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ABSTRACT 

We study kinetic models of reversible enzyme 
reactions and compare two techniques for ana- 
lytic approximate solutions of the model. Ana- 
lytic approximate solutions of non-linear reac- 
tion equations for reversible enzyme reactions 
are calculated using the Homotopy Perturbation 
Method (HPM) and the Simple Iteration Method 
(SIM). The results of the approximations are 
similar. The Matlab programs are included in ap- 
pendices. 
 
Keywords: Enzyme Kinetics; Homotopy  
Perturbation Method; Iteration Method;  
Michaelis-Menten Kinetics; Quasi-Steady State  
Approximation 

1. INTRODUCTION 

The variety of chemical reactions in a living organism 
is carried out by enzymes. It appears that the rate of 
chemical reactions (both forward and backward) is ac- 
celerated by enzymes. 

They are essential because many chemical reactions 
occur without the activity of enzymes. Such reactions are 
linked withan enzyme’s active site, and they become a 
product after a series of stages. These stages are known 
as the enzymatic mechanism. There are two types of 
mechanisms, single substrate and multiple substrate me- 
chanisms [1-4]. An important branch of enzymology is 
enzyme kinetics which is used to study the rate of chemi- 
cal reactions. Differential equations are used to charac- 
terize the enzyme kinetics based on some principles of 
chemical kinetics [5-8]. 

The single enzyme reaction is one of the most power- 
ful kinds of kinetic reaction. Simply put, this enzyme 
reaction is defined as follows: 

1 3

2

k k

k
E S ES E P             

3

(1) 

where the concentrations of enzyme, substrate, enzyme- 
substrate complex and product are defined by [E], [S], 
[ES] and [P], respectively. Also, 1 2  and 3  repre- 
sent the reaction rate constants. By using the idea of 
mass action, we can describe the reaction Eq.1 in terms 
of a system of non-linear ordinary differential equations 
[3]. 

,k k k

There are varieties of possible simplifications for the 
system (Eq.1) to describe analytic approximate solutions 
of the system. One of the most common approaches to 
simplify this system is the use of quasi-steady state ap- 
proxmation (QSSA). The quasi-steady state assumptions 
occur as fundamental assumptions for enzyme kinetics, 
and the history of this subject began 80 years ago. It plays 
a key role with regard to the analysis of the enzyme ki- 
netic equations [5]. Another simplification is the Micha- 
elis-Menten equation created in 1913which pointed that 
the enzyme reaction (Eq.1) should be , therefore  2k k
  
 

2

1

E S k
kES

 . It means that there is equilibrium between  

[E], [S] and [ES] to produce [P] and [E]. In 1925, Briggs 
and Haldane proposed that the Michaelis-Menten as- 
sumption is not always applied. They said that it should 
be replaced by the assumption that [ES] is present, not 
necessarily at equilibrium, but in a steady state under 
condition    0S E 0 .This means that the concentra- 
tions of [ES] occur as a steady state. This is known as the 
steady state assumption (SSA) or is sometimes called the 
quasi-steady state approximation (QSSA), or pseudo- 
steady sate approximation [9]. The first description of 
QSS was given by Briggs and Haldane in 1925 [10]. 
They described the simplest enzyme reaction in Eq.1, and 
pointed out the total concentration of enzyme [E], where 
     tot  

is a tiny value in comparison with the 
concentration of substrate [S]. Also, they have shown the 

E E ES 

term of 
 d

d

ES

t
 is negligible compared to 

 d

d

S

t
 and 

 d

d

P

t
. As a result, they found the Michaelis-Menten 

mailto:sarbazmath@yahoo.com


S. H. A. Khoshnaw / Natural Science 5 (2013) 740-755 741

Copyright © 2013 SciRes.                                    Openly accessible at http://www.scirp.org/journal/ns/ 

equation, which is a differential equation used to de- 
scribe the rate of enzymatic reactions. The classical Mi- 
chaelis-Menten equation is defined as, 
     1 2 3k E S k k ES  , or 

    
 

      
 

3
2

d
,

d
M M

E S P k E S
ES k ES

tk S k S
  

 
    (2) 

where 2 3

1
M

k k
k

k


  is the Michaelis-Menten constant 

(for more details see [11]). The purpose of this work is to 
derive asymptotic approximate expressions for the sub- 
strate, product, enzyme and enzyme-substrate concentra- 
tions for Eq.3 by using (HPM) and (SIM), and to point 
out the similarities and differences between the methods 
of (HPM) and (SIM) for all values of dimensionless re- 
action diffusion parameters , ,    and . Another 
aim of this project is to find out the appropriate iteration 
in (SIM) compared to (HPM). 

k

2. MATHEMATICAL FORMULATION 

The Michaelis-Menten Eq.1 was applied by Kuhn in 
1924 [12] to several cases of enzyme knetics. The model 
of biochemical reaction was developed by Briggs and 
Haldane in 1925 [3]. The model of an enzyme action 
considers a reaction that includes a substrate [S] which 
binds an enzyme [E] reversibly to asubstrate-enzyme 
[ES]. The substrate-enzyme leads reversibly to product 
[P] and enzyme [E]. This mechanism is often written as 
follows: 

31

2 4

kk

k k
E S ES P E             (3) 

The mechanism shows the binding of substrate [S] and 
the release of product [P] where the free enzyme is [E] 
and the enzyme-substrate complex is [ES]. In addition, 

1 2 3  and 4  denote the rates of reaction. It is clear 
from Eq.3 that substrate binding and product are reversi- 
ble. The concentration of the reactants in Eq.3 is denoted 
by lower case letters: 

, ,k k k k

       , , ,e E s S c ES p P            (4) 

The time of evolution of Eqs.3 and 4 are found by the 
law of mass action to obtain the set of system of the fol- 
lowing non-linear reaction equations: 
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d
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when the initial conditions at t = 0 are given by 

