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ABSTRACT 

Autoantibody against neuronal nicotinic acetylcholine 
receptor (nAChR) 3 subunit is implicated in severe 
autonomic dysfunction in the patients with autoim- 
mune autonomic ganglionopathy (AAG). Although 
this autoantibody has been revealed to impair fast 
excitatory synaptic transmission in autonomic ganglia, 
its precise mechanism remains unknown. Here, we 
show that antibody-induced reduction of cell-surface 
3 subunits result in impairment of nicotine-evoked 
Ca2+ influx in stably transfected human embryonic 
kidney cells. These effects of the antibody were re- 
markably inhibited by interfering with the endocytic 
machinery at low-temperature. We conclude that re- 
duction of nAChR in autonomic ganglia can be medi- 
ated by the endocytosis of 3 subunits, and resulted 
in autonomic failure in AAG patients.  
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1. INTRODUCTION 

Autoimmune autonomic ganglionopathy (AAG) is an 
acquired immune-mediated disorder characterized by 
severe autonomic dysfunction. The clinical manifesta- 
tions of AAG include orthostatic hypotension, gastroin- 

testinal hypomotility, urinary retention and sudomotor 
dysfunction [1]. About 50% of patients with AAG have 
autoantibodies against ganglion-type neuronal nicotinic 
acetylcholine receptor (ganglionic nAChR) [2]. The 
nAChR is a pentameric ligand-gated cation channel. In 
autonomic ganglia, nAChR containing α3 and 4 sub- 
units mainly mediates fast excitatory synaptic transmis- 
sion [3,4]. 

Previous electrophysiological studies have revealed 
pathogenic roles of anti-α3 subunit autoantibody. Auto- 
nomic dysfunction was induced in rabbits immunized 
with recombinant α3 subunit protein [5] and in mice 
given anti-α3 subunit antibodies [6]. Vernino et al. [7] 
demonstrated that IgG from the seropositive patients 
specifically reduced ganglionic nAChR current in human 
embryonic kidney (HEK) cells. In this study, we further 
examined whether antibody-induced reduction in the 
protein levels of cell-surface α3 subunits could cause 
ganglionic nAChR dysfunction in HEK293 cells. 

2. MATERIALS AND METHODS 

2.1. Cell Culture 

HEK293 cells stably co-expressing α3 and 4 subunits 
(HEK293-α34 cells) or mock-transfected HEK293 cells 
were established in our laboratory [8] and cultured in a 
humidified incubator with 5% CO2 at 37˚C in Dulbe- 
cco’s modified Eagle’s medium containing 10% fetal bo- 
vine serum and 100 g/ml G418 (Roche Applied Science, 
Germany). *Corresponding author. 
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2.2. Subcellular Fractionation  

The cells on culture dishes were scraped, pelleted by 
centrifugation, and homogenized in a solution containing 
0.32 M sucrose, 2 mM EDTA, 2 mM EGTA, 20 mM 
HEPES and protease inhibitor cocktail (BioVision Re- 
search Products, USA) at pH 7.2. Subcellular fractiona- 
tion was performed as summarized in Figure 1(a). At 
first, we centrifuged out the nuclear pellet (P1 fraction) 
at 1000 ×g for 5 min. The resulting supernatant was then 
centrifuged at 170,000 ×g for 60 min, and cytosolic su- 
pernatant was transferred to a new tube (S2 fraction). 
The resulting pellet of membrane fraction was resus- 
pended in the homogenization solution (P2 fraction). 
Protein concentration of each fraction was determined 
using DC protein assay (BIO-RAD, USA).  

2.3. Immunoblot Analysis 

Each subcellular fraction (10 g of protein) prepared 
from HEK293-α34 cells and homogenate (10 g of pro- 
tein) from mock-transfected HEK293 cells were solubi- 
lized in Laemmli sample buffer, subjected to 10% SDS- 
PAGE, and transferred onto PVDF membranes (Milli- 
pore, USA). The blots were blocked in Tris-buffered sa- 
line (TBS) containing 3% BSA and 0.04% NP-40 for 1 
hr and sequentially incubated in 1) primary antibody 
(Table 1) overnight at 4˚C; 2) washing solution (TBS 
containing 0.04% NP-40), three changes, each 15 min; 3) 
horseradish peroxidase (HRP)-conjugated secondary 
antibodies (Table 1) for 1 hr at RT; and 4) washing solu- 
tion, three changes, each 15 min. Immunoreactive bands 
were visualized using ECL Plus Western Blotting Detec- 
tion Reagents (GE Healthcare Japan, Japan). 

