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ABSTRACT 

In this work, we consider the effect of a small-scale helical driving force on fluid with a stable temperature gradient 
with Reynolds number . At first glance, this system does not have any instability. However, we show that a large 
scale vortex instability appears in the fluid despite its stable stratification. In a non-linear mode this instability becomes 
saturated and gives a large number of stationary spiral vortex structures. Among these structures there is a stationary 
helical soliton and a kink of the new type. The theory is built on the rigorous asymptotical method of multi-scale de-
velopment. 
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1. Introduction 

The importance of the generation processes of large-scale 
coherent vortex structures in hydrodynamics is well 
known. A large-scale vortex means a vortex which is 
generated by a much smaller scale force or in turbulence 
with a characteristic scale much smaller than a vortex 
scale. When these coherent structures appear in small- 
scale turbulence, they play a key role in transfer pro- 
cesses (see for instance [1]). Numerical and laboratory 
experiments [2-7], confirm the existence of coherent 
vortex structures, especially for two-dimensional or quasi 
two- dimensional turbulence [7-9]. Notably, they are well 
observed in geophysical hydrodynamics like various 
cyclones in the planet’s atmospheres [10,11]. Sometimes 
the appearance of large scale vortex structures is accom- 
panied by the inverse cascade of energy both in the 
three-dimensional case (AKA-effect [12]), and in quasi- 
two-dimensional cases as well [3-6,8,9]. It may be said 
that the inverse cascade itself is also one of the mecha- 
nisms of the generation of large-scale structures [4,13]. 
The generation of large scale slow movements by small 
scale external forces in a rotating stratified fluid was also 
studied numerically in works [14,15]. One of the impor- 
tant large scale instabilities in non compressible fluid is 

the AKA-effect (Anisotropic Kinetic Alpha effect) which 
was found in work of Frisch, She and Sulem [16]. In this 
work, a large scale instability appears under the impact 
of small scale force in which parity is broken (with zero 
helicity). In the following work [17] the inverse cascade 
of energy and the non linear mode of instability sa- 
turation were studied. Despite the fact that the broken 
parity is a more general notion than helicity, it is the 
helicity rot 0 v v  which is the widespread mechanism 
of broken parity in hydrodynamical flow. For instance, 
the turbulence becomes helical when rotation and stra- 
tification are taken into account [18-20]. Therefore one 
may consider the small-scale helical force the para- 
metrization of this turbulence. The injection of a helical 
external force into hydrodynamic systems was conside- 
red in many works ([21-24]), and as a result it was un- 
derstood that a small-scale turbulence able to generate 
large-scale perturbations cannot be simply homogeneous, 
isotropic and helical [25], but must have additional spe- 
cial properties. In some cases, the existence of large- 
scale instability was shown (vortex dynamo or hydro- 
dynamic  -effect). (In the magneto hydrodynamics of 
conductive fluid the  -effect is well known [26] ). In 
particular, in work [22] it is shown that large-scale 
instability exists in convective systems with small-scale 
helical turbulence. These works as well as the results of *Corresponding author. 
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numerical modelling are described in detail in review 
[27], which are focused essentially on the possible appli- 
cation of these results to the issue of tropical cyclone 
origination. 

In this work we consider the theory of large scale 
vortex generation in stratified fluid under the impact of 
small scale helical force. Let us suppose that there is a 
stable temperature stratification in fluid. To this fluid 
with the Reynolds number  let us apply a small- 
scale, helical, external force. This force will maintain in 
the fluid small-scale helical fluctuations of velocity field 

1R

 rot 0 v v  We consider the fluid as being boundless. 
At first glance there are no instabilities at all in this 
system. However, we show in this work that despite sta- 
ble stratification, a large-scale vortex instability appears 
in the fluid which leads to the generation of large-scale 
vortex structures. The theory of this instability is built 
rigourously using the method of asymptotical multi-scale 
development similar to what was done in work of Frisch, 
She and Sulem for the theory of AKA-effect [16]. But 
the equations which we solve differ considerably from 
equations in work [16]. In addition to linear theory, we 
also develop and study in details the non-linear theory of 
this instability saturation. We devote special attention to 
stationary, non-linear, periodical vortex structures which 
appear as a result of the saturation of found instability. 
Among these structures, there is a spiral vortex soliton 
and kink of the new type. In order to distinguish our 
instability from others in stratified fluid we consider the 
case of stable stratification. Nevertheless our theory 
permits the examination of unstable stratification as well 
by means of substitution  However, in this 
case we have to consider that the usual convective 
instability is eliminated and the Raleigh number is rea- 
sonably small. 

