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ABSTRACT 

Einstein equation of gravity has on one side the momentum energy density tensor and on the other, Einstein tensor 
which is derived from Ricci curvature tensor. A better theory of gravity will have both sides geometric. One way to 
achieve this goal is to develop a new measure of time that will be independent of the choice of coordinates. One natural 
nominee for such time is the upper limit of measurable time form an event back to the big bang singularity. This limit 
should exist despite the singularity, otherwise the cosmos age would be unbounded. By this, the author constructs a 
scalar field of time. Time, however, is measured by material clocks. What is the maximal time that can be measured by 
a small microscopic clock when our curve starts at near the “big bang” event and ends at an event within the nucleus of 
an atom? Will our tiny clock move along geodesic curves or will it move in a non geodesic curve within matter? It is 
almost paradoxical that a test particle in General Relativity will always move along geodesic curves but the motion of 
matter within the particle may not be geodesic at all. For example, the ground of the Earth does not move at geodesic 
velocity. Where there is no matter, we choose a curve from near “big bang” to an event such that the time measured is 
maximal. Without assuming force fields, the gravitational field which causes that two or more such curves intersect at 
events, would cause discontinuity of the gradient of the upper limit of measurable time scalar field. The discontinuity 
can be avoided only if we give up on measurement along geodesic curves where there is matter. In other words, our tiny 
test particle clock will experience force when it travels within matter or near matter. 
 
Keywords: Foliation; Field Curvature; General Relativity; Accelerated Cosmic Expansion; Quantum Gravity; Dark 

Matter; Chameleon Scalar Field 

1. Introduction: Square Curvature in 
Positive Definite Metric Spaces 

A) Ideas 
 If spacetime is homotopic to a single starting event, 

say “big bang” then maximal proper time curves can 
be drawn back from any event, to a limit that con- 
verges at the big bang singularity. Along these curves 
we can imagine a tiny clock that travels and measures 
time. This time is considered as a scalar field. Clock 
tick is different under local space location due to 
gravity. The scalar field therefore, has a significant 
gradient by space. Where there is matter, however, a 
tiny particle-like clock will never move along geo- 
desic curves because as we shall see, it would lead to 
discontinuities in the gradient of our scalar field of 
upper limit of measurable time. The expected sub- 

atomic force deviates from any non-Newtonian 
model in that the force is trajectory and speed de-
pendent because it means that a particle that moves 
along a trajectory and indeed measures the upper 
limit can’t be geodesic near matter. 

 The laws of Nature will never directly involve any 
absolute time. Instead, we will be coerced to define 
them by using the gradient of such time, which is in- 
deed local. This point is crucial to the understanding 
of this paper! Also crucial is to understand the time 
discussed in this paper is well defined as an upper 
limit on measurable proper time. 

 A nice, though less important issue, is that decon- 
structing space time into 3 + 1 dimensions require lo- 
cal time orthogonality unlike in Kerr solution. This 
idea will also be addressed though it is a bit specula- 
tive. 
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2. Classical Matter: The Gradient Need Not 
to Be Parallel to any Geodesic Curve, 
Resolving Singularities 

Our strategy now will be to see what would happen to the 
gradient of the upper limit of measurable time from any 
event backwards, if no forces act on our test-clock-parti- 
cles. Then to show that forces are indeed required for 
avoiding singularities at curve intersections. The direc- 
tion in space time of the particles measuring the maxi- 
mum proper time forms a geodesic curve but near matter, 
without the existence of forces, not necessarily the gra- 
dient of the field would be parallel to a geodesic curve 
because: 1) more than one curve could reach the same 
event; 2) at that event near matter, even known forces 
would cause any test particle clock to move along non 
geodesic curves; and 3) one idea, even without explicitly 
assuming forces near matter, is that in a quantum model 
the intersection of such curves does manifest singularity 
of the gradient but by coupling by multiplication of the 
time field and a wave function of the entire system of 
particles, the 4-loaction of the singularity can be blurred 
by uncertainty. Whichever model we choose 2 or 3, a 
real world clock will not move along geodesic curves 
within matter, otherwise its measurement will result in 
discontinuities or singularities of the gradient of our up-
per limit on measurable time. The idea of such particle 
clocks is not quite new [1] and is important in order to 
have physical meaning. A good example of discontinuity 
is the center and edge of a hollowed ball of mass, see 
Figure 1(a). Due to General Relativity, the clock ticks in 
the gravitational field of the ball are slower than far from 
the ball. As a result, max proper time geodesic curves 
from say “big bang” event, must come from outside the 
ball into the ball. The time at the center of the ball is also 
a geodesic curve but it is in the time direction in 
Schwarzschild coordinates due to symmetry. The vector 
field of the lines is therefore discontinuous and we have a 
non-zero Euler number [2] of the gradient field. As was 
already mentioned, one way to resolve such singularities 
is that our particle clock will experience force. Space- 
time in a hollow ball of mass is conic i.e. the metric co- 
efficient rrg  of the radius differen dr  is greater 
than 1, and is thus flat but with a zero measure singular-
ity of the Gaussian curvature at the center which is the tip 
of 4 dimensional cone. In any case such force has to be 
negligible though it should exist and should disallow 
geodesic movement in the sub atomic scale that will oth- 
erwise manifest the gradient singu