       0 0 00 , 0 , 0 , 0e e s s c c p 0p        (9) 

Adding Eqs.6 and 7, and using initial conditions Eq.9, 
we obtain 

0e c e                (10) 

Also, adding Eqs.5, 7 and 8, and using initial condi- 
tions Eq.9, we get 

0s c p s               (11) 

By using Eqs.10 and 11, the system of ordinary dif- 
ferential equations (Eqs.5-8) reduce to only two vari- 
ables, s and c, as follows: 

1 0 1 2
d
d
s k e s k s k c
t
              (12) 

   1 0 1 2 3 4 0 0
d
d
c k e s k s k k c k e c s s c
t

         (13) 

with initial conditions    00 , 0 0s s c c  . By introduc- 
ing the following parameters: 
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We use the dimensionless technique to reduce the num- 
ber of parameters for the system of Eqs.12 and 13 and 
the initial conditions Eq.9. This can be represented in 
dimensionless form as follows: 

d

d

u
u u k v 


               (15) 

   d
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u u k v v u v 


           (16) 

 2d
1

d

w
u uv v  

               (17) 

     0 1, 0 0, 0 0.u v w           (18) 

In this paper, we estimate the analytic approximate 
solution for a system of non-linear ODE (Eqs.15-18), by 
using the methods of (HPM) and (SIM). 

3. ANALYTICAL APPROXIMATE  
SOLUTION USING THE HOMOTOPY  
PERTURBATION METHOD 

The basic idea of the Homotopy-Perturbation Method 
(HPM) is defined in this section. It is then applied to find 
the approximate solution of the problem in Eqs.15-18. It 
is considered from the following function: 

    0,A x f r r               (19) 
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with the boundary conditions 

 , 0,xB x r
n
  


            (20) 

where  and  are general differential op- 
erators, boundary operators, a known analytic function, 
and the boundary of the domain , respectively [13]. 
The function 

 , ,A B f r 


A  consists of linear part L  and non- 

linear part N. So, the Eq.19 can be written as: 

Openly accessible at  

      0L x N x f x               (21) 

The Homotopy function is defined 
by    , : 0,1 ,z r q R   which satisfies 

             0, 1H z q q L z L x q A z f r      0,  

(22) 

 0,1 , ,q r   or 

            0 0,H z q L z L x qL x q N x f r       

(23) 

where  0,1q  is an embedding parameter. At the 
same time, 0x  is an initial approximation of Eq.19, 
which satisfies Eq.20. Basically, from Eqs.22 and 23 we 
can obtain: 

     0,0 0,H z L z L x             (24) 

     ,1 0,H z A z f r              (25) 

Changing  ,z r q  from 0x  to  x r  depends on 
the values of  from zero to unity. It is called deforma- 
tion in the field of topology. At the same time, 

q

   0L z L x  and    f rA z   are called Homotopy. 
We use  as a small parameter initially, and we defined 
the Eqs.22 and 23 as a power series in : 

q
q

2
0 1 2z z qz q z               (26) 

Let  to get the approximate solution of Eq.19 = 1q

0 1 2
1

lim
q

x z z z z


               (27) 

Thus, HPM includes a combination of the perturbation 
method and the Homotopy method. Eqs.15-17 can be 

solved analytically in a simple and closed form by using 
the Homotopy Perturbation Method (HPM) (Ref Appen- 
dix A). So, the approximate solutions of the system of 
non-linear differential equations (Eqs.15 and 16) be- 
come: (see Eqs.28 and 29). 

The analytic expressions of the substrate  u   and 
enzyme substrate  v   concentrations can be represent- 
ed in Eqs.28 and 29. The dimensionless concentration of 
enzyme E can be obtained from Eqs.10 and 14 as fol- 
lows: 

     
0

1
e t

E
e

v                (30) 

The dimensionless concentration of the product  is 
obtained either by Eq.17 as follows: 

w

             2

0

1 dw u t u t v t v t mv t


       t   

(31) 

or we can use Eqs.11 and 14 to find the concentration 
of the product  as follows: w

     1 u v
w

  



 

 .            (32) 

The simple analytic approximate solution form of the 
concentrations of enzyme  E   and product  w   
for all values of parameters , ,    and , are repre- 
sented in Eqs.30-32. 

k

4. SIMPLE ITERATION METHOD 

In this section, we use a simple technique to find the 
analytic approximate solution for the system of Eqs.15 
and 16. We introduce this method by rewriting Eqs.15 
and 16 as follows: 
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then the Eqs.33 and 34 can be written as: 
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where   2, n n
n n
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u v
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A 

 is a non-linear 

part of the system (Eq.35), and 
a

b c

 
  

 is a 

matrix of the linear part of the system (Eq.35). To evalu- 
atean approximate solution of Eq.35 with the initial con- 
ditions implied by Eq.18, we introduce the following 
steps to approach the approximate solution. 

Step 1. For  and, if possi- 
ble suppose that 

   0 00, 1, 0n u v  
0


   (just in this step). It means we 

assume the non-linear part of Eq.35 approaches zero. 
Consequently, we obtain the following system: 

1

1 1

u u
A

v v

   
      

1               (36) 

We can solve the system of ordinary differential Eq.36 
analytically [14]. So, the solution of Eq.36 with initial 
conditions (Eq.18) is 
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where  and  are eigenvalues of matrix A, and 1p 2p
  

 
 
 

1 2 2
1 2

2 1 2 1

,
p p p

d d
a p p a p p

    
 

 
 and 

 
 

1
3

2 1

p
d

p p





. We substitute  and  in Eq.30 and 1u 1v

Eq.32, then obtain 1  and 1 , respectively. The be- 
haviour of the components in Eq.37 are described in 
Figures 1-5 (see Appendix C). 

