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ABSTRACT

In this work, we consider the effect of a small-scale helical driving force on fluid with a stable temperature gradient
with Reynolds number R <« 1. At first glance, this system does not have any instability. However, we show that alarge
scale vortex instability appears in the fluid despite its stable stratification. In a non-linear mode this instability becomes
saturated and gives a large number of stationary spiral vortex structures. Among these structures there is a stationary
helical soliton and a kink of the new type. The theory is built on the rigorous asymptotical method of multi-scale de-

velopment.
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1. Introduction

The importance of the generation processes of large-scale
coherent vortex structures in hydrodynamics is well
known. A large-scae vortex means a vortex which is
generated by a much smaller scale force or in turbulence
with a characteristic scale much smaller than a vortex
scale. When these coherent structures appear in small-
scale turbulence, they play a key role in transfer pro-
cesses (see for instance [1]). Numerical and laboratory
experiments [2-7], confirm the existence of coherent
vortex structures, especially for two-dimensional or quasi
two- dimensional turbulence [7-9]. Notably, they are well
observed in geophysical hydrodynamics like various
cyclones in the planet’s atmospheres [10,11]. Sometimes
the appearance of large scale vortex structures is accom-
panied by the inverse cascade of energy both in the
three-dimensional case (AKA-effect [12]), and in quasi-
two-dimensional cases as well [3-6,8,9]. It may be said
that the inverse cascade itself is aso one of the mecha
nisms of the generation of large-scale structures [4,13].
The generation of large scale slow movements by small
scale external forces in arotating stratified fluid was also
studied numerically in works [14,15]. One of the impor-
tant large scale instabilities in non compressible fluid is
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the AKA-effect (Anisotropic Kinetic Alpha effect) which
was found in work of Frisch, She and Sulem [16]. In this
work, a large scale instability appears under the impact
of small scale force in which parity is broken (with zero
helicity). In the following work [17] the inverse cascade
of energy and the non linear mode of instability sa
turation were studied. Despite the fact that the broken
parity is a more general notion than helicity, it is the
helicity v-rotv=0 whichisthe widespread mechanism
of broken parity in hydrodynamical flow. For instance,
the turbulence becomes helical when rotation and stra-
tification are taken into account [18-20]. Therefore one
may consider the small-scale helical force the para-
metrization of this turbulence. The injection of a helical
externa force into hydrodynamic systems was conside-
red in many works ([21-24]), and as a result it was un-
derstood that a small-scale turbulence able to generate
large-scale perturbations cannot be simply homogeneous,
isotropic and helical [25], but must have additiona spe-
cial properties. In some cases, the existence of large-
scale instability was shown (vortex dynamo or hydro-
dynamic « -effect). (In the magneto hydrodynamics of
conductive fluid the « -effect is well known [26] ). In
particular, in work [22] it is shown that large-scale
instability exists in convective systems with small-scale
helical turbulence. These works as well as the results of
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numerical modelling are described in detail in review
[27], which are focused essentially on the possible appli-
cation of these results to the issue of tropica cyclone
origination.

In this work we consider the theory of large scale
vortex generation in stratified fluid under the impact of
small scale helical force. Let us suppose that there is a
stable temperature stratification in fluid. To this fluid
with the Reynolds number R <« 1 let us apply a small-
scale, helical, external force. This force will maintain in
the fluid small-scale helical fluctuations of velocity field
(v-rotv=0) We consider the fluid as being boundless.
At first glance there are no instabilities a al in this
system. However, we show in this work that despite sta-
ble stratification, a large-scale vortex instability appears
in the fluid which leads to the generation of large-scale
vortex structures. The theory of this instability is built
rigourously using the method of asymptotical multi-scale
development similar to what was done in work of Frisch,
She and Sulem for the theory of AKA-effect [16]. But
the eguations which we solve differ considerably from
equations in work [16]. In addition to linear theory, we
also develop and study in details the non-linear theory of
this instability saturation. We devote specia attention to
stationary, non-linear, periodical vortex structures which
appear as a result of the saturation of found instability.
Among these structures, there is a spiral vortex soliton
and kink of the new type. In order to distinguish our
instability from others in stratified fluid we consider the
case of stable dtratification. Nevertheless our theory
permits the examination of unstable stratification as well
by means of substitution Ra — —Ra. However, in this
case we have to consider that the usua convective
instability is eliminated and the Raleigh number is rea-
sonably small.