ce 

larity. 
If we consider the ideas of Quantum Gravity, “con- 

flict” events where curves intersect do not have zero 
measure. But as was already mentioned, even without 
quantum gravity it is not difficult to imagine that such 
singularities can be avoided in the sub-atomic level by 

force that prevents any microscopic real world clock 
from moving along geodesic curves. Our field of time 
then sets an upper limit to measurable time by any such 
tiny clock particle. The conflict is apparent also on the 
edges of the ball because matter is granular, that is to say 
that the mass is not evenly distributed. Particles measur-
ing absolute maximum proper time from near “big bang” 
along curves that enter the ball, must pass through the 
walls of the ball or hyper-cylinder in 4 dimensions. There- 
fore, gravitational lenses are formed and events in the 
hollowed part of the ball are accessible by more than one 
curve as depicted by Figure 1(b). These singularities can 
be resolved too if any real world particle-like clock will 
not move along geodesic curves in the microscopic vi-
cinity of matter, e.g. due to Casimir/Casimir Lifshitz [3]. 

Again, the newly presented type of gradient conflicts 
(also caused by absolute maximum proper time inter- 
sections) events can be avoided by either providing that 
the matter’s time and location are uncertain or by force 
exerted on the test-clock-particles. If we say that matter 
is measured by such conflicts/intersections, then the fact 
we also have a microscopic, though negligible geodesic 
conflict in the center of the ball, attests to the existence of 
a new type of mass, we can call “Secondary Dark Mat- 
ter”, that mass is not additional to the mass of the ball but 
simply means that some force field which relates to mat- 
ter can weakly extend beyond the microscopic scale. In  
 

Hollow ball of mass 
 
Does conflict have measure 0 
where there is no mass? 
 
 
 
Max proper time curves from big bang.

 
(a) 

 
(b) 

Figure 1. (a) The line of the max proper time field from “big 
bang” is discontinuous in the middle of a hollowed ball of 
mass and therefore a real world clock will not move along 
geodesic curves at such points, no matter how negligible is 
such an effect; (b) On the edges, gravitational lenses due to 
granularity cause geodesic conflicts. The particles form an 
obstacle that is bypassed by the entering curves. 
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big words, the theory that is behind this paper says that 
indeed, laws of physics are local but the entire geometric 
context have influence on a new effect we have just 
named, “Secondary Dark Matter”. Contrary to the abso- 
lute maximal proper time from “big bang” measured by a 
microscopic clock, most geodesic curves—though they 
also use travelling clocks—usually measure only local 
maximum proper time. The curves of the global/absolute 
upper limit on measurable time from the past to an event 
usually have tangents that point to a 4-direction in space 
time along which the time changes. In free of matter 
space, in perpendicular (Lorentzian) to the direction of 
the gradient, the differential should be zero. Therefore, in 
geodesic coordinates such that the time is parallel to one 
of the absolute maximum proper time curves, the mixed 
terms of the metric tensor vanish. Locally, the separation 
between space and time works also in metrics such as the 
Kerr metrics and time appears perpendicular to 3D space 
manifolds along the maximum proper time curves, e.g. in 
a set of rotating reference frames. Separation of space 
and time is important and can be achieve at least locally 
even along closed time-like curves, however, this paper 
has a much higher priority motivation, to get an equation 
that depends only on geometry. To show that time is an 
emergent dimension is secondary in this paper. 