E w

Step 2. For  and substituting Eqs.37 in 35, we 
obtain the following system of non-linear ODE: 

1,n 

2 2
1 1

2 2

,
u u

A G u v
v v

   
       

           (38) 

It is clear that the system of non-linear differential 

equations (Eq.38) is solved analytically [14]. The solu- 
tion of the system with initial conditions (Eq.18) is ob- 
tained as follows: 
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where 22 29  and 3 4  are constants. We substi- 
tute 2  and 2  in Eqs.30 and 32, and obtain 2  and 

2 , respectively. The behaviour of concentrations in this 
step is described in Figures 6-10 (See Appendix D). 

, ,d d
v

,c c
u E

w

Step 3. For 2,n   and substituting Eqs.39 and 40 in 
Eq.35, we get the following system of non-linear ODE: 

3 3
2 2

3 3

,
u u

A G u v
v v

   
       

          (41) 

The system of non-linear differential equations (Eq.41) 
is solved analytically. The solution of the system with 
initial conditions (Eq.18) is obtained as follows (see 
Eqs.42 and 43). 

Where 90 123  and 5 6  are constants. We sub- 
stitute 3  and 3  in Eq.30 and Eq.32, and obtain 3  
and 3 , respectively. The behaviour of concentrations in 
this step is described in Figures 11-15 (See Appendix E). 

, ,d d
v

,c c
u E

w

On the other hand, we can easily realize that the be- 
haviour of concentrations u, v, E and w of (HPM) are 
described in Figures 16-20. 

5. ASYMPTOTIC ANALYSIS 

An important development of asymptotic analysis was 
suggested by Kruskal (1963) for differential equations 
[15]. He defined asymptotology as “the art of describing 
the behaviour of specified solution (or family of solu- 
tions) of a system in limiting case”. The following three 
different conditions can be identified based on the initial 

ratio 
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1) If the initial concentration of enzyme  0E  is 
much greater than the initial concentration of substrate 
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Figure 1. 1,  1,  0.4      and  1.3.k 
 

 

Figure 2. 1.6,  1.3,  0.9      and . 1.7k 
 

 

Figure 3. 0.8,  0.3,  0.9      and . 1.1k 

 

Figure 4. 1.3,  0.3,  0.9      and . 1.2k 
 

 

Figure 5. 0.6,  1.2,  1.2      and . 1.7k 
 

 

Figure 6. 1,  1,  0.4      and . 1.3k 
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Figure 7. 1.6,  1.3,  0.9      and .
 

1.7k 
 

 

Figure 8. 0.8,  0.2,  0.6      and . 1.1k 
 

 0S . This means that 
 
 

0

0

1
E

S
 . Also, Schenelland  

Maini in [2] emphasized that the initial concentration of 
enzyme greatly exceeds the concentration of substrate, 
that is    0E S 0 . So, from Eq.14, we get 1  . In 
this case, the part of the enzyme concentration which 
binds to the concentration of the substrate is small. This 
means that there is a free rate of enzyme. This rate is 
based on the availability of the substrate, and is increased 
whenever the concentrations of substrate are increased, 
or by adding additional substrate to the chemical reac- 
tion. 

2) If the initial concentration of substrate  0S  is 
much greater than the initial concentration of enzyme 

 0E . This means that 
 
 

0

0

1
E

S
 . So, from Eq.14, we 

 

Figure 9. 1.3,  0.3,  0.9      and .
 

1.2k 
 

 

Figure 10. 0.6,  1.2,  1.2      and .
 

1.7k 
 
obtain 1  . In this case, there is a small part of sub- 
strate that links to the enzyme, while a part of it is free. 
In this case, enzyme molecules usually bind to substrate 
molecules which mean that a small amount of enzyme is 
free. The availability of enzyme in this case depends on 
this rate, and increases when the rate of enzyme is in- 
creased, or by adding some extra enzyme to the chemi- 
cal reaction. 

3) If the initial concentration of enzyme and substrate 

are equal. This means 
 
 

0

0

1
E

S
 , so from Eq.14, we get 

1  . In this case, there are no any free molecules of 
enzyme or substrate. In other words, all substrate mole- 
cules are occupied by the enzyme molecules, and all en- 

Copyright © 2013 SciRes.                                    Openly accessible at http://www.scirp.org/journal/ns/ 
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zyme molecules are also limited by the number mole- 
cules of the substrate. Furthermore, if we look the con- 
stant rate of reactions 4  and  from Eq.14, we can 
define the following conditions: 

k 1k

4) If , then 4k k 1 1  . 
5) If , then 4 1k k 1  . 
6) If , then 4 1k k 1  . 
In addition, according to the definition of   and  

from Eq.14, we obtain 
k

k  , because 3  always has a 
positive value. As result, we can easily combine the 
Conditions 1-6. We then get the following five basic 
cases in this paper: 

k

Case 1. The value of 1   and 1  , 
Case 2. The value of 1   and 1  , 
Case 3. The value of 1   and 1  , 
Case 4. The value of 1   and 1  , 
Case 5. The value of 1   and 1  . 