Our work is arranged as follows: in Section 2 we set
forth the formulation of the problem and equations for
stable dtratification in Boussinesg approximation; in
Section 3 we examine the principal scheme of multi scale
development and we give secular equations. In Section 4
we describe external force properties and calculate the
Reinolds stress. In Section 5 we discuss the non-linear
stage of the instability and its saturation. We study the
equations of non-linear instability and its stationary
solutions. It is shown that due to the hamiltonian nature
of these equations a large number of stationary vortex
structures of spiral type appear. We also demonstrate that
there are solutions in the form of the spira soliton and
the kink of new type. The obtained results are discussed
in the conclusion in Section 6.

2. Main Equations and Formulation of the
Problem

Let us consider the equations for the motion of non
compressible fluid with a constant temperature gradient

Copyright © 2013 SciRes.

in the Boussinesq approximation:

%+(VV)V =—iVP+vAV +gBN+F,; ()

0

%—er(VV)Tz)(AT—V/L 2
VV =0,1 =(0,0,1) —is the unit vector in the direction of
axis z, S —isthethermal expansion coefficient,

A =%—constant equilibrium gradient of temperature,
A=Const,4>0. p,=const.VT; =4l The buoyancy
force and the external force F,, divF,=0 are taken
into account in Euler Equation (1). Let us note the force

F, intheform: FozfoFo(%,ti],where Ao—Charac

0
teristic scale, ¢, —characteristic time, f, —characteris-
tic amplitude of external force. We designate charac-
teristic velocity, which is engendered by external force as

Vo =V, (iti] . We choose the dimensionless variables
0
(t,x.V):
\ F P
X sty ->—,F,>-22P> :
L Vo Jo Poby

Then:

2
ﬂ-ﬁ-R(VV)V =-VP+AV +(&jgﬂﬂ+Fo
ot VoV

oT 1
—+R(VV)T =—AT —-RV_(A44,),

Aovo

where R =-"2—Reynolds number on the scale 4,,
14
Pr="—is Prandtl number. We introduce the dimen-
V4
sionless temperature T aﬁ , and obtain the equations

system:

N L RVVIV AV =vP+ R F
o RPr

i[al_imrj:w (V).

R\ ot Pr :
4
Here Ra= M—is Rayleigh number on the scale
xv

A,. Further for the purpose of simplification we will
consider the case Pr=1. We pass to the new tempera-

ture 7 > % , and obtain:
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%m(vv)V—Av — VP+RaTI+F,, (3)
(%_AT]:-VZ—R(VV)T. 4
divVv =0.

Although we essentially pay attention to stable tem-
perature stratification, unstable stratification can also be
considered in the frame of this scheme. We use dimen-
sionless writing of the equation more typically for the
problem of convection.

We will consider as a small parameter of asymptotical

development the Reynolds number R = iy <1 onthe
14

scale A,. The parameter Ra will be considered neither
big nor small, without any impact on development sche-
me (i.e. outside of the scheme parameters).