B) Open questions—emergent time unsolved issue 
The question is: Can inverted logic work? By mini- 

mizing an action operator on three dimensional mani- 
folds, can a degree of freedom yield multiple solutions 
for the metric tensor, such that: 

1) The action can serve as a homotopy [4] parameter. 
2) The action will be invariant under Lorentz—like ro- 

tations in the resulting four dimensional manifold. 
These questions, to the author’s opinion justify further 

research. 
We would like to describe the curvature of the gradient 

of the absolute maximum proper time from near “big 
bang” as a scalar field that is measured by our micro- 
scopic particle-like clocks and show its possible relation 
to Ricci curvature and to Einstein’s tensor. The idea is 
that the gradient of the scalar time field of absolute 
maximum proper time from “Big Bang”, forms curves 
that have non vanishing curvature where there is matter. 
Again, it is important to say these gradients are local and 
that our time is an upper limit on all possible tiny test 
particles. 

Intuitive discussion about the second power of curva- 
ture of a conserving vector field and about “bending en- 
ergy” 

We now need tools to assess the curvature of a tra- 
jectory of a test-clock-particle as it interacts with mate- 
rial force fields. 

The reader can find the origin of this work in [5]. So 
let us begin. We will now define what the Square Curva- 

ture or Field Curvature of a vector field  in , with 
positive definite Euclidean geometry, is. The same for- 
malism is easily extended to Riemannian geometry. We 
also define Bending Energy BE as the Square Curvature 
multiplied by the square norm of the gradient of a scalar 
field. We would like the field V to reduce or increase its 
differential in directions that are perpendicular to the 
direction of the field. This requirement is also compre- 
hensible when the metric tensor of a manifold with coor- 
dinates in  has only positive eignevalues in local 
orthogonal coordinates and we shall see that the operator 
that describes Field Curvature has quite the same formal- 
ism in Riemannian manifolds. We will start with an in- 
tuitive description of the operator and later give a proof it 
is the square curvature of the vector field. Given two 
infinitesimally close points in ,  and  

V nR

nR

nR 1q
2 1q q hV  h for some infinitesimal , we would like  

   2 1V q V q
 

will be as parallel as possible to the  that 

 1V q . field 

By Pythagoras, that can be written as the following 
problem locally minimize 

       

     
 

2
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1
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h
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           

        (1) 

When   is the inner product in . nR

      
 

Here 
1

2 1
1

V q
V q V q

V q
   represents the pro-  

jection of the derivative matrix of the vector field V q

2h

 
multiplied by the field direction in space. 

In other words, since  is arbitrarily small, our ob- 
jective is to minimize, 

   

2

2

t

t

V V V V
V V V

V V V V

V V V V V V V

V V V V

                               

       
     

V

   (2) 

Here   means the matrix  
i

i j

V
a

jX





BE
BE

. 

Figure 2 shows the geometric idea of how to measure 
perpendicular changes in the gradients of conserving 
vector fields. 

The following next Figure 3 shows us two curves one 
on the left for which  is zero and one on the right 
for which  is positive by comparison to parallel 
curves. 
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  V1 = V = V(q1) 
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V h

V
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t

V V
V h

V V
  

 
  
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 2 2

V
V h V q

V
V V 

2

V
V

V

    
 

t

V V V
h V V

V V V

    
            
    

 

Figure 2. “Bending Energy” which is the Field Curvature 
multiplied by the squared norm of the gradient and its 
Euclidean geometric meaning—how much the field changes 
in direction perpendicular to itself. 

 

 

Figure 3. Parallel deviation on the right. 