 

 

Figure 11. 1.001,  ,1.001  0.4      and . 1.3k 
 

 

Figure 12. 1.6,  1.3,  0.9      and . 1.7k 

 

Figure 13. 0.8,  0.2,  0.6      and . 1.1k 
 

 

Figure 14. 1.3,  0.3,  0.8      and . 1.2k 
 

 

Figure 15. 0.6,  1.2,  1.2      and . 1.7k 
 

We apply the above cases separately in the analytic ap-
proximate solution for both methods (HPM) and (SIM). 
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Figure 16. 1,  1,  0.4      and . 1.3k 
 

 

Figure 17. 1.6,  1.3,  0.9      and . 1.7k 
 

 

Figure 18. 0.8,  0.6,  2      and . 3.3k 

 

Figure 19. 1.3,  0.9,  0.8      and . 1.2k 
 

 

Figure 20. 0.6,  1.2,  1.2      and . 1.7k 

6. RESULTS AND DISCUSSIONS 

The figures in this section are divided in to four 
groups. The first three groups are related to three itera- 
tions of SIM and the last group refers to the HPM. Fig- 
ures 1-20 show the analytic approximate solution of 
substrate , enzyme , enzyme-substrate complex v 
and product . Each figure in this work corresponds to 
one case in the previous section. The figures change in 
terms of the values of the dimensionless parameters 

u E
w

, ,    and . We have applied two different methods 
which are SIM and HPM to find the analytical approxi- 
mate solutions for Eqs.15 and 16. The HPM has been 
used by many researchers for the system (Eq.1) [1,3,4]. 
The main purpose of this discussion is to find the simi- 
larities and differences between the methods which are 

k
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used in this study. Another purpose is to recognize the 
best iteration of the SIM compared to the HPM. 

There are a variety of data results that tell us the sec- 
ond iteration in our approach (SIM) is similar to HPM. 
First of all, the second iteration has many significant 
similarities compared to (HPM), and some of them pro- 
vide excellent results in terms of our work. For instance, 
Figures 6-10 show that the value of the concentration of 
substrate  slightly decreases from its initial value u

  0u 1  and there are a few changes in the value of 
the concentration of the enzyme-substrate complex v. 
Generally, they reach some constant values after 4  . 
Also, in Figures 16-20, it appears that the concentration 
of the components are somewhat similar to those of cor- 
responding Figures 6-10. Another example is that the 
value of the concentration of enzyme E in both sets of 
figures is more or less is the same, especially in Cases 1, 
2 and 5. Another crucial point is that the value of con- 
centration v in Figure 13 reaches a maximum when 
0 2  . Also, in the same interval of time, the value of 
the concentration v reaches a maximum in Figure 18 as 
well. We can also realize that the value of the enzyme in 
both figures ends up at a minimum value when 0 2  . 
In addition, Figures 11-15 and Figures 16-20 show that 
there is a gradual decrease in the rate of substrate u be- 
tween 0 2   which then levels off after 4  . On 
the other hand, the concentration of the product w 
slightly increases between 0 2   in both set of fig- 
ures, and is likely to remain stable after 4  . 

However, there are some differences between our sim- 
ple technique (SIM) and the classical technique (HPM). 
For example, Figures 1-5 show that the value of the con-
centration of substrate u slightly decreases from its initial 
value   0 1u  , and there are a few changes in the 
value of the concentration of the enzyme-substrate com- 
plex v. Generally, they become zero after 5  . Mean- 
while, in Figures 16-20, it appears that the concentration 
of the components do not fall to zero, but instead reach 
some constant values. Basically, it could be pointed out 
that the differences between them are small and can be 
therefore be ignored. 

Overall, it can be said that the second and third itera- 
tions of SIM are appropriate for obtaining a good ap- 
proximate solution for our case study. In particular, the 
results of the second iteration are more fitted to an ap- 
proximate solution in comparison with the classical tech- 
nique (HPM). However, although there are some differ- 
ent values in terms of results between HPM and the sec- 
ond iteration method, they are tiny. 

Figures 1-5. In these profiles of the normalized con- 
centrations of the substrate u, enzyme-substrate complex 
v, enzyme E and product w correspond to Cases 1-5, re- 
spectively. The equations of Step 1 are applied to plot the 
figures (see Appendix C). 

Figures 6-10. In these profiles of the normalized con- 
centrations of the substrate u, enzyme-substrate complex 
v, enzyme E and product w correspond to Cases 1-5, re- 
spectively. The equations of Step 2 are applied to plot the 
Figures (see Appendix D). 

Figures 11-15. In these profiles of the normalized 
concentrations of the substrate u, enzyme-substrate com- 
plex v, enzyme E and product w correspond to Cases 1-5, 
respectively. The equations of Step 3 are applied to plot 
the figures (see Appendix E). 

Figures 16-20. In these profiles of the normalized 
concentrations of the substrate u, enzyme-substrate com- 
plex v, enzyme E and product w correspond to Cases 1-5, 
respectively. The Eqs.28 and 32 are applied to plot the 
figures (see Appendix A). 

7. FINDINGS 

We have used the mean of the second norm (Eq.44) to 
find the total differences between the HPM and each 
iteration of the SIM (see Tables 1-3). The rate of con- 
vergence between the SIM and the HPM is shown in 
Figure 21. Thus, we use the following equation to find 
this rate of convergence: 

2

1

N

i i
i

f g
f g

NN






            (44) 

where  and f g  are the value of the concentrations of 
substances u, v, E and w for the SIM and the HPM re- 
spectively, and N is the number of timescale iterations. 
The average norm between the second iteration and 
HPM is small in value. For instance, the average value of 
the norm concentration of E is small (equal to 0.02) (see 
H-S2 in Figure 21). This means that the second iteration 
method is the most appropriate iteration in this case 
study in terms of approaching the approximate solution. 
Although the rate of the second norm for the third itera- 
tion is also small (see H-S3), but the second iteration 
method of our work is the best iteration in order to obtain 
the convergence in terms of the solution in comparison 
with the classical method (HPM). 
 

 

Figure 21. The average value of the second norms convergence 
between the HPM and the iterations of the SIM. 
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Table 1. The average number of second norms between the 
first iteration (SIM) and HPM, the results are calculated by 
using Matlab program (see Appendices B and C). 