2.4. Assay for Antibody-Induced Internalization  
of α3 Subunits 

HEK293-α34 cells were seeded at 5.0 × 104 cells/cm2 
on glass coverslips. On the second day, the cells were 
pre-incubated in Locke’s buffer (154 mM NaCl, 5.6 mM 
KCl, 2.3 mM CaCl2, 1.0 mM MgCl2, 3.6 mM NaHCO3, 
5 mM glucose and 5 mM HEPES, at pH 7.2) for 30 min 
at 4˚C or 37˚C, and then incubated with 1 g/mL rat an-
ti-α3 subunit antibody (Covance, USA) in the Locke’s 
buffer at 4˚C or 37˚C. In some cases, Locke’s buffer 
containing 0.45 M sucrose was used as hypertonic condi- 
tion.  

2.5. Immunofluorescence Staining 

HEK293-α34 and mock-transfected HEK293 cells were 
fixed in ice-cold 4% paraformaldehyde (PFA) for 20 min, 
washed in phosphate-buffered saline (PBS), blocked in 
PBS containing 1% BSA and 0.3% Triton X-100 for 30 
min, and incubated with primary antibodies (Table 1) 
overnight at 4˚C. The cells were washed in PBS con- 
taining 0.3% Triton X-100 (PBS-T), incubated with sec- 
ondary antibodies (Table 1) for 1 hr at RT, and again 
washed in PBS-T. For cell-surface staining, Triton X-100 
was omitted from all solutions. The coverslips were 
mounted on glass slides with Dapi-Fluoromount-G 
(Southern Biotech, USA). Images were captured by a 
BX51 fluorescence microscope (Olympus, Japan). 

2.6. Cell-Surface Enzyme-Linked  
Immunosorbent Assay (ELISA) 

α3 subunits expressed on cell-surface membrane were 
quantitated by cell-surface ELISA. HEK293-α34 cells  

 
Table 1. List of antibodies used in this study. 

Antibody Species/Clonality Source (Catalogue No.) Dilution Usage 

Primary antibody     

Anti-nAChR α3 subunit Rabbit/Polyclonal Santa Cruz (sc-5590) 1:1,000 IF, IB 

Anti-nAChR 4 subunit Rabbit/Polyclonal Millipore (AB15327) 1:2,000 IF, IB 

Anti-nAChR α1 + α3 + α5 subunits Rat/Monoclonal Covance (MRT-609R) 1:3,000 IF, CSE 

Anti-EEA1 Rabbit/Polyclonal Abcam (ab2900) 1:1,000 IF 

Secondary antibody     

Alexa Fluor 488-conjugated anti-rat IgG Donkey Invitrogen (A21208) 1:2,000 IF 

Alexa Fluor 594-conjugated anti-rabbit IgG Donkey Invitrogen (A21207) 1:2,000 IF 

HRP-conjugated anti-rat IgG Rabbit Abcam (ab7104) 1:5,000 CSE 

HRP-conjugated anti-rabbit IgG Goat BIO-RAD (170-6515) 1:10,000 IB 

IF, immunofluorescence staining; IB, immunoblot analysis; CSE, cell-surface ELISA; HRP, horseradish peroxidase. 
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Figure 1. Establishment of human embryonic kidney (HEK) 293 cells stably co-expressing α3 
and β4 subunits (HEK293-α3β4 cells). (a) Immunoblot analysis of subcellular fractions (P1, 
P2 and S2, each 10 μg of protein) prepared from HEK293-α3β4 cells (α3β4) and homogenates 
(10 μg of protein) from mock-transfected HEK293 cells (Mock). Subcellular fractionation 
procedure was described in the left. Blots were probed with rabbit anti-α3 (Anti-α3) or rabbit 
anti-β4 (Anti-β4) subunit antibody. Indicated are molecular weight markers (kDa). (b) Im-
munofluorescence staining. HEK293-α3β4 cells (α3β4) and mock-transfected HEK293 cells 
(Mock) were co-stained with rat anti-α3 (Anti-α3) and rabbit anti-β4 (Anti-β4) subunit anti-
bodies under non-permeable condition, and detected with Alexa Fluor 488-conjugated anti-rat 
IgG (green) and Alexa Fluor 594-conjugated anti-rabbit IgG (red) antibodies. Scale bar, 100 
μm. (c) Intracellular Ca2+ assay. Fluo-3 AM-loaded HEK293-α3β4 cells (α3β4) and mock- 
transfected HEK293 cells (Mock) were stimulated with 1 mM nicotine (Arrow). α3β4 + MEC, 
HEK293-α3β4 cells were pre-incubated with 1 mM mecamylamine (MEC) for 30 min. Data 
shown are representative responses from two independent experiments, and expressed as F/F0. 
F is the value of fluorescence intensity; F0 is intensity at the time 0. 

