigned number  of 
normal links); the components of vector [

f
k

x ] represent 
the unknown displacements of the blocks’ centroids. The 
coefficients of matrix [ K ], presented only in the second 
equation of (2), represent the deformability of the links 
which describe the mortar elastic joint. The proposed 
algorithm [10,11] makes use of internal impressed distor- 
tions, according to Colonnetti’s theorem [12], which 
states that any stress state can be suitably modified by 
introducing ad-hoc distortions whose number cannot 
exceed the degree of static indeterminacy of the structure. 
In the case of brittle-rigid joints, when tensile forces are 
higher than the limit values, the distortions’ vector [ ] 
must be computed in such a way that the tensile forces 
become equal to zero and the shear forces became equal 
to the limit friction force. In the case of elastic-cracking 
joints, the distortions vector, expressed as the notation 

1 2   , is calculated in such a way that the 
sub-vector [ 1 ] (as in the case of brittle-rigid joint) must 
transform the tensile forces so they become equal to zero 
and the shear forces become equal to the limit friction 
force, while sub-vector [ 2 ] only has to modify some of 
the displacement components so as to obtain a solution 
capable of satisfying both the equilibrium equations, 
while respecting the sign conditions, and the elastic- 
kinematical compatibility of the actual reacting structure. 
The non-zero components of sub-vector [ 2 ] give the 
position and width of the cracks located in the contact 
joints. 

4. The Numerical Procedure 

Referring to both the former and to the latter kind of 
joints, the solution ( ) and the relevant distortions 
vectors [

xX ,
 ] or [ ] are computed by an iterative proce- 

dure whose starting point corresponds to the static solu- 
tion obtained making use of the generalized inverse 

 of the equilibrium matrix [

uniqueness was demonstrated by Moore-Penrose, in the 
case of brittle-rigid model; while in the elastic-cracking 
model, the starting point corresponds to the standard so- 
lution obtained assuming the material is linear-elastic and 
bilateral. Thus, in the case of the brittle-rigid joint, it is 
possible to write: 

    1 1

0
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 
     ;   (3) 

while in the case of elastic-cracking joint the equation is: 
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  

11 1
0

11 1 1 .

T T

T T

X K A AK A F

K I A AK A AK

 

  

 

  
     (4) 

It is interesting to note that the initial solution [ 0X ], 
reached under the hypothesis of brittle-rigid joint, corre- 
sponds exactly to the initial solution obtained under the 
assumption of strained joint in the case where the strain 
matrix [ K ] is replaced by the identity matrix, that is 
assuming a constant und unity stiffness of all the links 
present in the model of the structure. 

Remembering that in the case of any compatible linear 
system bAx  , the whole system of solutions is ex- 
pressed by , where  is an ar- 
bitrary vector suitably chosen while 

yAAIbAx )(   y
A  is any inverse 

able to satisfy the condition A A AA 

N0 XXX

 [13], in both 
hypotheses the final solution assumes the general form: 

 . In such a case: 

   1T T
NX I A AA A C 


    

 

,        (5) 

in the case of brittle-rigid joint, and: 

 11 1
1 1

T T
NX I K A AK A A C 

      ,     (6) 

in the case of elastic-cracking joint. 
The initial solution vector [ 0X ] can result whenever it 

