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ABSTRACT 

Shadow and variable illumination considerably influence the results of image understanding such as image segmenta-
tion, object tracking, and object recognition. The intrinsic image decomposition is to separate the reflectance and the 
illumination image from an observed image. The intrinsic image decomposition is very useful to remove shadows and 
then improve the performance of image understanding. In this paper, we present a new shadow removal method based 
on intrinsic image decomposition on a single color image using the Fisher Linear Discriminant (FLD). Under the as-
sumptions-Lambertian surfaces, approximately Planckian lighting, and narrowband camera sensors, there exist an in-
variant image, which is 1-dimensional greyscale and independent of illuminant color and intensity. The Fisher Linear 
Discriminant is applied to create the invariant image. And further the shadows can be removed through the difference 
between invariant image and original color image. The experimental results on real data show good performance of this 
algorithm. 
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K-Means Method; Fisher Linear Discriminant 

 ,1. Introduction I

Shadow and variable illumination considerably influence 
the results of the image segmentation, object tracking, 
and object recognition [1,2]. For instance, pictures taken 
by a stationary camera under different weather conditions 
can have remarkably different appearances. The intensity 
contrast is reduced under an overcast sky, whereas 
shadows are more prevalent in sunny conditions. If a cast 
shadow exists, it is hard to separate the object from its 
shadow in image segmentation. Intrinsic image decom- 
position is very helpful to improve the performance of 
image segmentation and object recognition [3-5]. Intrin- 
sic images [6] refer to the reflectance image and the il- 
lumination image (also termed as shading image). An 
observed image is a product of its reflectance image and 
illumination image. The illumination describes what 
happens when light interacts with surfaces. It is the 
amount of light incoming to a surface. The reflectance is 
the ratio of the reflected light from a surface to the in- 
coming light, which is used to measure a surface’s ca- 
pacity to reflect incident light. The intrinsic image de- 
composition is to separate the reflectance image and the  

illumination image from an observed image. Let x y
 ,R x y

 
be the observed image and  be the reflectance 
image and  ,S x y  be the illumination image. Then, we 
have expression      , , ,I x y R x y S x y  . 

There are two tracks on the intrinsic image decompo- 
sition. One is to extract the reflectance image and the 
illumination image from a sequence of observed images 
[7,8]. The other is to extract the reflectance image and 
the illumination image from a single observed image 
[9,10]. The typical work for the intrinsic image recovery 
from a sequence of observed images is from Weiss [8]. 
He decomposed the intrinsic image from a sequence of 
images taken under a stationary camera. He assumes that 
the reflectance is constant and the illumination varies 
with time. One important natural image statistics is that 
its derivative filter output is sparse [11,12]. By incorpo- 
rating the statistics of natural image as a prior, he devel- 
oped a maximum-likelihood estimation solution to this 
problem. For the intrinsic image recovery from a single 
observed image, Tappen, Freeman and Adelson [10] 
presented an algorithm that incorporates both color and 
gray-level information to recover shading and reflectance 
intrinsic images from a single image. They assume that 
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every image derivative is caused either by illumination or 
by a change in the surface’s reflectance, but not both. In 
order to propagate local information between different 
areas, they introduced Generalized Belief Propagation to 
classify the ambiguous areas.  

The work most related to ours is from Finlayson [13]. 
They devised a method to recover reflectance images 
directly from a single color image. Under assumptions of 
Lambertian reflectance, approximately Planckian lighting, 
and narrowband camera sensors, they introduced an in- 
variant image, which is 1-dimensional greyscale and in- 
dependent of illuminant color and intensity. As a result, 
invariant images are free of shadows. The most important 
step to compute invariant images is to calibrate the angle 
for an “invariant direction” in a 2-dimensional log-chro- 
maticity space. The invariant images are generated by 
projecting data, in the log-chromaticity space, along the 
invariant direction. They showed a fact that the correct 
projection can be reached by minimizing entropy in the 
resulting invariant image. In practice, they recovered 
shadow-free images for the images from unsourced im- 
agery. To minimize the entropy on the projected data 
seems equivalently to maximize the probabilities within 
one sensor band. As a result, the color data from one 
sensor band have minimum variance and then distribute 
as close as possible after projection. They used histo- 
grams to approximate probabilities in every search direc- 
tion. 