Nor.Con. Case 1 Case 2 Case 3 Case 4 Case 5 Ave. 1

UU1 0.2674 0.2015 0.1748 0.1655 0.1808 0.1980

VV1 0.2691 0.2031 0.1752 0.1662 0.1838 0.1995

EE1 0.2968 0.2488 0.1472 0.1873 0.3144 0.2389

WW1 0.5633 0.3745 0.3630 0.2911 0.6140 0.4412

 
Table 2. The average number of second norms between the 
second iteration (SIM) and HPM, the results are calculated by 
using Matlab program (see Appendices B and D). 

Nor.Con. Case 1 Case 2 Case 3 Case 4 Case 5 Ave. 2

UU2 0.0361 0.2050 0.0232 0.1411 0.0572 0.0565

VV2 0.0361 0.0251 0.0233 0.1411 0.0572 0.0566

EE2 0 0.0136 0.0255 0.0654 0.0172 0.0243

WW2 0.0336 0.020 0.0525 0.1633 0.0877 0.0719

 
Table 3. The average number of second norms between the 
third iteration (SIM) and HPM, the results are calculated by 
using Matlab program (see Appendices B and E). 

Nor.Con. Case 1 Case 2 Case 3 Case 4 Case 5 Ave. 3

UU3 0.0843 0.0411 0.0470 0.1343 0.0362 0.0686

VV3 0.0844 0.0411 0.0471 0.1344 0.0363 0.0687

EE3 0.0262 0.0094 0.0273 0.0672 0.0326 0.0325

WW3 0.1083 0.0259 0.0824 0.1591 0.0682 0.0888

 
On the other hand, the differences between our ap- 

proach (SIM) and the HPM occurred more frequently in 
the first iteration than in other iterations (see H-S1 val- 
ues). It could be said that this iteration is not quite ap- 
propriate in this case study. This may be caused by giv- 
ing the non-linear part in this iteration a zero value (see 
Step 1). 

The blue column (H-S1), red column (H-S2) and green 
column (H-S3) describe the second norm differences 
between (HPM) and the iterations of (SIM), respectively. 
The figure is plotted by using the results of Tables 1-3. 
The second norm differences are represented by u, v, E 
and w. 

8. CONCLUSION 

The simple iteration method (SIM) and the Homotopy 
Perturbation Method (HPM) are used to find approxi- 
mate analytic solutions to non-linear differential Eqs.15 
and 16. Straightforward methods are derived for esti- 
mating the concentrations of substrate u, product w, en- 

zyme-substrate complex v and enzyme E. The dimen- 
sionless technique applies to reduce the non-linear sys- 
tem of ODE. The HPM was used for a simple enzyme 
reaction (Eq.1) [1,3]. We have used this method for our 
case study, and have obtained an analytical approximate 
solution. Furthermore, a simple approach technique (SIM) 
was applied. This consisted of three iterations (steps). 
The approximate solution of the second step is similar to 
the classical method (HPM) (see Figures 6-10 and Fig- 
ures 16-20). We have also used the idea of the second 
norm to determine the best iteration for the problem. So, 
it is clear that the second iteration method is quite similar 
to the HPM. Consequently, Figure 21 shows that the 
second iteration is the appropriate one (see Figure 21 for 
the H-S2 values). Thus, the SIM technique could be ap- 
plied to some other complex chemical reactions to find 
appropriate solutions, and to describe the behaviour of 
their parameters. For example, it could be applied to 
many open path ways in terms of biochemical reactions 
[17]. In addition, we highly recommend applying the 
simple approach (SIM) to describe the approximate solu- 
tions of complex enzyme reactions [18], the reaction 
mechanism of competitive inhibitions, and the reaction 
scheme of allosteric inhibitions [19]. 
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Appendix A. This appendix consists of the solution of 
Eqs.15 and 16 by using the HPM. Furthermore, this 
method is used to derive Eqs.28 and 29 from Eqs.15 and 
16, let   ,  1a k b       and 
c k    , 

  d d1
d d

u uq u q u av v  
 

               
0,    (45) 

  2d d1 0,
d d

v vq cv q bu cv buv v 
 

                 

.

(46) 

with initial conditions,        (47)    0 1, 0 0u v 

Thus, by using the HPM [1,3,4], the approximate so- 
lution of Eqs.45 and 46 are: 

2
0 1 2u u qu q u               (48) 

2
0 1 2v v qv q v               (49) 

Substituting the Eqs.48 and 49 in Eqs.45 and 46, and 
comparing the coefficients of the like power q, we get 
the following system of ordinary differential equations: 

0 0
0

d
:

d
u

q u

  0,              (50) 

1 1
1 0 0 0

d
: 0

d
u

q u av u v 

    ,        (51) 

2 2
2 1 0 1 1 0

d
:

d
u

q u av u v u v  

     0,     (52) 

and. 0 0
0

d
:

d
v

q cv

  0,              (53) 

1 21
1 0 0 0 0

d
: 0

d
v

q cv bu bu v v 

      ,       (54) 

2 2
2 1 0 1 1 0 0 1

d
: 2

d
v

q cv bu bu v bu v v v

      0,   (55) 

The analytical solutions of Eqs.50-55 with initial con- 
ditions Eq.47 are: 

 0 eu                   (56) 

 1 eu                   (57) 

and,          (59)  0 0,v  

   1 e e cb bc cv
c c c

,  
 

   
 

      (60) 

      

 
 

  

   

2
2

2

2 2

2

e e
2

e
2

e

c

c

b b bv
c c c c c

b cb cb b b
cc c c c

b cb cb b
cc c c c

 

 




   

 




  

   
  

 

 



 
       

     
      


 

(61) 

According to the HPM, we can easily find that 

    0 1 2
1

lim
q

u u u u u 


           (62) 

and,     0 1 2
1

lim
q

v v v v v 


          (63) 

By putting Eqs.56-58 in Eq.62 and Eqs.59-61 in 
Eq.63, we obtain the approximate solution for the sys- 
tem of non-linear ODE equations (Eqs.15 and 16) which 
is described in Eqs.28 and 29. 