3. Tensor Formalism of the Square 
Curvature 

As will be discussed, in tensor formalism, derivatives are 
replaced by covariant derivatives and are denoted by 
semi colon and derivatives by comma. Upper and lower 
indices represent the covariant and contra-variant proper- 
ties and upper and lower indices sum according to Ein- 
stein convention so (2) can be written as a tensor density 
with local coordinates in . We will also divide (2) by 

 in order to achieve a fully geometric action op- 
erator. Regarding the square root of the determinant of 
the metric tensor 

nR
V V

g , following are tensor densities 
[6], that yield tensor equations [7], 

   
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that can be written as 
2

1
g

t
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1

4
m

mV V  for  

,m

m i
i

P P
V

P P




  and 
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, m
m
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i
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t P P



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1

. 

and 
d

di i

P
P

x
 ix . If P is the upper   for coordinates 

limit of measureable time from near big bang to any 
event then (3) is the second power of the curvature of the  

gradient 
d

di i

P
P

x


t

. 

Don’t confuse the scalar function  with maximum 
proper time. We choose a simpler expression for our up- 
per limit from near “big bang”, namely  , and where 
there is no matter in space-time we expect one of the 
following to be true. 

                     (4) ,  is realP P 
2* *,   is complexPP P   

k

.     (5) 

(4) is offered for a deterministic theory and (5) for quan- 
tum. 

Please note that Square Curvature (P) = Square Cur- 
vature (kP) for constant . 

Please note that in the model presented in (5), the time 
  is coupled with a wave function   and there is only 
a need for P   to have 3rd order derivatives but not 
for   alone. The formalism of (5) possibly needs mul-  

4

8πK
tiplication by 

c



2π

 for each differentiation, such  

that K is the constant of gravity and  is the Planck 
constant divided by . 

Repeating our question: Can 
d

d

P
P  be non-tan-   

P

x

gent to a geodesic curve: 
1) If there is more than one geodesic curve that con- 

nects the “Big Bang” event to say event “e”, then obvi- 
ously   need not be geodesic in a small neighborhood 
of “e”. 

2) Intersection of different curves if coordinates are 
uncertain in quantum sense. 

Development of (3) can be from the following: 

     
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i i
i i

j
j

m
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L

P P P P

U U
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  

 
   
 
 



 

0mU P

  (6) 

Obviously m  . The vector mU  describes the 
direction and intensity of the curvature of the field P  
which is a change perpendicular to . mP
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From minimum action of 
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See Appendix A, 
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as we shall see later, a simple solution to the Euler La- 
grange equations by  and it’s derivatives yields  P
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and therefore (7) becomes 
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and we have , such that R   is the Ricci cur- 
vature tensor [8,9]. If we ignore (6), and the coming 
(18)-(24) and (34)-(36), it is a bit disappointing that after 
all the efforts we simply get [8,9] which look like an or-

dinary General Relativity matter-geometry equation. 
There is always a way to solve the following equation  
1 1

4 2
k

kU U U U g T      
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 for an ordinary dust en-  

ergy momentum tensor and therefore (9) is consistent 
with existing theories and is an important link to well 
established work on General Relativity. 

In other words, curvature of the gradient of the upper 
limit of measurable time from near “Big Bang” to an 
event is equivalent to Ricci curvature. If that is true then 
we can have an equation that is based solely on geometry. 
In any case we have a nice action (without spinors [10] 
and other advanced mathematical technology, though 
4-force means rotation) of the form:  
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(10) 

4. Quantum Gravity in a Nutshell 

The observable in the offered theory is a scalar field of 
time. Time can be either  2* *PP, or    
where the theoretical formalism is the complex formalism 
(of Square Curvature) although (10) is incomplete without  

4

8π d

d k

K

c x


multiplication of each derivative by . The  

change in the direction of the gradient of the time field is 
due to the need to avoid discontinuity of gradient meas- 
urement by particle clocks in max proper time curve in- 
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tersections. Discontinuity of the gradient is avoided by 
uncertainty of the intersection events/strings. Then 

*  could be the probability of the 4-location of such 
avoided geodesic conflict in the middle of a constellation 
of particles. The coupling of   and   has one impor- 
tant meaning which is that quantum uncertainty resolves 
the discontinuities of the gradient of   and prevents its 
measurement. In the classical model of gravity in this 
theory,   is “smoothened out” by the Equation (7) or (9) 
which is an approximation or a limit of a Quantum ef- 
fect. The classical model is sufficient for a giving a new 
description of matter, however,   is required for re- 
solving gradient singularities of   that do not exist in 
the classical model. 