Here, we present an intrinsic image decomposition 
method for a single color image under the above assump- 
tions of Lambertian reflectance, approximately Planckian 
lighting, and narrowband camera sensors. We showed 
that the invariant direction could be achieved success- 
fully through the Fisher Linear Discriminant (FLD). We 
obtain the satisfactory invariant images through FLD. 
The Fisher Linear Discriminant not only guarantees the 
within-sensor data as convergent as possible but also 
treats the between-sensor data as separate as possible. In 
Section 2, we give a description on invariant direction 
and invariant image. We discuss the Fisher Linear Dis- 
criminant and explain how it can be used to detect the 
projection direction for invariant images in Section 3. 
Section 4 shows how to recover the shadow free image 
from derivative filter outputs. The shadow removal algo- 
rithm is proposed in Section 5. In Section 6, experimental 
results are given to show that the shadow free images 
could be recovered through the Fisher Linear Discrimi- 
nant. Finally, we make a conclusion and discuss the fu- 
ture work. 

2. Invariant Direction and Invariant Image 

Under assumptions of Lambertian reflectance, approxi- 
mately Planckian lighting, and narrowband camera sen- 
sors, a 1-dimensional greyscal invariant image can be 

generated. The invariant image is independent of illumi- 
nant color and intensity. As a result, invariant images are 
free of shadows. A 2-dimensional log-chromaticity map 
is first created by calculating the positions of  log B R  
and  log G R

 , ,R G B

. One amazing property is that points 
from different illuminant conditions but under the same 
sensor band tend to form a straight line. Furthermore, 
those lines from different sensors tend to be parallel. 
Therefore, if we project those points onto the vertical 
direction to the lines, we obtain an illumination free im- 
age, which is called the invariant image. This is illus- 
trated in Figure 1. 

Let us take a look at the theory behind this. The fol- 
lowing part of this section gives a brief review on the 
invariant image theory from Finlayson [13,14]. As we 
know, camera responses depend on three factors: the 
light E, the surface S, and the sensor . So we 
can represent each channel value as integrations over all 
wavelengths, 

     

     

     

d

d

d

r R E S

g G E S

b B E S

   

   

   













        (1) 

If the sensor is narrowband, then we have a Delta 
function constraint on each channel, as follows 

   
   
   

R

G

B

 R  

G

B

   

  

 

 

 

              (2) 



Then the integrations for each channel can be picked at 
single wavelength as follows 
 

 

Figure 1. Illustration of the invariant image and the invari- 
ant direction. 
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   
   
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             (3) 

Most typical illuminants lie on, or close to, the 
Planckian locus. Under Planck’s law, the light  can 
be computed as  

 
2

1

5 e 1
c

Tc 



  
   

 

c c

2 T

1E I          (4) 

where I controls the overall intensity of light, T is the 
temperature, and  and  are constants. 1 2

For typical illuminants, we have c  . Then  
can be approximated as 

E

 
2

5
1 e

c

TE Ic  
              (5) 

Furthermore, 

 
2

5
1 e R

c

T
R RI c  




 

r S                 (6) 

   5 2
1R R

R

c
c

T
 ln ln lnr I S


 

S
T

        (7) 

On the right hand side of Equation (7), the first ele- 
ment is a constant and independent of sensor. The second 
element is only dependent on reflectance. For Lamber- 
tian surfaces, the reflectance is determined by the surface 

