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ABSTRACT 

In this paper, existence and uniqueness of solution to two-point boundary value for two-sided fractional differential 
equations involving Caputo fractional derivative is discussed, by means of the Min-Max Theorem. 
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1. Introduction 

In this paper, using the Min-Max Theorem, we will de- 
vote to considering the existence and uniqueness result of 
solution to the following two-sided fractional differential 
equations boundary value problems (BVP for short) 

      
   

0 0 0

0

TD D u t g t u t T T

u a u T b

 
 

         


   


 (1.1) 

where 0TD D 
    denote the right-side and left-side Caputo 

fractional derivative of order 0 1  , respectively, 
 0g T R  R   is a continuous differential function 

with respect to all variables, and . a b R 
In particular, if 1  , BVP (1.1) reduces to the stan- 

dard second order boundary value problem of the fol- 
lowing form 

   
   

0 0 0

0 .

u g t u t T T

u a u T b

          


  


 

Recently, fractional differential equations have been 
verified to be valuable tools in the modeling of many 
phenomena in various fields of science and engineering. 
There have many papers which are concerning with the 
existence of solutions for fractional differential equations 
boundary value problems, by means of some classic fixed 
point theorems and monotone iterative methods, such as 
[1-11], etc. But, as far as we known, there are few papers 
which considered the existence of solutions for fractional 
differential equations boundary value problems using the 

variable method, such as the direct method, the critical 
point theory. Recently, there appeared some interesting 
works [12,13] considering existence of solution to frac- 
tional differential problems, by means of the variable 
way, In [13], by the critical point theory, author con- 
sidered the existence of solutions of the following a two- 
point boundary value problem for some class of frac- 
tional differential equation containing the left and right 
Riemann-Liouville fractional derivative operators 

       
   

0 a e 0

0 0

t T tD D u t F t u t t T

u u T

         


  


 (1.2) 

where t TD  and 0 tD  are the right and left Riemann- 
Liouville fractional derivatives of order 0 1   re- 
spectively,  0 NF T R   R  is a given function sati- 
sfying some assumptions and  F t x   is the gradient 
of F  at x . This is a very interesting and meaning 
works, this is the first time that the existence of solutions 
for fractional differential equation two-point boundary 
value problem via the critical point theory. 

The following are definitions and some properties of 
Riemann-Liouville fractional integral and derivative, the 
Caputo fractional derivative, for the details, please see 
[1]. 

The left Riemann-Liouville fractional integrals (LFLI) 
of order 0   of function  f t  which is defined as 
follows,  

       1

0 0

1
d

t
I f t t s f s s t






 0 
      (1.3) 
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The right Riemann-Liouville fractional integrals (RFLI) 
of order 0   of function  f t  which is defined as 
follows, 

       11
d

T

T t
I f t s t f s s t






   
  0

1

  (1.4) 

The left Riemann-Liouville fractional derivative (LFLD) 
of order 0    of function  f t  which is defined 
as follows, 

   1
0 0

d
0

dtD f t I f t t
t

 
  

1

       (1.5) 

The right Riemann-Liouville fractional derivative 
(RFLD) of order 0    of function  f t  which is 
defined as follows,  

   1d
0

dt T TD f t I f t t
t

 
          (1.6) 

The left Caputo fractional derivative (LCFD) of order 
0 1   of function  f t  which is defined as fol- 
lows, 

     
 0 0

0
0

1t

f
D f t D f t t t  




   
 



1

    (1.7) 

The right Caputo fractional derivative (RCFD) of or- 
der 0    of function  f t  which is defined as 
follows, 

     
    0
1T t T

f T
D f t D f t T t t

 




    
 

   (1.8) 

Remark 1.1. Obviously, if , then    0f a 
0   0 0tD f t D f t 

 ; it  f T  , then  

   t T TD f t D f t 


It is well known that there are several kinds of frac- 
tional derivatives, such as, Riemann-liouville fractional 
derivative, Marchaud fractional derivative, Caputo deri- 
vative, Griinwald-Letnikov fractional derivative, etc. Since 
as cited in [2] there have appeared a number of works, 
especially in the theory of viscous elasticity and in here- 
ditary solid mechanics, where fractional derivatives are 
used for a better description of material properties. Ma- 
thematical modeling based on enhanced rheological mo- 
dels naturally leads to differential equations of fractional 
order and to the necessity of the formulation of initial 
conditions to such equations. Applied problems require 
definitions of fractional derivatives allowing the utiliza- 
tion of physically in interpretable initial conditions, which 
contain 

. 

   f a f a

 0 0 u T   

, etc". In fact, the same require- 
ments apply for boundary conditions. Therefore, we can- 
not impose initial and boundary conditions, such as  

 on problems involving the Rie- 
mann-Liouville fractional derivative 0 t

 u d e
D  or t tD . We 

find that Caputo fractional derivative exactly satisfies 
these demands. Therefore in this article, we deal with 

boundary value problem for fractional differential equa- 
tion involving Caputo derivative. 