is coherent with the sign conditions expressed through 
the in Equalities (1) and (2): such a circumstance corre- 
sponds to the particular case of a masonry structure, sub- 
jected to any external action, whose joints are all com- 
pressed and satisfy the hypotheses about the friction. If 
any of the components of vector [ 0X ] do not satisfy the 
imposed conditions, such a vector is then modified by an 
iterative procedure in which the choice of the suitable 
components of vector [ ] or [ 1 ] follows the criterion, 
step by step, in search for the link with the highest tensile 
value; the vectors themselves preserve the values previ- 
ously assumed. Then, the iterative procedure goes on 
searching for the tangential link whose force is greater 
than the friction force [14]. In its iterative development, 
the algorithm follows the statement suggested by C. Al-
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berto Castigliano in his study of the bridge over the Dora 
river built by Carlo Mosca, between 1823 and 1830, in 
Turin [15]. It is best to remember, as stated above in our 
comment about Colonnetti’s theorem, that the maximum 
number of possible iterations is equal to the degree of 
statically indeterminacy of the structure: this is the rea- 
son why it is not necessary to state further criteria to de- 
fine the convergence of the algorithm. If the convergence 
has not been reached during the maximum number of 
possible iterative cycles, it is possible to state that, in 
dependence on the external action on the structure, there 
does not exist an equilibrium configuration which satis- 
fies the hypotheses assumed for the behaviour of the ma- 
terial. 

The choice of an iterative procedure represents, de 
facto, an effectiveness shortcut to the actual difficulty in 
finding the number and the index of the components of 
the distortions vector through the mathematically direct 
withdrawing of the full rank sub-matrix from the alge- 
braic operator [ C ], assuming it exists. To update the 
components of the distortions vectors, in both kinds of 

joint, the forms:  or  1
0i i iC L X 

 1
0i i iC L X  0i  is used at every step; in which X  
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correspond to the internal forces in the joints which do 
not satisfy the conditions (1) and (2) above, while  
represents both the limit value for the tensile force in the 
normal links (L = 0) and the friction force for the tangen-  

tial link . 

The final static solution of the numerical procedure 
will provide a final vector solution in the form:  
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where, in correspondence of all the joints, it is: 

0cX   and X f X


  . 

Such a solution, as computed above described, is the 
final one in the case of brittle-rigid joint and represents the 
limit equilibrium configuration of the structure. The non- 
zero components of vector [ X ] correspond to the portions 
of the joints which still preserve the mutual contact and 
through which the interactions, which agree with the as- 
sumed hypotheses, are transferred. On the contrary, the 
zero components identify the portions in which the con- 
tact has been lost. 

In the case of strained joint, since the final vector [ X ] 
is generally different from the initial one [ 0X ], it is nec-

essary to restore the elastic-kinematical compatibility ex- 
pressed through the second equation of system (2), 
keeping in mind the actual detachments in the interfaces. 
To restore the compatibility easily, it is better to consider a 
partition of all the matrices related to the system of elastic- 
kinematical equations; only the indices of the links whose 
normal and tangential component agree with the sign con- 
ditions at the end of the iterative procedure are considered. 
In this case, the vector containing the displacements of the 
centroids of the blocks, corresponding to the actual re- 
acting structure, and the vector [ 2 ] which is able to re- 
store the compatibility of the system, are obtained through 
the following equations: 

   1 1T T
c c c c c c c cx A A A K X A A

 
    ,      (7) 

2
T
i iA x ,                (8)   

where the non-zero components of vector [ 2 ] provide 
the position and the depth of the cracks. 

5. The Case of the External Settlements 

The above described calculation procedure, while oper- 
ating within the intrinsic nonlinearity characterizing the 
general problem of structures with unilateral constraints, 
refers to the initial geometric configuration of the ma- 
sonry structure used to formulate both the equilibrium 
and compatibility equations. Only at the conclusion of 
the analysis, starting from the initial configuration, it will 
be meaningful to define a modified configuration of the 
structure which considers the joint strains and the possi- 
ble dislocations between elements due to the presence of 
fractures. 

On the contrary, in the case of behaviour analysis of 
masonry structures subjected to external inelastic dis- 
placement constraints, assuming they are applied by fi- 
nite values, the geometrical nonlinearity, deriving from 
the modification of the initial geometry due to the sub- 
sequent increase of such displacements, should also be 
considered. 