Appendix B. Let 1 2 3, ,  k k k     and ,t   
and we use the following Matlab programming to plot 
the functions in Eqs.28-32. 

1 2 30;  for 1:101;  1;  1.2;  0.9;  1.3;t i k k k k       

 1 2 3 3 1; 1 ;a k k k b k c k k k k         3;  

 

       
 

   

2
2

2 2 2

2

2 2

e e e

1 e

ccab abc a ac cb c a bu
c c c cc cc c

a abc ac a b bc c
c c c cc c

  e 



       
 

     
  

  



        
 

          
   






           (58)

               

          

           
     

1 1 3 1 1 3 1 3 1

1 1 3 1 1 3 1 1

1 3 1 1 3 3 1

3 1 1 1 3

2 exp exp ^ 2

exp exp 2 ^ 2 ^ 2

exp 1 ^ 2

u k t a b c k k k c t k t a b c a k k a k c c k c

c t b k c k t k k c b k k c k c k c

k c t a k c k a k k a b c a k c c k c

a k c k b c k a b k k

                       

                  

                   

              1 3 1 1 1^ 2 ^ 2 exp ;k k c k c k c k t        
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1 1 3 1 3 1

3 1 3 1 1 1 1 1

3 1 3 1 1 1 1 1 1

2 3 1 3 1 1 3

exp exp

exp ^ 2 2 exp 2

^ 2 exp ^ 2 2

v b c k k t c b k k k c c k c c t

k c b c k k b c c k k t b c k c k k t

k k b c b k c b c k k c c k t b k c b k c c k

c b k k b k c b c k k c k b c k

       

         

          

 

       

        

       

  

 

          


  1 exp ;c c t  

 

 

1 11 ; 1 ;E v w k u k v      

         ; ; ; ; ;A i u B i v C i E D i w T i t t t       0.1;
 

end; plot (T,A,’r’,T,B,’k.’,T,C,’b.’,T,D,’g’) y label (’Con- 
centration of u, v, E and w’) x label (’Dimensionless 
Time (t)’); axis square. 

Appendix C. Let 1 2 3, ,  k k k     and ,t   
and we use the following Matlab programming to plot 
the functions of Step 1. 

1 2 30;  for 1:101; 1;  1.2;  0;  1.3;t i k k k k       

 1 2 3 3 3;  1 ;  ;a k k k b k c k k k k         1  

     1 1 1 1^ 2 4 2;p k c sqrt k c c k a b           

     2 1 1 1^ 2 4  2;p k c sqrt k c c k a b           

       2 2 1 2 1 3 1 1 1 2; ;d p k p p d p k p p       

       1 1 1 2 1 2 1 ;d p k p k a p p       

  1 2 1 3 2exp exp ;u d p t d p t      



 

  1 1 1 1 2exp exp ;v d p t d p t       

 1 1 1 1 1 1 11 ;  1 ;  e v w k u k v A i u      1;

nd;

 

       1 1 1; ; ; ;  0.1; eB i v C i e D i w T i t t t       

plot (T,A,’r’,T,B,’k.’,T,C,’b.’,T,D,’g’) y label (’Concen- 
tration of u1, v1, E1 and w1’) x label (’Dimensionless 
Time (t)’); axis square. 

Appendix D. Let 1 2 3, ,  k k k     and ,t   
and we use the following Matlab programming to plot 
the functions in Step 2. 

1 2 30;  for 1:101;  1;  1.2;  0.2;  1.3;t i k k k k       

 1 2 3 3 3;  1 ;  ;a k k k b k c k k k k1          

     1 1 1 1^ 2 4 2;p k c sqrt k c c k a b           

     2 1 1 1^ 2 4 2;p k c sqrt k c c k a b           

       2 2 1 2 1 3 1 1 1 2; ;d p k p p d p k p p      

       1 1 1 2 1 2 1 ;d p k p k a p p       

   4 1 2 1 5 1 2 1 1 3 1; ;d k d d d k d d k d d           

 6 1 3 1 7 2 1 3 1 1;  ^ 2;(d k d d d b d d k k d            

   8 2 1 3 1 3 1 1( ) 2 ^d b d d b d d k k d          2 ;  

   9 3 1 3 1 1 ^ 2 ;d b d d k k d       

      10 2 1 2 1 11 2 1; 1d p k a p p d p p       ;  

      12 1 1 1 2 13 2 1; 1d p k a p p d p p      ;  

   14 4 10 11 7 1 15 10 5 11 8 2; ;d d d d d p d d d d d p         

     16 10 6 11 9 2 1 17 3 11 12 ;d d d d d p p d k d p         ;  

     18 12 4 13 7 1 2 19 12 5 13 8 12 ;  ;d d d d d p p d d d d d p           

   20 12 6 13 9 2 21 3 13 2;  ;d d d d d p d k d p        

22 14 18 23 15 19; ;d a d a d d a d a d         

24 16 20 25 17 21;  ;d a d a d d a d a d         

   26 1 1 14 2 1 18;d p k d p k d       

   27 1 1 15 2 1 19 ;d p k d p k d       

   28 1 1 16 2 1 20 ;d p k d p k d       

   29 1 1 17 2 1 21;d p k d p k d       

           3 22 23 24 25 26 27 28 29 1 1 22 23 24 25 1 21 1c d d d d a a d d d d p k d d d d a p p                   ;

 
         4 26 27 28 29 1 1 22 23 24 25 1 21 ;c a d d d d p k d d d d a p p               

          2 3 1 4 2 22 1 23 1 2 24 2 25exp exp exp 2 exp exp 2 ;u c a p t c a p t d p t d p p t d p t d                      

         
    

2 3 1 1 1 4 2 1 2 26 1 2

1 2 28 2 29

exp exp exp 2

exp exp 2 ;

v c p k p t c p k p t d p t d

p p t d p t d

              

       
7
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2 2 2 1 2 11 ; 1e v w k u k v     2 ;  

         2 2 2 2;  ;  ; ; ; 0.1;A i u B i v C i e D i w T i t t t        

end; plot (T,A,’r’,T,B,’k.’,T,C,’b.’,T,D,’g’) y label (’Con- 
centration of u2, v2, E2 and w2’) x label (’Dimensionless 
Time (t)’); axis square. 