.RaRa 

Our work is arranged as follows: in Section 2 we set 
forth the formulation of the problem and equations for 
stable stratification in Boussinesq approximation; in 
Section 3 we examine the principal scheme of multi scale 
development and we give secular equations. In Section 4 
we describe external force properties and calculate the 
Reinolds stress. In Section 5 we discuss the non-linear 
stage of the instability and its saturation. We study the 
equations of non-linear instability and its stationary 
solutions. It is shown that due to the hamiltonian nature 
of these equations a large number of stationary vortex 
structures of spiral type appear. We also demonstrate that 
there are solutions in the form of the spiral soliton and 
the kink of new type. The obtained results are discussed 
in the conclusion in Section 6. 

2. Main Equations and Formulation of the 
Problem 

Let us consider the equations for the motion of non 
compressible fluid with a constant temperature gradient 

in the Boussinesq approximation: 

  0
0

1
;P g T

t
 




        

V V V V l F   (1) 

  .z

T
T T V

t
 A


    


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 0, 0,0,1  V l
z

—is the unit vector in the direction of 
axis ,  —is the thermal expansion coefficient,  

0d

d

T
A

z
 —constant equilibrium gradient of temperature,  

Const, 0A A  . 0 0const. T A    l
,F div

 The buoyancy 
force and the external force 0  0  are taken 
into account in Euler Equation (1). Let us note the force  

0F

0F  in the form: 0 0 0
0 0

,
x t
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t


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
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0 0
0 0

,
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where 0 0v
R




 —Reynolds number on the scale 0 , 

Pr



 —is Prandtl number. We introduce the dimen- 

sionless temperature 
0

T
T

A
 , and obtain the equations  

system: 
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0 ,
Pr

1 1
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Ra
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t R
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Here 
4
0 Ag

Ra
 


 —is Rayleigh number on the scale  

0 . Further for the purpose of simplification we will 
consider the case Pr 1 . We pass to the new tempera-  

ture 
T

T
R

 , and obtain: 
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  0 ,R P Ra
t


      


V V V V l FT   (3) 

  .z

T
T V R T

t

        
V            (4) 

div 0.V  

Although we essentially pay attention to stable tem- 
perature stratification, unstable stratification can also be 
considered in the frame of this scheme. We use dimen- 
sionless writing of the equation more typically for the 
problem of convection. 

We will consider as a small parameter of asymptotical  

development the Reynolds number 0 0=
v

R



1 on the  

scale 0 . The parameter  will be considered neither 
big nor small, without any impact on development sche- 
me (i.e. outside of the scheme parameters). 

Ra

Let us examine the following formulation of the 
problem. We consider the external force as being small 
and of high frequency. This force leads to small scale 
fluctuations in velocity and temperature against a back- 
ground of equilibrium. After averaging, these quickly 
oscillating fluctuations vanish. Nevertheless, due to small 
non-linear interactions in some orders of perturbation 
theory, non zero terms can occur after averaging. This 
means that they are not oscillatory, that is to say large 
scale. From a formal point of view these terms are 
secular, i.e. create conditions for the solvability of the 
large scale asymptotic development. So, to find and 
study the solvability equations i.e. the equations for large 
scale perturbations is actually the purpose of this work. 
Let us designate further the small scale variables as 

 0 0 0,x t x , and large scale ones as  , X T X . The  

derivative 
0
ix




 is designated i , the derivative 
0t




 is  

designated , and derivatives of large scale variables  t

are 


 
X

 and TT


 


 respectively (No confusion  

misunderstanding occurs between the temperature and 
the large scale time since time is argument and tempera- 
ture is function). To construct a multi scale asymptotic 
development we follow the method which is proposed in 
work [16]. We could start by establishing linear theory 
for instability development and after that pass to non 
linear theory, but as the non linear theory is technically 
less bulky, so we construct the non linear theory directly 
and then consider the linear limit. 