5. Proof That Square Curvature Is the 
Square (to the Second Power of) Field 
Curvature 

We restrict the proof to the Euclidean case. The square 
curvature is defined as 

2 d d

d d

V
Curv

t tV Vk k
k k

V
g

V V

 
 
 
 
 

 
 
 
 

       (11) 

such that g  is a diagonal unit matrix. For conven-  

ience we will write k
kNorm V V  and 

d

d
V V

t 

W

. 

For some parameter . Let t   denote: 
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Thus 
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Since 
V

Norm
  is the derivative of the normalized  

curve or normalized “speed”, 

d d d d
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such that x  denotes the local coordinates. 

If V  is a conserving field then , ,r rV V   and thus  
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

 
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        (15) 

Writing the last term in Riemannian geometry is the 
same field curvature operator that we chose. 

6. Byproduct—Separable Coordinates 
Where the Time Coordinate Is Parallel to 
at Least One of the Global/Absolute 
Maximum Proper Time Curves 

The following is a bit speculative but may be important. 
We see that 3 dimensions hint at 4 dimensional action. 
This is done by looking at the action (3) in three dimen- 
sions and observing the following way to write it, 
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 (16) 

gwhere  ijq
ijq

 is the metric tensor in 4 dimensions and  
is in 3 dimensions.  implicitly refers to a local sub- 
mersion [11] where time is locally held constant. 

Can we do the opposite, look at 4 dimensions and re- 
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duce the problem to 3 without violating the principle of 
covariance? 

First, our upper limit proper time curves are intrinsic 
and do not depend on the coordinates unless more than 
one curve intersect with the same event. 

We can therefore agree that the absolute maximum 
proper time curves are different than ordinary geodesic 
curves on which only local maxima of proper time can be 
measured. 

We choose to describe (3) on our space-time in our 
special coordinates. Under correct local choice of coordi- 
nates, the direction in space time of the maximum proper 
time is an eigenvector of the metric tensor with the big- 
gest eigenvalue, our metric tensor is of the form pre- 
sented in (16) for which the mixed space time terms are 
zero. Also, 

0 1 1P P P P
        , 1,2,3P P  

2 0 3 0, , 0P P  

0, 0P  

 

and  

0 1 0 2 0 3 1 0, , , ,P P P P    

Please note: We can assume as possible  

1 2 3  especially if multiple maximum 
proper time curves to the same event “e” exist. Instead of 
(3) we reduce the action to become three dimensional, 
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P

(17) 

This means that on our three dimensional sub-mani- 
folds (“Leaves of a foliation”), there is a corresponding 
action operator that is free of derivative dependence on 
time. 

Solving the Euler Lagrange equations for the Tweaked 
Square Curvature and receiving a plurality of solutions is 
indeed a promising direction of research! 

7. Unsynchronizability 

Since  is not constant on the 3 dimensional sub- 
manifolds perpendicular to the global/absolute maximal 
proper time curves, these manifolds are not synchroni- 
zable and are therefore not the ideal inflating S(3) i.e. 
Friedmann-Robertson-Walker. 

8. History of the Paper’S Concept of Time 

The idea of an absolute time, such as maximum proper 
time from a common event, i.e. “big bang” is not new 
[12,13] and it appears in Hebrew writing such as the 
Book of Principles by Rabbi Josef Albo 1380-1444. 
Rabbi Josef Albo wrote about time that can be measured 
by devices and another aspect of time which he termed 
immeasurable. The maximum proper time can’t be meas- 
ured by devices on Earth because due to General Relativ- 
ity, clock ticks are slowed down by the gravitational field. 
It is an upper limit. 

9. Conservation of Known Matter from the 
Euler Lagrange Equations 

Finally we get the following zero divergence: 
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where 
  is obtained from the subtraction of (35) from (36), 

see Appendix A. 
P  and its derivatives is a special case  Variation by 
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Multiplication by 
4

P   and contraction yields, 
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 

and as a result of (20) the following terms from (7) van-
ish, 
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Which yields a simpler Equation (9). Recall that  
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Which proves (8) 

            (23, see 8) 

And proves the simple representation of the field equa-
tions 

That we saw in (7) 
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10. Chameleon Fields or Pressure? 