 
were seeded into each well of a 24-well culture plate at 
2.5 × 105 cells/cm2. On the second day, the cells were 
incubated with 1 g/mL rat anti-α3 subunit antibody in 
isotonic or hypertonic Locke’s buffer for 5 - 30 min at 
37˚C. The cells were washed in Locke’s buffer at 4˚C 
and α3 subunits on the cell-surface were labeled with 1 
g/mL rat anti-α3 subunit antibody in the Locke’s buffer 
for 30 min at 4˚C. The cells were then fixed in ice-cold 
4% PFA for 20 min. After fixation, the cells were washed 
in PBS and blocked in PBS containing 1% BSA for 30 
min. And then, the cells were incubated with HRP-con- 
jugated anti-rat IgG antibody (Table 1) for 1 hr at RT and 
washed in PBS. Signals were generated using TMB mi- 
crowell peroxidase substrate system (KPL, USA). After 
stopping the reaction with 2 M sulfuric acid, absorbance 
of the dye was measured at a wavelength of 450 nm us- 
ing Multiskan MS-UV (Thermo Fisher Scientific, Fin- 
land). 

2.7. Intracellular Ca2+ Assay 

Intracellular Ca2+ levels were measured using Fluo-3 AM, 
membrane-permeable Ca2+-sensitive fluorescent dye. 
HEK293-α34 and mock-transfected HEK293 cells were 
seeded into 35-mm glass bottom dish or each well of a 
96-well culture plate at 2.0 × 105 cells/cm2. On the third 
day, we incubated the cells in Locke’s buffer containing 
10 M Fluo-3 AM (Dojindo Laboratories, Japan) for 60 
min at 37˚C. The cells were washed in Locke’s buffer, 
and incubated with 1 g/mL rat anti-α3 subunit antibody 
or 1 mM mecamylamine (Sigma-Aldrich, USA) in 
Locke’s buffer for 5 - 30 min at 4˚C or 37˚C. Nicotine 
(Wako Pure Chemical Industries, Japan) was diluted in 
Locke’s buffer and added to the cells at a final concen- 
tration of 1 mM. Fluorescence images of the cells on the 
35-mm glass bottom dish were recorded using BIO- 
REVO BZ-9000 fluorescence microscope (Keyence, 
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Japan). Fluorescence intensity of the cells on the 96-well 
culture plate was measured using a fluorometric plate 
reader (Fluoroskan Ascent; Thermo Fisher Scientific) at 
485 nm excitation and 538 nm emission. 

3. RESULTS 

To examine the effects of the antibody on cell-surface α3 
subunits in vitro, we used HEK293-α34 cells [8]. The 
cellular distribution of both subunits was examined by 
immunoblot analysis using subcellular fractions prepared 
from HEK293-α34 cells (Figure 1(a)). We used P1, P2 
and S2 fractions as nuclear, membrane and cytosolic 
fractions, respectively. Predicted bands of α3 (50-kDa) 
and 4 (55-kDa) subunits were detected using each spe-
cific antibody in all subcellular fractions from 
HEK293-α34 cells, but not in homogenate from 
mock-transfected cells. Both subunits were mainly de- 
tected in P2 fraction of HEK293-α34 cells. The 42-kDa 
band recognized by anti-4 subunit antibody might rep- 
resent a proteolytic form. The 70-kDa band, which was 
also present in the mock-transfected cells, might be due 
to non-specific reactions. Immunoreactivities for α3 and 
4 subunits were detected by immunofluorescence 
staining under non-permeable condition, indicating sta-  