3. The Multi-Scale Asymptotical 
Development 

Let us search the solution for Equations (3) and (4) in the 
following form: 

     1 0 0

2 3
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1
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 

     

    
3 2 13 2

2 3
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,

1 1 1

P t
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RR R

P x R P P X R P R P

    

     

x

 (7) 

First of all, we develop space and time derivatives in 
Equations (3) and (4) into asymptotical series of the 
form: 

2 .ii R
x


    


              (8) 

4 .t TR
t


    


              (9) 

Substituting these expressions into the initial Equ- 
ations (3) and (4) and gathering together the terms of the 
same order, we obtain the equations of multi scale 
asymptotical development and write down the obtained 
equations up to order  inclusive. Let us present the 
algebraical structure of the asymptotical development of 
the Equations (3) and (4) for the non linear theory (we 
will not write indices because they can be restored 
trivially at any moment). In the order  there is only 
the equation: 

3R

3R

 3 3 30P P P      .             (10) X

In the order 2R  we have the equation : 

 2 2 20P P P      .X             (11) 

In the order 1R  we get a system of equations: 

 

2
1 1

1 3 1 1 ,
t

z

W W

P P RaT l W W
 

1   

  

       

1

  (12) 

2
1 1 1 1 ,z

tT T W T W                  (13) 

1 0.W   

The system of Equations (12) and (13) gives secular 
terms: 

3 1 0.zP RaT l                 (14) 

1 0.zW                    (15) 

In zero order  we have the following system of 
equations: 

0R

 
 

2
0 0 1 0 0 1

0 2 0 ,

t

z

v v W v v W

P P RaT l F





      

     
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 2
0 0 1 0 0 1 .0

z
tT T W T v T v              (17) 

0 0.v   

These equations give one secular equation: 

2 20 CoP P     nst.           (18) 

Consider the equations of the first approximation R: 

 
   

2
1 1 1 1 1 1 0 0

1 1 1 1 1 .

t

z

v v W v v W v v

W W P P RaT l

 

  

     

     
    (19) 

 
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2
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t

z
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W T v

 

 

      

  
      (20) 

1 1 0.V W                         (21) 

From this system of equations follow the secular 
equations: 

1 0,W                   (22) 

 1 1 1,W W P              (23) 

 1 1 0.W T  

;

0

0



             (24) 

The secular Equations (22)-(24), are clearly obviously 
satisfied for velocity field geometry: 

      1 1 1 1

1 1

, ,0 ;

0 Const.

x yW W Z W Z T T Z

P P

   

 


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  (25) 

In the second order , we obtain equations: 2R


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t
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2
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 

 
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 (27) 

2 0 0.v v                                 (28) 

It is easy to see that in the order  there are no 
secular terms. 

2R

Let us come now to the most important order . In 
this order we obtain equations: 

3R
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0T

(29) 

3 1 0.v v                     (30) 

From this we get the main secular equation: 

 0 0 1;
i i k i

T kW W v v P     i      (31) 

 0 0 0.k
T kT T v T                (32) 

In these equations we do not write the law index  1 . 
Besides there are secular equations:  

0, 0,i z
iW W               (33) 

  1,
k i

k W W P  i          (34) 

  0.k
k W T                 (35) 

The Equations (33)-(35) are satisfied in the previous 
geometry: 

     1, ,0 ,and, Const.x yW W z W z P    (36) 

There is also an equation to find the pressure 3P : 

3 .z zP RaTl                (37) 

These formulae show that when one knows the 
velocity it is possible to restore temperature and pressure. 

4. Calculations of the Reynolds Stresses 

It is clear that the essential equation for finding the non 
linear alpha-effect is Equation (31). In order to obtain 
these equations in the closed form we need to calculate  

the Reynolds stresses  0 0
k i

k v v . First of all we have to  

calculate the fields of zero approximation 0  from the 
asymptotical development in zero order we have the 
equations: 

kv

2
0 0 0 0 0 ,i i k i i

t k iv v W v P RaT l F         0
i

k k

k

 (38) 

2
0 0 0 0 .k

t kT T W T v l                  (39) 

Let us introduce the operator : 0D̂
2

0
ˆ .k

tD W                (40) 

Using the operator , we write down Equations (38) 
and (39) in the form: 

0D̂

0 0 0 0 0
ˆ ,i

iD v P RaT l F   i i       (41) 

0 0 0
ˆ k kD T v l                   (42) 

Eliminating the temperature and pressure from Equa- 
tion (41) we obtain: 

 2
0 0

ˆ ˆ ˆ .k p k i
ik ipD P Ral l v D F   0 0       (43) 

Here  is the projection operator: îpP


2

i p
ip ipP 

 
 


 

Dividing this equation by , we can write it in the 
form: 

2
0D̂
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0
0

0

,
ˆ

i
k

ik

F
L v

D
                (44) 

where  is the operator: ikL

2
0

ˆ
.