Let us examine the following formulation of the
problem. We consider the external force as being small
and of high frequency. This force leads to small scae
fluctuations in velocity and temperature against a back-
ground of equilibrium. After averaging, these quickly
oscillating fluctuations vanish. Nevertheless, due to small
non-linear interactions in some orders of perturbation
theory, non zero terms can occur after averaging. This
means that they are not oscillatory, that is to say large
scale. From a formal point of view these terms are
secular, i.e. create conditions for the solvability of the
large scale asymptotic development. So, to find and
study the solvability equations i.e. the equations for large
scale perturbations is actually the purpose of this work.
Let us designate further the small scale variables as
Xo =(Xo:%) » and large scale ones as X =(X,T). The

derivative i is designated ¢, , the derivative 2 is
Ox, t
designated 0,, and derivatives of large scale variables
0 0 . .
are X =V and o7 =0, respectively (No confusion
misunderstanding occurs between the temperature and
the large scale time since time is argument and tempera-
ture is function). To construct a multi scale asymptotic
development we follow the method which is proposed in
work [16]. We could start by establishing linear theory
for instability development and after that pass to non
linear theory, but as the non linear theory is technically
less bulky, so we construct the non linear theory directly
and then consider the linear limit.

3. The M ulti-Scale Asymptotical
Development

Let us search the solution for Equations (3) and (4) in the
following form:
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v(x,t):%w,l(x)wo(xo)

)
+RV, + RN, + RN +- -
T(X,t):%ll(X)+To(xo)+RTl ®)
+R’T, + R°T, + -+
P(X,1)
S g P () P ()P (X) (D

+By (%) +R(R, +}_>1()())+1?321D2 +R3P,+---

First of all, we develop space and time derivatives in
Equations (3) and (4) into asymptotical series of the
form:

%=8i+R2V+-~. 8)
X

0 a

5=6t+R Op +---. 9)

Substituting these expressions into the initid Equ-
ations (3) and (4) and gathering together the terms of the
same order, we obtain the equations of multi scale
asymptotical development and write down the obtained
equations up to order R® inclusive. Let us present the
algebraical structure of the asymptotical development of
the Equations (3) and (4) for the non linear theory (we
will not write indices because they can be restored
trivially at any moment). In the order R thereis only
the equation:

OP,=0=P,=P,(X). (10)
Intheorder R we have the equation :

0P, =0=> P, =P,(X). (11)
Intheorder R™ we get asystem of equations:

oW -0 W,

12
=—(0P,+VP,)+RaT I, —oW_W.,, 12

atT—l - 82T—l =—oW.,TI,- W—zl' (13)

oW, =0.

The system of Equations (12) and (13) gives secular
terms:

-VP,+RaT . =0. (14)
W7 =0. (15)

In zero order R° we have the following system of

equations:
0,vy —0%vy +O(W v, + vol.1) (16)
=—(0R)+VP,)+RaTy.+F,
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0,Ty—0°Ty+ 0 (W Ty +voT ;) = —v;. (17)
ov, =0.
These equations give one secular eguation:
VP,=0= P, =Cons. (18)
Consider the equations of the first approximation R:

Oy — 0% + 0 (W + vl +vvy)

(19
= _V(WlpV—l) - (aPl + VRl) +RaTyl..
0,1, - °T, + O(W_ T, +wT, +v,Ty) )
+V(W. T )=—v.
oV, +VW ,=0. (21)

From this system of equations follow the secular
equations:

VW, =0, (22)
V(W W,)=-VP,, (23)
v(w.T,)=0. (24)

The secular Equations (22)-(24), are clearly obviously
satisfied for velocity field geometry:

W =(W5(2).0(2),0):T, =T, (2);

) (25
VP,=0= P, =Const.

In the second order R?, we obtain equations:
0,v, —0%v, —20Vv, +0 (W vy + v,V + vy +v1v,) (26)
=—V (W o+ v 1) —(0F,+VE)+ RaT,l_,
0,T, —0°T, = 20V Ty + O(W_,T, + v, T + v, T, + v Ty) @
= V(W Ty +v,T 1) v,
Ov, +Vy, =0. (28)

It is easy to see that in the order R® there are no
secular terms.