ble co-expression on the cell-surface (Figure 1(b)). To 
confirm whether exogenous α3 and 4 subunits formed 
functional nAChR, we examined nicotine-evoked Ca2+ 
influx using Fluo-3 AM (Figure 1(c)). Nicotine elicited a 
transient elevation of fluorescence intensity (1.56-fold) 
in HEK293-α34 cells, but not in mock-transfected cells 
(<1.1-fold). Mecamylamine, an antagonist of neuronal 
nAChRs, inhibited the Ca2+ influx in HEK293-α34 cells 
(Figure 1(c)). These data indicate the expression of 
functional nAChRs assembled from α3 and 4 subunits 
on the cell-surface. 

Using this cell line, we examined antibody-induced 
internalization of α3 subunits. After application of rat 
antibody recognizing extracellular NH2-terminal domain 
of α3 subunit (Anti-α3) for 30 min, internalized antibod- 
ies were detected by Alexa Fluor 488-conjugated anti-rat 
IgG antibody. At the same time, α3 subunits were stained 
with rabbit antibody against second intracellular loop of 
α3 subunit, followed by detection with Alexa Fluor 
594-conjugated anti-rabbit IgG antibody. When the cells 
were incubated with Anti-α3 at 37˚C under isotonic con- 
dition, punctate rat IgG-immunoreactivity (IR) over- 
lapped largely with punctateα3 subunit-IR (Figure 2(a)). 
In contrast, low-temperature and hypertonic condition 

 

 

Figure 2. Antibody-induced endocytosis of α3 subunits in HEK293-α3β4 cells. (a, b) 
HEK293-α3β4 cells were incubated with 1 μg/mL rat anti-α3 subunit antibody for 30 min at 
37˚C or 4˚C in isotonic or hypertonic condition. The cells were then fixed, permeabilized and 
co-stained with rabbit anti-α3 subunit antibody (a) or rabbit anti-EEA1 antibody (b), followed 
by detection with Alexa Fluor 488-conjugated anti-rat IgG (green) and Alexa Fluor 
594-conjugated anti-rabbit IgG (red) antibodies. Scale bars, 5 μm. (c) Quantification of α3 
subunit expressed on the cell-surface membrane by cell-surface ELISA. HEK293-α3β4 cells 
were incubated with 1 μg/mL rat anti-α3 subunit antibody in isotonic or hypertonic condition 
for indicated time periods at 37˚C. Data are expressed as means ± S.D. from three independ-
ent experiments. Statistical comparisons were carried out by one-way ANOVA followed by 
Tukey test. *p < 0.01 vs. Control; #p < 0.01. 
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inhibited the formation of punctate-IR for the rat IgG and 
α3 subunit. We next examined involvement of endocytic 
machinery in antibody internalization by double-labeled 
immunofluorescence staining using anti-early endosome 
antigen1 (EEA1) antibody (Figure 2(b)). When HEK293- 
α34 cells were incubated with Anti-α3 for 30 min at 
37˚C in isotonic Locke’s buffer, punctate rat IgG-IR were 
largely overlapped with punctate EEA1-IR. In contrast, 
no double-positive dots were formed under hypertonic 
condition. α3 subunits on the cell-surface were quanti-
tated by cell-surface ELISA (Figure 2(c)). Application of 
Anti-α3 in isotonic Locke’s buffer for 5, 15 and 30 min 
at 37˚C resulted in 37%, 60% and 67% decreases, re-
spectively. Under hypertonic condition, the reduction at 
30 min was significantly suppressed (21%, p < 0.01). 

To examine whether the Anti-α3 inhibited nAChR 
function, we evaluated nicotine-evoked Ca2+ influx using 
Fluo-3 AM. When HEK293-34 cells were incubated 
with Anti-3 for 30 min, nicotine-evoked elevation of 
fluorescence intensity was remarkably suppressed com- 
pared with the control cells (Figure 3(a)). We analyzed  

peak Fluo-3 fluorescence intensities obtained by addition 
of nicotine (Figures 3(b) and (c)). Application of Anti- 
3 for 5, 15 and 30 min resulted in 24%, 42% and 63% 
decreases of peak fluorescence intensity, respectively 
(Figure 3(b)). In contrast, when the cells were incubated 
with the antibody at 4˚C, no reduction was detected 
(Figure 3(c)). These results clearly indicate that the re- 
duction in Ca2+ influx is due to decrease of cell-surface 
nAChRs, and that antagonistic effect of the antibody is 
little, if any. 