ˆ
ip

ik ik p k

P
L Ra l

D
  l         (45) 

It is easy to make sure by a direct check that the 
inverse operator  has the form: 1

kjL

1

2
0

ˆ
.

ˆ ˆ
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kj kj

pq p q

RaP l l
L

D RaP l l
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
      (46) 

1 .ik kj ijL L                     (47) 

Consequently the expression for the velocity and 
temperature ,  takes the form: 0

kv 0T

0
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ˆ
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ˆ ˆ ˆ

j
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v
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
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 0

0 2 2
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ˆ
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T

D RaP l l D
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    (49) 

In order to use these formulae we have to specify in 
explicit form the helical external force 0

jF . The most 
simple and natural way is to specify the external force as 
deterministic. (Certainly, it is possible to specify the 
external force in a statistical way with specifying random 
field correlators, but this leads to more bulky calcula- 
tions). As it is known helicity means that 0 0rot 0F F . 
Let us specify the force  like so: 0F

 0 0 2 1 1 2cos sin cos sin ,f         F i j k  (50) 

where 

1 0 0 2 0 0,k x t k y t,              (51) 

or 

  
1 1 0 2 2 0

1 0 2 0

,

1,0,0 ; 0,1,0 .

t

k k

      
 

k x k x
k k 

,t
      (52) 

It is evident that 0 0 0rot k F F , where  —is the 
single pseudo scalar, i.e. helicity is equal to: 

2
0 0 0 0rot 0.k  F F F          (53) 

The formulae (50) and (52) allow us to easily make 
intermediate calculations, but in the final formulae we 
obviously shall take 0 0 0, ,f k   as equal to one, since 
external force is dimensionless and depends only on 
dimensionless space and time arguments. The force (50) 
is physically simple and can be realized in laboratory 
experiments and in numerical simulation. 

It is easy to write down the force (50) in complex form. 
It is evident that: 

  
   

*
0 1

2 2

exp i exp i

exp i exp i ,

  1

 

  

  

F A A

B B
      (54) 

where vectors A  and B  has the form: 

  0 0i , i ,
2 2

f f
    A k j B i k       (55) 

and 1 2, 
D
 are given by formulae (52). The effect of the 

operator 0  on proper function  has 
obviously the form: 

ˆ  exp i it  kx

    0 0
ˆ ˆexp i i , exp i iD t D t    kx k kx  , where 

 0 ,D  kˆ  is: 

    2
0

ˆ , iD k   k kW .         (56) 

From this it is evident that: 

    2
0 1 1

ˆ , iD k    k k W 1 ,       (57) 

  0 1 0
ˆ ˆ,D D   k 1, , k          (58) 

    2
0 2 2

ˆ , iD k    k k W 2 ,      (59) 

  0 2 0
ˆ ˆ,D D   k 2, k

4

.          (60) 

From the formulae (48) and (54), follows that the field 
 is composed of four terms:  

where 
0
kv 0 01 02 03 0

k k k k kv v v v v   

   

   
1

02 01 04 03

i
01 2

0 0 1 0 0 1

, ,

ˆ
e ,

ˆ ˆ ˆ, ,

k k k k

j
km m jk

kj

v v v v

RaP l l A
v

D RaPll D
 

 

 
 

 
  

    k k

 (61) 

   
2i

03 2
0 0 2 0 0 2

ˆ
e .

ˆ ˆ ˆ, ,

j
km m jk

kj

RaP l l B
v

D RaPll D
 

 

 
  

    k k
 (62) 

As was stated earlier, in scalar operators  one can 
take 

0D̂
  0 1 21, 1,0,0 , 0,1,0   k k

ˆ 1llP
 . Then taking into 

account that  , we obtain: 

   
 

0 0 1 1 1

0 0 1 1

ˆ , 1 i 1

ˆ ,

D W

D D



 

    

 

k

k

,D
      (63) 

   
 

0 0 2 2 2

0 0 2 2

ˆ , 1 i 1

ˆ , .