. The third element is dependent on illumination since 
temperature  is inside. Summarizing over three chan- 
nels, we have 

ln

ln

ln

r k
1

s

s

s

a

g k b
T

c




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       (8) 

where subscript s  denotes dependence on reflectance 
and k, a, b, and c are constants,  is the temperature. T

r bBy introducing two new parameters  and   as 
follows, we can remove illumination. 

ln ln

ln ln
s s

s s

r r g

b b g

 
 

    
        

1 a b

c bT

    
      

r 

  (9) 

We can see that there exists a linear relationship be- 
tween  and b , which is free of illumination 

 
   , ,s s sf
a b

r b
c b

  


  


       (10) 

That is, if we project log-chromaticity data along the 
straight line, the projected data are only dependent on 
surface reflectance. 

To compute invariant images requires calibrating the 
angle for an invariant direction in a log-chromaticity 
space. Here, we show that the invariant direction can be 

recovered through the Fisher Linear Discriminant and we 
got satisfactory results. 

3. Invariant Image by Fisher Linear 
Discriminant 

Pattern recognition algorithms that minimize entropy 
guarantee that the projected data have minimum variance 
within each class. In our application, the projected data 
from the same sensor band are required to distribute as 
closely as possible. The Fisher Linear Discriminant [15] 
is developed for dimensional reduction and pattern clas- 
sification. The goal of Fisher Linear Discriminant is to 
project original data onto low dimensional space such 
that the between-class distance is as large as possible and 
the within-class distance is as small as possible. Using 
the Fisher Linear Discriminant, we not only make the 
projected data from the same band as convergent as pos- 
sible, but also separate the projected data from different 
sensor bands as apart as possible. Therefore, the Fisher 
linear discriminant is a good choice to choose the invari- 
ant direction. 

Assume that there are c
1d  ix

1, ,i N

 classes among original data. 
The data are represented as  vector  for 
  d N

w 1, ,i c

, where  is the data dimension and  is 
the total number of data. Further, the classes are labeled 
as i  for  

iw

. We have the following defini- 
tions. 

The sample mean for class  is 

1

i

i
win 

 
x

m x 1, ,i c 

in iw
N n

, for         (11) 

where  is the number of data in class  and 

 i . 
The scatter matrix for class  is iw

  T

i

i i i
w

S


  
x

x m x m 1, ,i c 
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TS   
x

x m x m

, for   (12) 

The total scatter matrix for the whole data is 

, for all samples   (13) 

where 
1

N
 

x

m x

  T

1

c

B i i i
i

S n


   m m m m

1

c

W i
i

S S


 

 is the mean for the entire data set. 

The between-class scatter matrix is 

     (14) 

The within-class scatter matrix is 

               (15) 

 1d cThe Fisher Linear Discriminant is to find a    
matrix W such that the following optimal criterion 
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 J W

 

 is maximized. 

T

T

B

W

W S W

W S W
J W             (16) 

where 
 

 is the determinant of a matrix. The term 
J W

1c 

B WS S

 is also called the Rayleigh quotient. The solution 
to the Fisher Linear Discriminant is the eigenvectors cor- 
responding to the  largest eigenvalues in the fol- 
lowing eigen-problem: 

v v

1
W BS S

               (17) 

Equivalently, 

 v v                (18) 

As a matter of fact, this is a generalized eigen-problem. 
Since BS W

TS U U 
 is symmetric ( S  is also symmetric), it can 

be diagonalized as B , where U is an orthogo- 
nal matrix, consisting of BS ’s orthonormal eigenvectors, 
and  is a diagonal matrix with eigenvalues of  BS  as  

diagonal elements. Define 
1 1

T2 2
BS U U  , then  
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Define a new vector 
1

2
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B W BS S S  z z               (20) 

This becomes a regular eigenvalue problem for a sym- 

metric, positive definite matrix 
1 1

12 2
B W BS S S . The original 

solution can be given as 
1

2
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

v z . 