Let us come now to the most important order R®. In
this order we obtain equations:

0,v3+ 0,y —(0%v + 20V, + AW, )
+V (W_lv1 +vW + Vo"o)
+0 (W71v3 VW Vv, Vv + V1V1) 29)
=—(0R,+VE)+RaTyl, -0,T,+0,T,
—(0°Ty + 20V T, + AT )+ V (W T, + T +voTy)
+ 6(W71T3 +v, T +v I, +v, T + V1T1) =—v;.
Ov;+Vy, =0. (30)

From this we get the main secular equation:
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oW — AW +V, (vgvg) - VB (3D

i

0,T—AT+V, (ngo) -0, (32)

In these equations we do not write the law index (-1).
Besides there are secular equations:

VW =0,W* =0, (33)
v, (ww')=-v.P,, (34)
v, (w'r)=0. (35)

The Equations (33)-(35) are satisfied in the previous
geometry:

w=(w*(z).Ww”(z),0),and, P, = Const. (36)
Thereis also an equation to find the pressure P:
V_P,=Rall.. (37)
These formulae show that when one knows the
velocity it is possible to restore temperature and pressure.
4. Calculations of the Reynolds Stresses

It is clear that the essential equation for finding the non
linear alpha-effect is Equation (31). In order to obtain
these eguations in the closed form we need to calculate

the Reynolds stresses V, (E) . First of dl we have to

caculate the fields of zero approximation vi from the

asymptotical development in zero order we have the
equations:

Ovy—0%vy +W"'0, vy =-0,B + RaTl' + F;, (38)
0,T,—0°Ty+W*o,T, =—vjl*. (39)

Let usintroduce the operator D
Dy=8,-0°+W"p,. (40)

Using the operator [)O , We write down Equations (38)
and (39) intheform:

Dy =—0,P,+ RaT,l' +F,, (41)
DT, =—vir* (42)

Eliminating the temperature and pressure from Equa
tion (41) we obtain:

(égé‘ik '”%‘pRalklp)vc])C :bOFZ)i' (43)

Here P, isthe projection operator:

Dividing this equation by D?, we can write it in the
form:

OJFD



68 A.TUR, V. YANOVSKY

L)

Lvi=22 44
ik "0 DO ( )
where L, isthe operator:
£,
Lik Eé}k +Ra§lplk. (45)

0

It is easy to make sure by a direct check that the
inverse operator L;jl has the form:

RaP, 1 1.
Dy +RaP, 1|

pqpq

L;jl =0y

L,L} =6, (47)

Consequently the expression for the velocity and
temperature v, T, takestheform:

O 7 A
° |\ DZ+RaP 1 |D,’

paprq

(48)

raprPyq

Rab, 11, |(I'F
]:3:_ _ ~ nmAm n ( ~ ) (49)
D?+RaP, 1l | D

In order to use these formulae we have to specify in
explicit form the helical externa force Fj. The most
simple and natural way is to specify the external force as
deterministic. (Certainly, it is possible to specify the
externa forcein a statistical way with specifying random
field correlators, but this leads to more bulky calcula
tions). Asit is known helicity means that F,rotF,#0.
Let us specify theforce F, likeso:

Fo = fo[icosp, + jsing, +k(cosg +sing, )], (50)
where
@, =kox—apt, 0, =koy — wyt, (51)
or

o, =K X—apt, 0, =K, X — ayt,

k =k (LOO)k, =k, (010). D

It is evident that rotF, =k,cF,, where ¢ —is the
single pseudo scalar, i.e. hdicity is equal to:

Fy ot Fy = k,eF 2 # 0. (53)

The formulae (50) and (52) alow us to easily make
intermediate calculations, but in the fina formulae we
obviously shall teke f;,k,,, as equa to one, since
external force is dimensionless and depends only on
dimensionless space and time arguments. The force (50)
is physically simple and can be redlized in laboratory
experiments and in numerical simulation.