D W

D D



 

    

 

k

k

,D
     (64) 

Here we introduced the following notations:  

1 2,x yW W W W  . Taking into consideration these for- 
mulae we can write down the velocities  in the form: 0

kv

1i
01 2

1 1

ˆ
e ,

j
km m jk

kj

RaP l l A
v

D Ra D
  

 
 

  
          (65) 

2i
03 2

2 2

ˆ
e .

j
km m jk

kj

RaP l l B
v

D Ra D
   

 
  

  
         (66) 

Copyright © 2013 SciRes.                                                                                OJFD 



A. TUR, V. YANOVSKY 69

In order to calculate the Reynolds stresses we have 
first of all to calculate the expression: 

0 0 01 01 03 032 Re .k i k i k iv v v v v v  
 

         (67) 

Taking into account the formula (65

  

), we obtain: 

   
01 01 01 01

1 2 2 2
11 1

22

2 2 2 22
11 1 1

2
.

k i k i

k i k i

k i zk i i kz

v v v v

D RaD D

Ra l l Al A l ARaA

D RaD D D Ra

 

 





 

 
  

  

) 

Similarly taking into account formula (66), we obtain: 

1ki k i i kz l A l ARaA
T A A A A


   

       (68

   
03 03 03 03

2 2 2
22 2

22

2 2 2 22
22 2 2

2
.

k i k i

k i zk i i kz

v v v v

D RaD D

Ra l l Bl B l BRaB

D RaD D D Ra

 

 





 

 
    

 

It is clear that the components  and  are of 
interest. To begin with we consid o ponents of 
the tensor 

2

1ki k i i kz
k i k i

l B l BRaB
T B B B B


   

        (69)

 
3
1

iT
er the c

 
3
2
iT

m

 
3
1

iT . 

   31
3 1 3 11 2

1

1
T A A A A

D

  

    (70) 
3 1 3 1

2 2 2
1 11

0,
A A A ARa

D Ra D RaD

 



 
   

  

since . 3 1 3 1 0A A A A  

   32
3 2 3 21 2

1

3 2 3 2
2 2 2

1 11

1

.

T A A A A
D

A A A ARa

D Ra D RaD

 

 



 

 
  

  

     (71) 

The first bracket in the (71) is equal to zer
why: 

o, which is 

 
 2 2

1 132
1 2 22

i
.

4

Ra
T

D D Ra
 


           (72) 

1 1

D D

Now consider the component :  
32
2T

   32
3 2 3 22 2

2D

B B B 3 2 3 2
2 2 2

1 12

1

0,

T B B B B

BRa

D Ra D RaD

 





 

   
  

     (73) 

as far as . Consider now the component 
: 

3 2 3 2 0B B B B  

 
31
2T

   31
3 1 3 12 2

2

3 1 3 1
2 2 2

2 22

1

.

T B B B B
D

B B B BRa

D Ra D RaD

 

 



 

 
  

  

     (74) 

The fir  formula (74) is equal to zero, 
n: 

st bracket in the
the

 
 2 2

2 231
2 2 22

2 2

i
.

4

D DRa
T

D D Ra

 
 


         (75) 

Taking into account: 

   1 1 14i 1 ,D D W
          (76) 

   

2 2

2 2
2 2 24i 1 ,D D W





  

   

    ,         (77) 
2 2

1 1 2 21 1 ; 1 1D W D W     

    
2 2 22

1 1 2 41 11 ,D Ra W W Ra W        (78) 

    
2 2 22

2 2 2 22 4 1 .D Ra W W Ra W        (79) 

The components take the form:    
32 31
1 2,T T  

 

 
      

32
1

1

22 2

1 1 1 1

1
,

1 1 2 4 1

T

Ra W

W W W Ra W




          

 (80) 



 


      

32
2

W 2

22 2

2 2 2 2

1
,

1 1 2 4 1

T

Ra

W W W Ra W




           

(81) 

Now, when we have these tensors components, w
obtain closed equations for velocity. 

5. Large-Scale Instability and Non Linear 
Vortex Structures 

Let us write down in the explicit form the equations for 
non linear instability: 

e can 

 

 
      

2 31
1 1 2

1

T z zW W T

Ra W

  

 2 ,



22 2

2 2 2 21 1 2 4 1
z

W W W Ra W
 

           

 

(82) 

 

 
      

2 32
2 2T z zW W T    1

1

22 2

1 1 1 1

1
.

1 1 2 4 1
z

Ra W

W W W Ra W


 

          

 

(83) 


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It is easy to see that with small values of the variables 
the Equations (82) and (83) are reduced to linear 

describe the linear stage of instability. 