Since we only care for a projection direction for 
2-dimensional data, we always compute the unit vector 
with the same direction as . That is, v  normv v
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remember that 
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Similarly, 
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In addition, 

   

 



x

m m m m

m m m m

T B WS S S 

     (24) 

We obtain 

           (25) 

In our case, we want to find a projection line in 2-di- 
mensional space. So  J W

 

 equals 
T T T

T TT
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3.1. Special Cases for Fisher Linear 
Discriminant 

In practice, it always happens that there are at most two 
classes in the 2-dimensional chromaticity space. Then 
Fisher linear discriminant is considered as follows. 

Case 1. There are only two classes. 
In this case, the total mean is  

1 2
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Substituting this in 

           (28) 

We obtain 
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Similarly, 
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Then the between-class scatter matrix becomes 
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 
cipal component analysis for dimensional reduction, 
where the eigenvectors corresponding to the largest ei- 
genvalues are chosen for projection. 
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3.2. K-Means Method for Clustering 

Before applying the Fisher linear discriminant, we need 
to classify the original data into different groups. That is, 
we need to solve which class each datum belongs to and 
assign each datum accordingly. This is accomplished 
through the K-means algorithm [16]. Given the number 
of clusters, the K-means method partitions the data itera- 
tively until the sum of square distances for all data to its 
class center (total intra-cluster variance) is made to be 
minimum. 

where  means “equals up to scale”. 
Since we only care about the direction of projection, 

the scale can be ignored. From Equations (17) and (18), 
we obtain the projection  as 
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     (32) 

It is possible that other algorithms such as Gaussian 
mixture models may give a better result. However, in 
practice, the K-means algorithm works well here. Fig- 
ures 2 and 3 illustrate the Fisher linear discriminant for 
one class and three classes, where clustering is imple- 
mented through the K-means method. We can see that 
we have obtained satisfactory invariant images through 
data projection on the invariant direction chosen by 
Fisher linear discriminant method. In practice, we found 
that accurate invariant images are not necessary to re- 
move illumination. However, the accurate shadow edge 
detection is very important for shadow removal. 

where  is just a scalar. 1 2

Case 2. There is only one class. 
The 2-dimensional data distribute along parallel 

straight lines. We hope that the invariant direction is the 
direction with the minimum-variance for the within- 
sensor data. That is, the projected data from the same 
sensor distribute as close as possible. If there is only one 
class in the 2-dimensional chromaticity space, the eigen- 
vector corresponding to the smaller eigen-value for the 
2-dimensional chromaticity data matrix will be the in- 
variant projection direction. This is different from prin-  
 

       
(a)                                               (b) 

       
(c)                                               (d) 

Figure 2. Invariant image through FLD on one class: (a) Original image from [13]; (b) Data in 2-D chromaticity space; (c) 
Clustering for FLD, here same as (b); (d) Invariant image from FLD. 
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(a)                                       (b) 

       
(c)                                         (d) 

Figure 3. Invariant image through FLD on three classes: (a) Original image; (b) Data in 2-D chromaticity space; (c) Cluster- 
ing through K-means method, different classes are shown in different colors; (d) Invariant image from FLD. 
 
4. Recovery of Shadow Free Images 

It is suggested by Weiss [8], that we can reintegrate the 
derivative filter outputs to generate shadow free images 
and further recover intrinsic images. We compute the 
derivative filter outputs for R, G, and B color channels 
respectively and then set the derivative values in shadow 
edge positions to zeros. Finally, we reintegrate the de- 
rivative filter outputs back to recover the shadow free 
images 

Here, we simply consider derivative filters as the hori- 
zontal derivative filter and the vertical derivative filter. 
The horizontal derivative filter is defined as  

 T
0,1, 1x  

 0,1, 1y  

 r r

f

f

 and the vertical derivative filter is  

. 
After we have individual reflectance derivative map, 

where derivative values in shadow edge positions are set 
to zeros, following Weiss [8], we can recover the reflec- 
tance image through the following deconvolution. 