Appendix E. Let 1 2 3, ,  k k k     and ,t   
and we use the following Matlab programming to plot 
the functions in Step 3. 

1 2 30;  for 1:101;  1;  1.2;  0.2;  1.4;t i k k k k       

 1 2 3 3 3;  1 ;  ;a k k k b k c k k k k         1  

     1 1 1 1^ 2 4 2;p k c sqrt k c c k a b           

     2 1 1 1^ 2 4 2;p k c sqrt k c c k a b           

       2 2 1 2 1 3 1 1 1 2;  ;d p k p p d p k p p       

       1 1 1 2 1 2 1 ;d p k p k a p p       

   4 1 2 1 5 1 2 1 1 3 1; ;d k d d d k d d k d d           

 6 1 3 1 7 2 1 3 1 1;  2( )^ ;d k d d d b d d k k d            

   8 2 1 3 1 3 1 1(2 ^ 2 ;)d b d d b d d k k d           

      9 3 1 3 1 12 10 2 1 2 1; ;( )d b d d k k d d p k a p p           

      11 2 1 12 1 1 1 21 ;d p p d p k a p p       ;  

   13 2 1 14 4 10 11 7 11 ;d p p d d d d d      ;p  

 15 10 5 11 8 2 ;d d d d d p     

     16 10 6 11 9 17 3 11 12 2 1 ;d d d d d p p d k d p         ;  

   18 12 4 13 7 1 22 ;d d d d d p p       

   19 12 5 13 8 1 20 12 6 13 9 2; ;d d d d d p d d d d d p         

 21 3 13 2 22 14 18;  ;d k d p d a d a d        

23 15 19 24 16 20;  ;d a d a d d a d a d         

   25 17 21 26 1 1 14 2 1 18; ;d a d a d d p k d p k d           

   27 1 1 15 2 1 19 ;d p k d p k d       

   28 1 1 16 2 1 20 ;d p k d p k d       

   29 1 1 17 2 1 21;d p k d p k d     
 

 

           3 22 23 24 25 26 27 28 29 1 1 22 23 24 25 1 21 1c d d d d a a d d d d p k d d d d a p p                   ;  

         4 26 27 28 29 1 1 22 23 24 25 1 21 ;c a d d d d p k d d d d a p p               

 30 1 32 1 1 1 22 29 1 26 25;d k c a p k k d d k d d          

   4 2 1 1 4 3 1 1 1 23 29c a p k k c c a p k k d d            31 1 3 1 25 27 ;d k c k d d      

 

 32 1 3 26 1 3 1 1 22 ;d k c a d k c p k d          

 
33 1 3 27 1 4 26

1 4 2 1 22 1 3 1 1 23( ;)

d k c a d k c a d

k c p k d k c p k d

       

         
 

 
34 1 3 28 1 4 27 1 4 2

1 23 1 3 1 1 24 ;

(

)

d k c a d k c a d k c p

k d k c p k d

          

      
 

 35 1 3 29 1 3 1 1 25 ;d k c a d k c p k d          

 36 1 4 2 1 1 24

29 1 25 28

^ 2

;

d k c a p k k d

d k d d

      

   
 

37 1 4 28 1 4 2 1 24 ;(d k c a d k c p k d          

 38 1 4 29 1 4 2 1 2 ;d k c a d k c p k d          

39 1 22 26 40 1 22 27 1 23 26;  ;d k d d d k d d k d d          

41 1 22 28 1 23 27 1 24 26 ;d k d d k d d k d d          

42 1 23 28 1 24 27 ;d k d d k d d       

43 1 24 28 44 1 25 29; ;d k d d d k d d       

 45 30 1 3 1 3 1 1 3 1

26 29 3 1 29 26

^ 2 ^ 2

;

d b d k k k c p k k

d d k k d d

k         

     
 

   
   

46 31 1 3 1 3 4 1 1 2 1

3 1 3 4 1 1 2 1 3 1 27 29

3 1 27 29 ;

d b d k k k c c p k p k

k k c c p k p k k k d d

k k d d

          

           

   

 

 
 

47 32 1 3 1 3 26 1 1

3 1 3 26 1 1 ;

d b d k k k c d p k

k k c d p k

        

     
 

 
 

48 33 1 3 1 3 27 1 1

3 1 4 26 2 1 ;

d b d k k k c d p k

k k c d p k

        

     
 

 
 

   

49 34 1 3 1 3 28 1 1

3 1 4 27 2 1 3 1 4 27

2 1 3 1 3 28 1 1 ;

d b d k k k c d p k

k k c d p k k k c d

p k k k c d p k
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50 35 1 3 1 3 29

1 1 3 1 3 29 1 1 ;

d b d k k k c d

p k k k c d p k

      

        
 

 51 36 1 3 1 4 2 1

3 1 28 29 3 1 28 2

^ 2

;

d b d k k k c p k

k k d d k k d d

       

       
 

 
 

52 37 1 3 1 4 28 2 1

3 1 4 28 2 1 ;

d b d k k k c d p k

k k c d p k

        

     
 

 
 