It is easy to write down the force (50) in complex form.
Itisevident that:
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Fo=Aexp(ip )+ A exp(-ig,)

. . . (54
+Bexp(ip,)+B exp(-igp,),
wherevectors A and B hastheform:
A:%(k—ij),B:%(i—ik), (55)

and ¢,p, aregiven by formulae (52). The effect of the
operator D, on proper function exp(iwr+ikx) has
obviously the form:

Dy exp(iat +ikx) = Dy (o, k) exp(ior +ikx) , where
lA)O(a), k) is:

Dy(@,k)=i(@+KW)+k2 (56)
From thisit is evident that:

Dy(@,—k;) =i (00— kW )+ &2, (57)

D; (@,~k;) = Dy (- k), (58)

Dy(@,~k,) =i (@—k W)+ 2, (59)

D} (@,~ky) = Dy(~,k,). (60)

From the formulae (48) and (54), follows that the field
vs is composed of four terms. vi =vj + Vi, + Vi + Vi,
where

[ O 2 S A
Voz—(vm) !Vm—(vos)'

k i o) 5 Raﬁkmlmlj Aj (61)
Vo, = == = = ,
o Y DE(~wy, k) + RaPll | Dy (~ap, k, )

RaP. 1 1.

km"m" j

. (62)

Vk — iy 5._ _ _ _ B
@ Y DE(~@y,k, )+ RaPll | Dy(~y,k,)

As was stated earlier, in scalar operators f)o one can
take @, =1k, =(10,0),k, =(0,1,0). Then taking into
account that B, =1, we obtain:

D:o(a)o,—kl)zlti(l—Wl)le, 3
D, (_a’ov kl) =D
Dy (@K, ) =1+i(1-W,)=D,,

64
Dy (—w,,k,) =Dj. ()

Here we introduced the following notations:
W, =Ww*W,=W" . Taking into consideration these for-
mulae we can write down the velocities v; in the form:

vgl: ior 5k._Ranmlmlj A/, (65)
D*+Ra | D}
. RaP. 11, |pgi
vE =dr| s ——tmmi |\ Z 66
” ¥ D?+Ra |D; (66)
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In order to calculate the Reynolds stresses we have
first of al to calculate the expression:

ki ki ki
VyVy =2 Re(vmvol + v03v03). (67)

Taking into account the formula (65), we obtain:

kit ki
VorYor 1 Vo1 Vo

. Radl (1,4 +1 4
(AkAi*_'_AkAi)_ . z[&] (68)

=TH =
|D1|2 D?+Ra

“"Inf
1
RaA. [lkA,.* +1A ]
- 2 2 +
|D1| D;* +Ra

2 Ra’lL|A[

z

D |D? + Ra|

Similarly taking into account formula (66), we obtain:

ki K
VozVos T Vo3 Vo3

=75 = (B B +BB, )
D,
_RaB_(1,B +1B;
|D2|2 D;?+Ra

RaB: (1,B,+1B,
| 2| (D2+R J (€9

2 Ra*,1|B[
D" |D3 + Ra|

It is clear that the components 7; and 7 are of
interest. To begin with we consider the components of
the tensor T(3) :

Ty = D |(AA +A34,)
' (70)
_Ra 44 A4 )
IDJF\Df +Ra D?+Ra)
since 4,4 = 4;4, =0.
1 * *
T(f)2 :W(AsAz +A3A2>
i (72)

Ra [ A4, A A,
_| 2 2 Tt :
D1| Df+Ra D;"+Ra
The first bracket in the (71) is equa to zero, which is
why:

w__ i Ra (D{-DF) D*z). (72)
(@ 4|D1| |D1 +Ra|

Now consider the component 73

1
I3 = o —(B,B; + B;B,)

? (73)
Ra[ BB, . BiB; ]

|ID,F\D?+Ra D +Ra

asfaras B;B,=B,B, =0. Consider now the component

31.
Ty

Copyright © 2013 SciRes.