ˆ x x y yr f r  

r

r g f 



        (33) 

where  is the filter operation and f  is the reverse 
filter to f. r are the derivatives and  are the estimated 
reflectance image. Further, g satisfies the following con- 
straint. 

r̂

r r
y yf r x xg f f               (34) 

In practice, this can be realized through the Fourier 

transform. 

5. The Shadow Removal Algorithm 

In summary, our algorithm to remove shadows for a sin- 
gle color image consists of the following steps: 

1) Compute the 2-dimensional log-chromaticity maps 
for original color images; 

2) Cluster data in 2-dimensional log-chromaticity space 
using K-means algorithm; 

3) Compute the invariant direction (projection line) 
using Fisher Linear Discriminant; 

4) Generate the invariant images by projecting 2-di- 
mensional data along invariant direction; 

5) Compute the edge maps for graylevel image (each 
channel of R, G, B) of the original images and graylevel 
invariant image using Canny edge detectors; 

6) Extract those edges in original edge maps but not in 
invariant image edge map as shadow edges; 

7) Compute the derivative filter outputs for R, G, and 
B color channels; 

8) Set the derivative values in shadow edge positions 
to zeros; 

9) Reintegrate the derivative filter outputs back to re- 
cover shadow free images. 

6. Experimental Results 

In test, we conducted the shadow removal algorithm on 
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four real pictures, where the data are either collected by 
us or collected online. In addition, the data are not taken 
under the same illumination. The outcomes are displayed 
in Figures 4-7. The invariant images are produced 
through FLD as shown in (b) of Figures 4-7. The Canny 
edge detector is applied to extract edges in invariant im- 
age and gray-level images for each channel R, G, B of 
the original color image. In comparison with invariant 
image and gray-level images for each channel R, G, B, 
we can see that the shadow edges are basically extracted 
correctly. The edge detection is shown in (c) of Figures 
4-7. Then derivatives in edge positions are set to zero 
values and further reintegrated back. The shadows in the 
recovered images are either considerably attenuated or 
effectively removed (refer to in (d) of Figures 4-7). We 
also notice that some artifacts exist in the recovered im- 
ages. This results from inaccurate shadow edge detection. 
 

    
(a)                    (b) 

    
(c)                   (d) 

Figure 4. Test 1: shadow removal results through FLD. (a) 
The original image; (b) The invariant images from FLD; (c) 
The detected shadow edges; (d) The recovered shadow free 
color images. 

 

       
(a)                           (b) 

       
(c)                          (d) 

Figure 5. Test 2: shadow removal results through FLD. (a) 
The original image; (b) The invariant images from FLD; (c) 
The detected shadow edges; (d) The recovered shadow free 
color images. 

      
(a)                        (b) 

      
(c)                       (d) 

Figure 6. Test 3: shadow removal results through FLD. (a) 
The original image (from [13]); (b) The invariant images 
from FLD; (c) The detected shadow edges; (d) The recov- 
ered shadow free color images. 

 

       
(a)                          (b) 

       
(c)                          (d) 

Figure 7. Test 4: shadow removal results through FLD. (a) 
The original image (from [13]); (b) The invariant images 
from FLD; (c) The detected shadow edges; (d) The recov- 
ered shadow free color images. 

7. Conclusion 

In this paper, we give an effective approach to recover 
shadow free images from a single color image, which is 
from unknown source. This is an improvement way that 
used by Finlayson [13,14]. In our experiments, we feel 
that accurate invariant direction is not necessary. In real- 
ity, the data in 2-dimensional log-chromaticity space from 
different sensors are not right parallel. However, after 
projection through the Fisher Linear Discriminant, we 
can still obtain satisfactorily invariant images. In the fu- 
ture work, we will work on automatic selection of num- 
ber of cluster components for the K-means method. This 
may be achieved through cross-validation on different 
number of cluster components. The other clustering me- 
thod instead of the K-means method may be explored in 
our future experiments. 
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