With the aim of defining the degree of vulnerability of 
a masonry structure [16], which at the beginning is stable 
even if cracked, subjected to any load condition (a condi- 
tion which could be verified through one of the me- 
chanical models and the numerical procedure described 
above), it is significant to determine the peak value of the 
settlements which can be impressed in a specific point of 
the structure, beyond which the structure itself reaches 
the collapse due to the loss of equilibrium of a modified 
geometric configuration no longer suitable to support the 
initial loads. 

The general procedure described in the previous para- 
graphs is still valid if considered inside a further process 
which depends on the subsequent increase of the non- 
zero components of vector [ ] of the inelastic settle-  
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6. Numerical Examples and Experimental 
Comparisons 

ments. At every step of such a procedure the general 
configuration matrix [ A ] coefficients are updated as a 
function of the components of the displacements [ x ] of 
the centroids of the blocks obtained in the previous step 
of the analysis. So it is possible to write: 

In the following, some numerical examples of masonry 
structures subjected to external settlements are described. 
The former series refers to the simple case of an arch, 
composed of rigid blocks placed in mutual contact with- 
out the presence of elastic joints, initially stable under an 
imposed load condition (Figure 3). The analysis has 
been performed using the brittle-rigid model through 
which it is possible to obtain the position of the three 
opening hinges due to a suitably chosen incipit of the 
settlement of an abutment. Then, through the modifica- 
tion of the geometry due to the subsequent increase of 
the displacement obtained using the rules of the kinema- 
tical analysis in large displacements (geometrical non- 
linearity), the above mentioned procedure has been used 
to check the state of equilibrium until the fourth hinge 
opens, showing the collapse of the structure. The nu- 
merical procedure, implemented in the software Brick- 
WORK [21] suitably developed and equipped with a 
graphic output device for the real-time showing of the 
configurations assumed by the structure during the in- 
crease of the springing settlements, used for both the 
horizontal and vertical displacements, reproduces a few 
simple experiments carried out in the laboratory. The 
position of the interfaces affected by hinge openings, 
obtained numerically, corresponds exactly to the one 
detected in the experimental model. The precise corre- 
spondence between the experimental results and the nu- 
merical ones, relative to the definition of the peak set-  

 1 0X F  iA x .                (9) 

Obviously such an equation can be used only in the 
case of structures whose joints are deformable [17], be-
cause in the case of structures whose joints are brittle- 
rigid it is important to consider a modified configuration 
only when a structure, at the end of the analysis that de- 
fines its equilibrium configuration while respecting the 
sign conditions of the interface links, divides into blocks 
capable of forming an isostatic system, to which you can 
impose an external displacement capable of transforming 
the structure into a mechanism [18]. 

It is not difficult to single out as belonging to this latter 
case the simple arch structure made of stone blocks and 
placed in mutual contact without interposition of mortar, 
which is in an initial configuration of stable equilibrium. 
As it is known, any settlement, even if small, allocated in 
correspondence with one of the abutments [19] causes 
the formation of three instantaneous opening hinges: thus 
the structure assumes the typical isostatic configuration 
of a three hinge arch. Only now it is possible to imagine 
an increase of settlement and the formation of modified 
configurations, to be defined by means of a kinematical 
analysis related to large displacements (geometrical non- 
linearity), to which the equilibrium condition [20] is 
checked each time. 
 

  

  

  

Figure 3. Arch subjected to imposed horizontal and vertical settlements. Comparison between the experimental model and 
the results obtained through the numerical procedure. Conditions immediately before the collapse of the structure. 
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tlement, for both cases is perfectly verified, with a slight 
decrease (not a significant percentage) of the values in 
the case of the actual model due, of course, to the inevi- 
table imperfections of the model itself. 

The solution obtained for the same cases using the 
calculation model with elastic-cracking joint (assuming 
in this case a joint of minimum thickness and with very 
low deformation) provides the same results as the previ- 
ous solution, approaching even more to the experimental 
result. This is probably due to the minimum deformation 
assumed in the joints which, from a physical point of 
view, can be compared with the influence of imperfect- 
tions present in the actual model.  