As we can see, the more general case is, 
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An effect which is contrary to gravity will add a posi- 
tive delta to the Ricci curvature and therefore from (7), 
multiplication by the metric tensor g  

and contraction 
yields, 
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An effect which adds gravity, will add negative delta 
to Ricci curvature and therefore, 
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Known matter will be simpler 
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 (30) 

It is possible that either (28) or (29) is mathematically 
not valid. Additional terms can’t violate the vanishing of 
the divergence of Einstein tensor. 

If one of them is correct then there is a particle which 
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its force fields decay very fast with distance, in other 
words, discovery of weakly interacting particles may im- 
ply either (28) or (29). 

High order derivatives of the metric tensor and pres- 
sure were studied by Deser and Tekin [14]. For applica- 
tion of (28) and/or (29) to space-time warp drive please 
refer to [15]. 
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12. Conclusions—Test to the Theory 

12.1. General 

Maximal time is measured by particles. This time sets an 
upper limit on measurable time quite similar to the way 
the speed of light sets an upper limit on speed. Since time 
is measured by material clocks, these material clocks are 
influenced by forces. The particle that can measure the 
maximal possible time from the “big bang” to an event 
within matter will therefore be influenced by such forces. 
For the trajectory to be meaningful, either there exists a 
force which can’t be gravity since gravity is not a force, 
such that the force will depend on mass or that only a 
unique particle can enter the force field. Evidence of 
mass dependent force will be shortly discussed. Such an 
effect can also attest to gravity and it is therefore difficult 
to distinguish between the two. 

Although the upper limit of measurable time is meas- 
ured along curves, the gradient of that time is local, 
which makes the use of such scalar field feasible to 
theoretical physics. 

Non geodesic motion as uniform acceleration is well 
defined by Friedman-Scarr representation and has a lin- 
ear interpretation by an anti-symmetric tensor [16] which 
also indirectly describes a more intuitive alternative to 
spinors (well at least if we can blissfully afford to ignore 
wave functions, and group representation), however, the 
most interesting effects that this theory offers, are beyond 

the scope of Friedman-Scarr representation of accelera- 
tion U aA  , speed U U  and acceleration 
matrix 

1
 

A A  . 

12.2. Unconventional Conclusions 

There is experimental evidence regarding high gradient 
of an electric field in which force that acts on metal balls 
is represented as the ordinary force on the induced dipole 
as in ordinary dielectrophoresis plus an unexpected 
“force” that depends on mass [17]. [17] can attest to the 
existence of true force field, which is not gravity, that 
depends on mass, as also seems to be an outcome of this 
theory. This is one way to achieve a unique trajectory of 
the maximally measured proper time by any massive test 
particle including zero mass Chronons [1]. In this case, 
[17] can be a residual force of the original force field. 

Another effect is that (28) and (29) allow gravity to be 
generated from non linear force fields. If the 4-force is 
not linear then (28) or (29) are possible which allow 
warps or gravitational dipoles [15]. In order for such an 
effect to be consistent with the vanishing divergence of 
Einstein tensor and with conservation laws, (28) and (29) 
mean the creation of gravitational dipoles. The overall 
momentum—energy must be preserved. 

In this case, the simple Equation (7) can’t be reduced 
to (9). 
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Appendix A: The Euler Lagrange Equations of the Square Curvature Action 
We will not solve the entire system 
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Appendix B: The Scalar Time Field of the 
Schwarzschild Solution 

We would like to calculate 
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in Schwarzschild coordinates. This theory predicts that 
where there is no matter, the result must be zero. 

The result also must be zero along any geodesic curve 

but in the middle of a hollowed ball of mass the gradient 
of the absolute maximum proper time from “Big Bang” 
derivatives by space must be zero due to symmetry 
which means the curves come from different directions 
to the same event at the center. Close to the edges, gravi- 
tational lenses due to granularity of matter become cru- 
cial. 

The speed  of a falling particle as measured by an 
observer in the gravitational field is 
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where  is the Schwarzschild radius. If speed V  is  R

normalized in relation to the speed of light then 
U

V
C

 .  

For a far observer, the deltas are denoted by d ,dt r   
and, 
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Please note, here  is not a tensor index and it de-
notes derivative by !!! 
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Please note, here  is not a tensor index and it de-
notes derivative by !!! 