4. DISCUSSION 

In the present study, we showed that the antibody-in- 
duced reduction of cell-surface α3 subunits is the main 
cause of ganglionic nAChR dysfunction. Since these 
effects of the antibody were markedly inhibited under 
low-temperature or hypertonic condition, endocytic ma- 
chinery could impair the fast excitatory synaptic trans- 
mission in autonomic ganglia of AAG patients. 

The antibody-induced internalization of ganglionic 
nAChR has been suggested to be involved in the auto- 

 

 

Figure 3. Antibody-induced dysfunction of nAChR. (a) Fluo-3 AM-loaded HEK293-α3β4 
cells were incubated with or without 1 μg/mL rat anti-α3 subunit antibody (Anti-α3) for 30 
min at 37˚C, and then stimulated by 1 mM nicotine. Changes in intracellular Ca2+ concentra-
tion was monitored using a fluorescence microscope (left) and a fluorometric plate reader 
(right). Addition of nicotine is pointed by arrow. Data shown are representative responses 
from two independent experiments, and expressed as F/F0. (b, c) Peak Fluo-3 fluorescence 
intensity. The cells were incubated with or without 1 μg/mL rat anti-α3 subunit antibodies 
(Anti-α3) for indicated time periods at 37˚C (b) or for 30 min at 4˚C (c). Data are expressed 
as means ± S.D. of [(Fmax – Fmin)/Fmin] from three independent experiments. Fmax is peak flu-
orescence intensity; Fmin is averaged fluorescence intensity of the first 1 to 20 counts before 
the addition of nicotine. Statistical comparisons were carried out by one-way ANOVA fol-
lowed by Dunnett’s test or two-tailed t-test. *p < 0.05, **p < 0.01 vs. Control. NS, not signifi-
cant.  
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nomic dysfunction. Interestingly, Wang et al. [9] reported 
that whole IgG from seropositive AAG patients de- 
creased the nAChR current in IMR-32 neuroblastoma 
cells, but Fab fragments did not. In addition, nAChR 
current was not inhibited by the autoantibodies under 
low-temperature condition. Although their results sug- 
gest that the impairment of the ganglionic nAChR func- 
tion requires the antibody-mediated cross-linking and the 
subsequent internalization of cell-surface 3 subunits, 
there is no direct experimental evidence. In this study, we 
demonstrated intracellular punctate accumulation of an- 
tibody-3 subunit complexes and localization of the an- 
tibodies in endocytic vesicles. In addition, our results 
from cell-surface ELISA indicated that antibody-induced 
reduction in cell-surface 3 subunits was rapidly pro- 
gressed within 30 min as predicted by Wang et al. [9]. 
The antibody simultaneously caused nAChR dysfunction 
within 30 min as shown by loss of nicotine-evoked Ca2+ 
influx. When the endocytic machinery was inhibited by 
low-temperature or hypertonicity [10], the effects of the 
antibody described above were remarkably attenuated. 

Although it remains to be seen whether these effects of 
anti-3 subunit antibody could be induced in vivo, Len- 
non et al. [5] reported that rabbit injected with NH2-ter- 
minal extracellular domain (ECD) of 3 subunit protein 
exhibited autonomic failure. Furthermore, IgG collected 
from this animal model produced a progressive decline 
of nAChR current in IMR-32 neuroblastoma cells [9]. 
We previously demonstrated in HEK293-α34 cells that 
the antibody against ECD of 3 subunit induced the in- 
ternalization and cytoplasmic accumulation of the 3 
subunits [8]. Our present study extends these previous 
observations about pathogenic mechanisms of anti-3 
subunit autoantibody.  

In conclusion, this study clearly demonstrates the in- 
volvement of endocytic machinery in the antibody-in- 
duced reduction in cell-surface 3 subunits and impair- 
ment of ganglionic nAChR function. Our data reinforce 
the idea that reduction of the ganglionic nAChR in auto- 
nomic ganglia plays an important pathogenic role in se-
ropositive AAG patients. Our approaches described in 
this report may help to clarify the pathogenicity of the 
individual anti-3 subunit autoantibody. 
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