The following is the rule of fractional integration by 
parts for LFLI and RFLI. 

Let 0 1  , , and 1p q  1 1 1 1
p q

   . If  

   0 0p qg L T f L T    
T

, then 

       00 0
d d

T

Tg t I f t t f t I g t t 
        (1.9) 

We let 0 1  , , and 1p q  1 1 1 1
p q

   , if  

     00 0 0 0p pf L T f D f L T
       ,  

     0 0q T 0qg L T g T D g L T
       , then, by (1.9) 

and Remark 1.1, we have that 

       00 0
d d

T T

Tg t D f t t f t D g t t
       (1.10) 

Inspired by [12,13], in this paper, we will consider the 
unique existence of solution to problem (1.1), by means 
of the following Min-Max Theorem. 

Min-Max Theorem (Manasevich). [14] Let H be a 
real Hilbert space and let f H R   be of class . 
Suppose that there exist two closed subspaces X and Y 
such that 

2C

H X Y   and two continuous non-increas- 
ing functions    0 0     ,   0 0       
such that 

   
1 1

d ds s s s 
 

      

   2 2D f x y k k y k    

for all x X y Y    and , and k Y

   2 2D f x y h h x h     

for all x X y Y    and . Then h X
1) there exists a unique  such that 0v H

 0 0f v  ; 

2) 
   

 
0 max min

min max .

x X y Y

y Y x X

f v f x y

f x y

 

 

 

 
 

Here, f  and  denote the gradient and the 
Hessian of 

2D f
f  at u H , respectively. In this case,  

f H R   is a C  mapping and  is a    2f u D f 
bounded self-adjoins linear operator on H .  

2. Basic Facts 

In [13], authors gave the definition of solution to (1.2) as 
following 

Definition 2.1. [13] A function  0 Nu T R    is 
called a solution of BVP (1.2) if  

(i)   1
0t T tD D u t   and  are derivative   1

0 tD u t

for almost every  0t T  , and (ii)  satisfies (1.2). u
In [13], in order to establish a variational structure 
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which enables ones to reduce the existence of solutions 
of BVP (1.2) to the one of critical points of correspond- 
ing functional, authors constructed an appropriate func- 
tion spaces 0 , which depend on pE

pL -integrability of 
the Riemann-Liouville fractional derivative of a function. 

Definition 2.2. [13] Let 0 1 
pE

, . The 
fractional derivative space 0

1 p  
  is defined by the clo- 

sure of  0 0 NC T R    with respect to the norm 

    
1

0
00 0

d d
p

p

pT Tp

tE
u u t t D u t t


         (2.1) 

It is obvious that space 0
pE  is the space of functions 

  0 N
pu L T R    having an  -order fractional deri-  

vative  and  D u t   NT R0 0t pL 

   0u u T 
0

0 . Furthermore, it is easy to verify that 
pE  is a reflexive and separable Banach space. 

Theorem 2.3. [13] Let 0 1  , . The 
space 

1 p  
0

pE  is a reflexive and separable Banach space. 
Proposition 2.4. [13] Let 0 1  , . For  1 p  

all 0
pu E  , if 11

p
   or 1

p
  , we have 

   
0

1p p
L t L

T
u D u





 
 

t  

with this property, one can consider 0
pE  with respect 

to the norm 

  
1

0
00

d
p

p

pT

tE
u D u t


   t  

If 1 p  , the following theorem is useful for us to 
establish the variational structure on the space 0

pE  for 
BVP (1.2). 

Theorem 2.5. [13] Let1 , p   1 1p    and  

 0 N NL T R R R     ,  be mea-    t x y L t x y     
surable in t for each   N Nx y R R    and continuously  
differentiable in  x y  for almost every  0t T  . If 

there exists ;  and  1m C R R     2 1 0m L T R  

  3 0qm L T R   ; , such that, for a.e. 1 q 1

 0t T   and every   N Nx y R R   , one has 

      1 2

p
L t x y m x m t y      

      1 2

p

xD L t x y m x m t y      

      1

1 3

p

yD L t x y m x m t y
      

where 1 1 1
p q
  , then the functional defined by  

      00
d

T

tu L t u t D u t   

is continuously differentiable on , and 0
pE

0
pu v E   , we have 

         
       

00

0 0 d

T

x t

y t t

u v D L t u t D u t v t

D L t u t D u t D v t t



 

      
    



 

From, we known that, for a solution 2
0u E E     

of BVP (1.2) such that      1 0 NF u L T R      , mul-  

tiplying (1.2) by   0 01 Nv C T R    yields  

            
          

00

0 00

d

d

0.