For the square norms of derivatives we use the inverse 
of the metric tensor, So we have  
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Please note, here  is not a tensor index and it de- 
notes derivative by !!! 
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And finally, from (42) and (46) we have, 
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Which shows that indeed the gradient of time meas- 
ured, by a falling particle until it hits an event in the 
gravitational field, has zero curvature as expected. 

The term 2N 2
r R

R r
    is slightly disturbing be-  

cause at very far distances, 
r

R
R

 becomes significant.  

Moreover, if  has a lower atomic limit, then for such  

R  the term 
r

R
 is a whole number!!! 

We now return to the discussion about a hollowed ball 
of mass. 

It is clear that the maximum proper time from “Big 
Bang” curves entering the ball are symmetrical in rela-
tion to the center and therefore 
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where  is the radius in the far coordinate system of  

the hollowed ball of mass. However, 
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tP . 

Writing the gradient in two dimensions in t, r, ignoring 
the gravitational lenses due to mass granularity, and ig- 
noring quantum uncertainties of coordinates and of en- 
ergy momentum, we have 
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     (48) 

The last result   0d

d

rP

r R
  

0r

0 0rP  is an inevitable  

outcome of the symmetry in the center of the ball. The 
gradient by the space coordinates must be zero and the 
change of direction in the gradient means that curvature 

is inevitable. 
Center analysis if there is an atom of movement length 
Without even negligible forces acting on a test particle 

and without quantum center location uncertainty, in the 
middle of a hollowed ball of mass the gradient of abso- 
lute maximal proper time is discontinuous due to sym- 
metry. Suppose that the difference between the gradient 
at the center where r r  and where, 

r
, such that 

  is small, results in . We want to measure 
the second power of the curvature of the gradient of ab- 
solute maximum proper time due to that difference. 
Suppose that the change happens smoothly within a 
small radius from the center, measured around 
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We assume that such curvature measures how much 

the gradient is not geodesic due to curve intersections. 
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Given the radius    that is seen within the gravita- 
tional field, the surface of a small ball around the center 
is smaller than expected in flat space-time, 
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We now calculate the curvature and then multiply it by 
the volume of the ball in which the direction of the gra- 
dient changes towards the center as seen in (49),(50), 
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(64) is very interesting because it depends only on    
and not on the mass of the gravitational source. 

Appendix B2: Approximated Validity Test 
at the Planck Scale 

(64) imposes some strict limits on the offered theory. For 
the following we assume that 1r r R r   

r

 is big 
enough in comparison to the Schwarzschild radius R 
otherwise none of the following calculation will be valid, 
Suppose that all the matter we have is due to force field 
acting along the distance  

L R
. Then by (9) and the fol- 

lowing conclusion that    and by Einstein equa-  

tion of Gravity 
4

8πK
T G

c    , and from (64) we have 

the following, 
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where   is achieved via integration of energy on 
space. K is the known Gravity constant  

  11 3 1 26.67384 80 10 m kg sK      

8 1 12.99792458 10 m sc 
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 .

   So we can divide the equation by
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             (66) 

That is quite a strong force, about  

Copyright © 2013 SciRes.                                                                                 JMP 



E. H. SUCHARD 

Copyright © 2013 SciRes.                                                                                 JMP 

806 

438898085*10

r

1.008614609475484286984035  Newtons. Recall the definition of work as Force multiplied by 
length on which the force acted, we have from (69) and 
from (66) 

On the other hand if our energy is within a ball of ra- 
dius  r and     is also the uncertainty of the space 
coordinate of the center then we have by the law of un- 
certainty of Quantum Mechanics 
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10  Joules.
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1.05457172  and in the inequality ex- 
tremity of equality, This value is quite close to the Reduced Planck Energy  
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c

2
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 which is defined as                    (68) K
. and since it is smaller than 

Planck Energy 
5cNow consider (66) which is a very strong force, acting 

on a small enough particle so virtually we can say that 
the speed of the particle is approximated by an average 
speed which the speed of light. So 

, our calculations imply that a sin-  
K

gle-photon black hole is highly unlikely to exist if there 
is a Planck length limit. Also pairs of photons will 
probably not create a microscopic black hole. 
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