1 « | pr
7;; = w(BaBl + B3B1)

(74

_Ra ([ BB | BB
|D,|"\ D} +Ra Dj?+Ra )

The first bracket in the formula (74) is equal to zero,
then:

. D2 _p?
rg-- L fa (0000) (75
4|D,[" | D3 + Rl
Taking into account:
D? - D;%)=4i(1-w,
(8- DF%)=4i(a-1%), o
(D3? - D) =-4i(1-W,),
D, =1+(1-m,);|D,[* =1+ (1-w,), (77)

|D12+Ra|2:(Wl(2—Wl)+Ra)2+4(l—Wl)2, (79)

|DZ + Rd|| = (W, (2-W,)+ Ra)’ +4(1-W,)".  (79)
The components 77,73 take the form:

32
Ty

Ra(1-w,) (80)

w2 m) « ra) a@om )|

32
Ty

) “fa(l-P,) (@
[1+(1— WZ)ZJ[(WZ (2_W2)+Ra)2 a1 W2)2:|

Now, when we have these tensors components, we can
obtain closed equations for velocity.

5. Large-Scale Instability and Non Linear
Vortex Structures

Let us write down in the explicit form the equations for
non linear instability:
O, W~ VW, =V T5
Ra (1— W, )
L @em) ][ (m(2-m)+ Ra) + 42-m,) |

(82)

=V

0, W, VW, =-V.T

Ra(1-W;)

=-V. 2 27"
(1411 [ (#(2-1)+ Ra)’ +4(1-1,)

(83)
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It is easy to see that with small values of the variables
w,,W, the Equations (82) and (83) are reduced to linear
equations and describe the linear stage of instability.

O, +aV W, = VI, (84)
O, W, —avV W, =V, (85)
a=-¢Ra LR“Z (86)

(4+ Raz)

Here ¢ designates the single pseudo scalar because
expressions V, W, ,-V W, are components of rotW .
The Equations (84) and (85) differ from equation of
AKA-¢effect [16] by the coefficient « only, but the im-
portant difference between our equations and equations
of AKA-effect is the presence of the Rayleigh number in
a coefficient. As aresult: «=0 in the non stratified
fluid. The Equations (84) and (85) obvioudly contain an
instability which generates large scale vortex structures.

Choosing the velocities W, W, intheform:
W, = Aexp(yT)sinkz, (87)
W, = Bexp(yT)coskz, (88)

we obtain the instability increment y =+ak. —k7,i.e..
2

max;/:a?,with the k:%. The formulae (87) and

(88) describe a spiral vortex structure (circularly pola-
rized plane wave) with an amplitude which increases ex-
ponentially with time. These waves are sometimes called
Beltrami runaways since for them there is no usud
hydrodynamical interaction WVW =0. With Ra=2
the linear instability vanishes but the non linear remains.

If the externa force has a zero helicity, then the
a -term vanishes in accordance with the general theorem
of Reynolds stress tensor [25]. Hdlicity is taken into
account in the external force structure itself. If the
temperature gradient vanishes, then it is evident that the
o -term also vanishes.

It is clear that with the increasing W,,W, of the non
linear terms decrease and the instability becomes satu-
rated. As aresult of the development and stabilization of
instability, non linear vortex helical structures appear.
The study of the form of these stationary structures is of
interest. For that purpose we take (82), (83)

o,W,=0,W,=0. Integrating these equations over z,
we obtain:
ox RaP

c, (89
o (1+P2)[4P2+(1—P2+Ra)2}+

8P RaX
- a —~—C,. (90)

oz (1+X2)[4X2+(1—X2+Ra) }

Copyright © 2013 SciRes.