The latter group of examples deals with the analysis of 

the behaviour of a series of voussoir arches, subjected 
simply to self-weight, for which the spam and the num- 
ber of blocks have been left unchanged, while the aver- 
age radius of curvature and the angle of sets have been 
progressively modified, so as to obtain a decreasing rise. 

Using the calculation model with elastic-cracking in-
terfaces assuming self-weights, elastic moduli of the joint 
and geometry (where spam 560 cm and thick = 40 cm) 
compatible with a realistic condition, the peak horizontal 
settlements related to each configuration have been com- 
puted. 

Figure 4 shows the collapse configuration relative to 
one of the cases with the identification and the actual 
depth of the cracks. 
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Figure 4. Summary graphs associated with the definition of the peak settlements of the right springing of a series of arches 
with changing springing angle and rise. 
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In the same figure two summary graphs, that interpret 

the non-linear aspect of the problem, are highlighted. The 
first graph shows the relationship between external set- 
tlement and vertical displacement of the centroid of one 
of the two keystone ashlars. The second curve shows, 
instead, the relationship between the percentage increase 
of the thrust, measured with respect to the initial one, and 
the percentage increase change of the spam due to the 
removal of the abutments because of the progressive as- 
signed horizontal settlement. 

Figure 5 refers to a comparison of two structures for 
which it is possible to see a substantial difference in the 
behaviour under the action of the horizontal settlement 

(applied in the same manner in both cases) at the base of 
the right pier. 

The calculation procedure uses the hypothesis of the 
elastic-cracking joint. Geometry (where pier height = 300 
cm and spam = 260 cm), self-weights and elastic charac- 
teristics of the joints describe, also in this case, a con- 
figuration sufficiently realistic. 

The two peak settlements differ in a ratio of about 1:20, 
in the sense that the structure on the left, with the help of 
the masonry placed on the extrados of the arch, appears 
considerably more stable than the structure on the right 
(that, in the examined case, at most, tolerates a displace- 
ment of the base of the pier of about 2.7 cm). The con-  

 

  

Figure 5. Arches settled on asymmetric piers and subjected to horizontal settlement of the base of the right pier. 
 

 

Figure 6. Trabs in the Pompeianus Forum. 
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Figure 7. Trabs in the Pompeianus Forum. Vertical settlement of the right pier. 
 

figuration shown in the figure highlights, in fact, the limit 
position of the line of thrust at the base of the right pier. 
The structure on the left collapses because of the total 
detachment of the portion of masonry placed on the right 
extrados of the arch, as a result of a deformed configure- 
tion greatly compromised. 

Finally, Figures 6 and 7 show the behaviour of a por- 
tion of the trabs in the Pompeianus Forum subjected to a 
vertical settlement of the first pier on the right [22]. The 
effectiveness of the masonry apparatus, composed of 
large stones in the long architrave, shows how its be- 
haveiour is recognized as being similar to that of a Ger- 
ber beam. 

The structure is able to respond effectively to a settle- 
ment of the pier higher than 25 cm showing, even if with 
a clear rotation of the blocks, an overall structural 
scheme still in equilibrium. 

7. Conclusion 

The numerical model presented here seems to be paticu- 
larly effective in finding the relationships between crack 
patterns and external settlements in the case of masonry 
structures formed by the assembly of elements according 
to different constructive typologies. For some cases, 
where it has been possible to make experimental investi- 
gations and build laboratory models, the correspondence 
between the behaviour of these models and the results 
obtained using the method described above can be con- 
sidered almost perfect. All this suggests it is necessary to 
conduct a more in-depth research of the subject with the 

aim of refining, in particular, the kinematical analysis of 
the elements in which the geometric congruence of the 
contact points along the interfaces between the blocks is 
controlled in such a way as to avoid possible solutions in 
which penetration of material is present at the perimeters 
of the blocks themselves. 
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