53 38 1 3 1 4 29 2 1

3 1 4 29 2 1 ;

d b d k k k c d p k

k k c d p k

        

     
 

 54 39 1 3 1 26 ^ 2;d b d k k k d       

55 40 1 3 1 26 27 3 1 26 27 ;d b d k k k d d k k d d            

 
56 41 1 3 1 26 28

3 1 27 3 1 26 28^ 2 ;

d b d k k k d d

k k d k k d d

      

      
 

57 42 1 3 1 27 28 3 1 27 28 ;d b d k k k d d k k d d            

 58 43 1 3 1 28 ^ 2;d b d k k k d       

     59 44 1 29 2 3 60 10 30 11 45 1^ ;d b d k d k d d d d d p         ;  

   61 10 31 11 46 2 ;d d d d d p     

   62 10 32 11 47 12 ;d d d d d p      

   63 10 33 11 48 1 2 ;d d d d d p p      

   64 10 34 11 49 22 ;d d d d d p      

65 10 35 11 50( ;)d d d d d     

   66 10 36 11 51 1 22 ;d d d d d p p        

   67 10 37 11 52 1 23 ;d d d d d p p        

   68 10 38 11 53 1 2 ;d d d d d p p       

   69 10 39 11 54 13 ;d d d d d p      

   70 10 40 11 55 1 22 ;d d d d d p p       

   71 10 41 11 56 1 22 ;d d d d d p p       

   72 10 42 11 57 23 ;d d d d d p      

   73 10 43 11 58 1 24 ;d d d d d p p        

   74 10 44 11 59 1 ;d d d d d p      

   75 12 30 13 45 1 22 ;d d d d d p p       

   76 12 31 13 46 1 ;d d d d d p     

   77 12 32 13 47 1 23 ;d d d d d p p       

   78 12 33 13 48 12 ;d d d d d p      

   79 12 34 13 49 1 2 ;d d d d d p p      

   80 12 35 13 50 1 2/ ;d d d d d p p      

   81 12 36 13 51 2 ;d d d d d p     

   82 12 37 13 52 22 ;d d d d d p      

 83 12 38 13 53 ;d d d d d     

   84 12 39 13 54 1 24 ;d d d d d p p       

   85 12 40 13 55 13 ;d d d d d p      

   86 12 41 13 56 1 22 ;d d d d d p p       

   87 12 42 13 57 1 22 ;d d d d d p p       

   88 12 43 13 58 23 ;d d d d d p      

   89 12 44 13 59 2 ;d d d d d p      

90 60 75 91 61 76; ;d a d a d d a d a d         

92 62 77 93 63 78; ;d a d a d d a d a d         

94 64 79 95 65; ;d a d a d d a d       

96 80 97 66 81;  ;d a d d a d a d       

98 67 82 99 68 100 83;  ;  ;d a d a d d a d d a d         

101 69 84 102 70 85; ;d a d a d d a d a d         

103 71 86 104 72 87;  ;d a d a d d a d a d         

105 73 88 106 74 89;  ;d a d a d d a d a d         

1 1 1 2 2 1 107 1 60 2 75;  ; ;h p k h p k d h d h d         

108 1 61 2 76 109 1 62 2 77;  ;d h d h d d h d h d         

110 1 63 2 78 111 1 64 2 79;  ;d h d h d d h d h d         

112 1 65 113 2 80 114 1 66 2 81;  ; ;d h d d h d d h d h d         

115 1 67 2 82 116 1 68 117 2 83; ;  ;d h d h d d h d d h d         

118 1 69 2 84 119 1 70 2 85;  ;d h d h d d h d h d         

120 1 71 2 86 121 1 72 2 87; ;d h d h d d h d h d         

122 1 92 93 94 96 97 98 9

101 102 103 104 105 106 ;

d h d d d d d d d

d d d d d d

       

     
9  

107 108 109 110 111 113 114

115 116 118 119 120 121 122 123;

N d d d d d d d

d d d d d d d d

      

       
 

     5 2 21 ;c M h a N a h h       1  

 6 2 1 2 ;c N h h h c5   
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3 5 1 6 2 90 1 91 1 2

92 1 93 1 2 94 1 2 95 1

96 1 97 2 98 2 99 2

100 2 101

exp exp exp 2 exp

exp 3 exp 2 exp 2 exp

exp exp 2 exp 3 exp 2

exp 2 exp 4

u c a p t c a p t d p t d p p t

d p t d p p t d p p t d t p t

d p t d p t d p t d p t

d t p t d

               

                 

              

               
     

1 102 1 2 103 1 2

104 1 2 105 2 106

exp 3 exp 2 2

exp 3 exp 4 ;

p t d p p t d p p t

d p p t d p t d

            

         

 

         
           
           

 

3 5 1 1 6 2 2 107 1 108 1 2

109 1 110 1 2 111 1 2 112 1

113 1 114 2 115 2 116 2

117 2

exp exp exp 2 exp

exp 3 exp 2 exp 2 exp

exp exp 2 exp 3 exp 2

exp 2

v c h p t c h p t d p t d p p t

d p t d p p t d p p t d t p t

d p t d p t d p t d p t

d t p

               

                 

              

             
     

118 1 119 1 2 120 1 2

121 1 2 122 2 123

exp 4 exp 3 exp 2 2

exp 3 exp 4 ;

t d p t d p p t d p p t

d p p t d p t d

               

         

 

 

   3 3 3 1 3 1 3 31 ;  1 ; ;e v w k u k v A i u B i v       end; plot (T,A,’r’,T,B,’k.’,T,C,’b.’,T,D,’g’) y label (’Con- 
centration of u3, v3, E3 and w3’) x label (’Dimensionless 
Time (t)’); axis square. 

3;  

     3 3;  ;  ;  0.1;C i e D i w T i t t t    
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