Here new variables are introduced
X=1-w,P=1-W,,C,,C, —are integration constants.
The system of Equations (89) and (90) can be write down
in the hamiltonian form:

ox _om op_ oM
oz OP'0z 0X

Here the variable z plays the role of time and the
hamiltonian H hasthe form:

H=U(P)+U(X)+CP+C,X+C,. (92

(91)

wherefunction U(x) hasthe form:

1 (1+x2)2
(x): In 2
4(4+Ra) 4Ra+(x2+l—Ra)

(93)
2
N “Ra arctanl-i—x —Ra.
4(4+Ra) 2\ Ra

The function H (92), (93) is obviously the first
integral of the equations system (89), (90) and can be
found by the direct integration of this system. With
C,=0,C,=0 the function U(x) is limited above and
below aswell. That iswhy the section of this hamiltonian
by the constant H = H,, gives closed periodical tra-
jectories on the phase plane (X, P), which correspond
to the helical vortex structuresin real space. Examples of
phase picturesfor Ra=2 and Ra=3 arepresentedin
Figures 1 and 2. (As was already mentioned with
Ra =2 the instability is essentially non linear). With
C,=0,C, =0 there is only one dlliptical point on the
phase plane. Closed trajectories correspond to the perio-
dical non linear vortex structures. Despite the fact that

Figure 1. Phase picture of the dynamical system with Ra = 2,
C. = C, = 0. The bold line shows the phase trajectory which
comes out of the point (1,1) and after the “time” Z = L
comes back to the same point. This trajectory presents the
stationary solution of the boundary problem with the rigid
boundariesin the layer whosethicknessisL =z
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s F 7R

Figure 2. Phase picture of the dynamical system with Ra =3,
C, =0, C, = 0. The bold line shows the trajectory which
corresponds to the stationary solution of the boundary pro-
blem with rigid boundarieswithz=0and z=L.

we are mostly interested in a boundless problem, it
should be noted that thick closed lines correspond to the
non linear structures which are aso the solutions of the
boundary problem with arigid boundary:

W,=0,W,=0,z=0,z=1L,

where L isthe period over z phase trajectory, which
gets out with z =0, from point W, =0,#, =0 and gets
back to the same point with z = L. The space structures
of periodical solutions are presented in Figures 3-5. If
one of the constants, for instance C,#0, then one
hyperbolic point appears on phase picture. For instance,
phase pictures with C, =0.1 are presented in Figure 6.
An example of a periodical nonlinear vortex structure
which corresponds to the closed trgectory on a phase
planewith Ra =2, isgivenin Figure 7. In this case the
linear instability is obviously absent. The solution which
corresponds to the separatrix on Figure 6. is of particular
interest. This solution describes the solitary spiral turn of
the velocity field around theaxe z (soliton): see Figure
8. Moving away from the soliton the velocity field
becomes constant. This kind of soliton was not known
earlier. The interesting particularity of this soliton is the
fact that it is also the solution for the boundary problem
with free boundaries. For this boundary problem [28]:

%_8W2 _0
oz 0Oz

on the fluid boundary. In addition, boundaries must be at
a great distance from soliton, much bigger than the
soliton’s characteristic dimensions. In this case at great
distances from soliton: #; — Const,”, — Const. In a
case when there are two constants C,; #0,C, #0 two
hyperbolic and two €elliptical points appear on the phase
picture. The example of this phase picture with C; = 0.1,

Copyright © 2013 SciRes.
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Figure 3. Helical vortex structurewith Ra=3,C; =0, C, =
0.
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Figure 4. Helical vortex structurewith Ra=1.8,C, =0, C, =
0.

—_—
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Figure 5. Example of a vortex structure with Ra = 1.6, C; =
0,C,=0.

C, = 0.1 is shown in Figure 9. As above, the periodic
vortex structures correspond to closed trajectories around
elliptical points. Localized solutions (solitons) corre-
spond to the separatrix on Figure 9. Since the separatrix
connects two different hyperbolic points the soliton has
now two different limiting values, with z — o0, Figure
10. This soliton is called a kink. Therefore, spiral kinks
correspond to the separatrix in Figure 9. These kinks are
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C,=0.1,C,=0
W, |
1.5
2.0+
2.54
Ra=2 /\\
3.0 { : ;
W, 1.5 1.0 0.5 0.0