T

t T t

T

t t

D D u t v t F t u t v t

D u t D v t F t u t v t t 

t      

       




  

According these facts, authors [13] gave the definition 
of weak solution for BVP (1.2) as follows.  

Definition 2.6. [13] By the weak solution of BVP (1.2), 
we mean that the function u E  such that  

     1 0 NF u L T R     

 

 and satisfies the above equa- 

lity for all  1
0 0 Nv C T R   . 

Using the direct method and the Mountain pass theorem, 
authors obtain two existence results of weak solution to 
(1.2), please see [13]. 

Basing on some deductions, authors verified that a 
weak of (1.2) is also its solution. 

3. Main Result 

From the Remark 1.1 and Definition 2.2, we will use 
function space E  in the following arguments. 

Theorem 3.1. Assume that  0g T R R     is con- 
tinuous differentiable with respect to its two variables,  

there is a constant 
 1

0 a
T

 
   such that  

 ug t u a   for all  0t T u R   
u E

. Then problem (1.1) 
exists unique solution  . 

Proof. We can decompose (1.1) into the following two 
problems 

      
   

0 0 0

0 0 0

TD D u t g t u t T T

u u T

 
 

         


   
 (3.1) 

    
   

0 0 0 0

0

TD D u t t T T

u a u T b

 
 

        


   


      (3.2) 

according to the linearity of TD
  and 0D

 , we can eas- 
ily know that if 1 2u u  are solution of (3.1), (3.2), re- 
spectively, then 1 2uu u   is a solution of (1.1). Ob-  

viously,      
 2

1

1

b a
u t a t

T







  
 

 
 is unique solu-  

t  tion of (3.2). Next, we will verify that (3.1) exists unique 
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solution 1u E , by means of the Min-Max Theorem 
(Manasevich). 

From [13], we know that E  is a real Hilbert space 
with the inner product by 

   0 00
d

T
u v D u t D v t t 

            (3.3) 

It follows from assumptions on function g  that we 
can easily know that g satisfies assumption of Theorem 
2.5. 

We let  0X Y E  
Y

E

, clearly, we have  
. From the Algebra knowledge, it is well 

know that Y
E X 

  and  0X  are closed subsets of 
.E  From the previous arguments, we can complete this 

proof through two steps. 
The first step, we will consider the existence of critical 

point of functional defined as following 

     
2

00 0

1
d d

2

T T
u D u t t G t u t u E        



 (3.4) 

where . From the argu-      
0

d 0
u

G t u g t s s t T     
ments in [13], we know that 

     

   
0 00

0

d

d

T

T

u v D u t D v t t

g t u v t t

    

  




    (3.5) 

for u v E  . By the assumptions and the analogy argu- 
ments with, we have that 

     

     

2
0 00

0

d

d

T

T

u

D u w v D w t D v t t

g t u w t v t t

    

 



 
  (3.6) 

for u v w E   .  
For all x X y Y   and , by Proposition 2.4, 

we have that 
k Y

 

   

 

     

     

2

2 2
00 0

2 2
00 0

2

0 00 0

2

00

d d

d d

d
1

1 d
1

T T

u

T T

T T

T

E

D x y k k

D k t t g t u k t

D k t t a k t

aT
D k t t D k t t

aT
D k t t y k 






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

 

For all x X y Y    and h X , we have that 

 20 0D x y h h     

which implies that 

   2

E
D x y h h x h       

holds for all x X y Y    and . Obviously, func-  h X

tions      1
1
aTt





1t  

 
  satisfy assumption  

conditions of the Min-Max Theorem. Hence, the Min- 
Max Theorem assures that there exists unique 1u E  
such that  1 0u  , which means that  is a unique 
weak solution of (3.1). 

1u

It follows from 1u E  that , hence the 
left Caputo fractional equal to the left Riemann-Liouville 
fractional derivative. Hence, by the similar proofs of 
lemma theorem, we know that this weak solution  

 1 0 0u 

1u E  is also a solution of (3.1). Thus, we obtain that 

1u u 2u   is unique solution of (1.1). 

4. Conclusion 

In this paper, using a Min-Max Theorem (Manasevich), 
we considered the existence and uniqueness of solution 
to some class of two-sided fractional differential equa- 
tions with two-point boundary value problems. 
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