Figure 6. Phase picture of a dynamical system with Ra = 2,
C1=0,C,=0.
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Figure 7. Helical vortex structurewith Ra=2,C; =0, C,=0.
This structure corresponds to the closed trajectory around
the elliptical point in Figure 6.
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Figure 8. Helical soliton which corresponds to the sepa-
ratrix in Figure6withRa=2,C;=0,C,=0.

also solutions for the boundary problem with free
boundaries. Thereby in the hamiltonian scheme which
we consider there are three kinds of solutions: periodical
waves, solitons and solutions moving to infinity. The last
ones are not of interest from the point of view of the
problem of large cale instability stabilization. In con-
clusion it should be remembered that the system of the

Copyright © 2013 SciRes.

2.0+

2.5+

Figure 9. Phase picture of the dynamical system with Ra = 2,
C; = 01, C, = 0.1. One can see the appearance of two
hyperbolical and two elliptical points.
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Figure 10. Helical kink which corresponds to the separatrix
in Figure9.

Equations (82), (83) is closed. The velocity field W,,W,
determines the pressure B, and contributes to the equ-
ation for temperature (32). Closure of this equation is
made in much the same way as closure for velocity.
Nevertheless this equation is secondary and here we do
not give the result of this closure.

6. Conclusions and Discussion of Results

In this work, it is shown that in fluid with stable strati-
fication a large scale instability appears under the action
of small scale helical force. The result of the instability is
the generation of vortex structures of the Beltrami type.
These vortices have the characteristic vertical dimension
L > 2, and a horizontal dimension much bigger than
the vertical one. Since the vertical component of the
velocity W_ isequa to zero in the main approximation
and the stratification is stable, then the found instability
does not have any relation to convection. The structure of
the equation which describes the instability in linear
approximation is the same as the equation of « -effect
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or more precisely as the equation of AKA-effect. But as
opposed to the AKA-effect, « is function of Rayleigh
number. This means the instability vanishes in the non
stratified fluid. As a result, instability generates plane
spiral waves with circular polarization (Beltrami run-
away). With increases in amplitude, the instability and its
stabilization are described by non linear theory. With
Ra=2 the instability has an essentialy non linear
character from the very beginning. Stationary equations
appear to be hamiltonian that is why they are arich set of
periodical spiral vortex structures. Notwithstanding that,
attention in this work was essentially paid to the boun-
dary free problem, it should be noted that some perio-
dical solutions turn out to be solutions for the boundary
problem with rigid boundaries. One of the most interest-
ing to note is the stationary soliton and kink, which
correspond to the separatrix on the phase plane. Thisisa
soliton of the new type. In real space, it describes one
spira turn of the velocity vector field around the axe z.
The soliton and kink are also the solutions for the boun-
dary problem with free boundaries.

Let us return to the formulation of the problem. The
external helical force f, isgiven in the explicit formin
order to make calculations more transparent. Strictly
speaking, its explicit form is not very important for the
existence of « -effect itself. It is only necessary that
rot f, ~ f,. The external force could be chosen statisti-
cally with specifying the correlator:

fif, =A(z,r)6,, +B(r,r)rr, +G(7,r)€,,",

i"m imn"n*

(94)

It is fundamental that the last term G (z,r) (helicity)
in this correlator is not equal to zero, otherwise the « -
effect is absent. Nevertheless the statistical method is
more bulky since it requires us to specify the functions
A,B,G and calculations of rather complicated integrals.
If we specify the external force dynamically, then avera-
ging over fast oscillations is performed easily. In conclu-
sion, it should be noted that temperature stratification is
necessary for the existence of the instability. Previously
it was supposed that this stratification was stable. How-
ever, the formulae for the large scale instability also
admit the transition to an unstable fluid stratification, i.e.
allow the substitution Ra — —Ra. But one has to re-
member that the number Ra has to be sufficiently
small so that the usual convective instability should not
appear in the system.
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