1W         (84) 

2W          

1 2,W W  
equations and 

2
1 2 ,T Z zW W     

2
2 1T Z zW W     (85) 

 22

4 2

4

Ra
Ra

Ra
  
 


           (86

Here 

) 

  
ons

designates the single pseudo scalar because 
expressi  ,Z y ZW W   x

e Equations (84) and (85) differ from equation of 
ffect [16] by the coefficient 

are components of
Th
AKA-e

 rotW . 

  only, but the im- 
portant difference between our equations and equations 
of AKA e ce of th y-eff ct is the presen e Ra leigh number in 
  coefficient. As a result: 0 

d (85)
arge 

1 2  in 

 in 
 obv

the f

th
. 

instability whi scale vortex structures. 
Choosing t

         (87) 

e non stratified 
fluid The E

h

quations (84) an
ch generates l

e velocities ,W W

iously contain an 

orm: 

 1 exp sin ,W A T kz  

 2 exp cos ,W B T kz           (88) 

we obtain the instability increment 2 ,z zk k    i.e..  
2

max ,
2

  with the .
2

k


  The formulae (87) and  

(88) describe a spiral vortex structure (circularly pola- 
ed plane wave) with an am e which increases ex- 

ponentially with time. These waves are sometimes called 
Beltrami runaways since for them there is no usual 
hydrodynamical interact 0 W . W

riz plitud

ion ith W 2Ra   
the linear instability vanishes but the non

If the external force has a zero h
 linear remains. 
elicity, then the 

 -term vanishes in accordance with the
 Reynolds stress tensor [25]. Helicity is taken into 

ure itself. If
perature nishes

 general theorem 
of

tem
account in the external force struct  the 

gradient va , then it is evident that the 
 -term also

ationa s is o

 vanishes. 
It is clear that with the increasing 1 2,W W  of the non 

linear terms decrease and the instability becomes satu- 
rated. As a result of the development and stabilization of 
instability, non linear vortex helical structures appear. 
The study of the form of these st  structure f 
interest. For that purpose we take (82), (83)  

ry

1 2 0T TW W   . Integrating these equations over z , 
 obtain: 


we

   
122 2 2
,

1 4 1

X RaP
C

z P P P Ra


 

       

   (89) 

   
222 2 2
.

1 4 1

P RaX
C

z X X X Ra


  

      

  (90) 

Here new variables are introduced  

1 2 1 21 , 1 , ,

 

X W P W C C    —are integration constants. 
The system of Equations (89) and (90) can be write down 
in the hamiltonian form: 

, .
X H P H

z P z X

   
  

   
          (91) 

Here the variable  plays the role of time 
hamiltonian 

z and the 
H  has t e form: h

    1 2 .3H U P U X C P C X C        (92) 

where function  U x  has the form: 

   
 
 

 

22

4 4

1
arctan .

4 4 2

x

Ra

x Ra

Ra Ra





The function 

22

2

11
ln

4 1
U x

Ra x Ra

Ra




  

 


  (93) 

H  (92), (93) is obviously the first 
in n

e d of this system. With 
tegral of the equatio s system (89), (90) and can be 

found by th irect integration 

1 20, 0C C   th ction e fun  U x  
y the sectio

is limited ab
at is wh n of this ham

ove and 
iltonian below as well. Th

by the constant 0 H H , gives clos
 

ed periodical tra- 
jectories on the phase plane ,X P

s in 
, which correspond 

pace. Examples of 
 fo

to the helical vorte
phase pictures

x
r Ra

 structure
2

real s
  and Ra 3

 


ready
 are presented in 

d mentioneFigures 1 an
2Ra

 2. (As was al d with 
  th

1 20, 0C C
e instab y is essen on linear). With ilit tially n

 
phase plane. C

 th tical point on the 
l pond to the perio- 

di

ere is on
raject

ly one 
ories corres

ellip
osed t

cal non linear vortex structures. Despite the fact that  
 

 

Figure 1. Phase picture of the dynamical system with Ra = 2, 
C1 = C2 = 0. The bold line shows the phase trajectory which 
comes out of the point (1,1) and after the “time” Z = L 
comes back to the same point. This trajectory presents the 
stationary solution of the boundary problem with the rigid 
boundaries in the layer whose thickness is L = z. 
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Figure 2. Phase picture of the dynamical system with Ra = 3, 
C1 = 0, C2 = 0. The bold line shows the trajectory which 
corresponds to the stationary solution of the boundary pro- 
blem with rigid boundaries with z = 0 and z = L. 
 
we are mostly interested in a boundless problem, it 
should be noted that thick closed lines correspond to the 
non linear structures which are also the solutions of the 
boundary problem with a rigid boundary: 

L

where is the period over phase trajectory, which 
gets out th , from poi  and gets 
back to the nt with 

1 20, 0, 0, ,W W z z     

L  
 wi

z  
nt 0z 

same poi
1 20, 0W W 

.z L  The space st
ed in Figures 3

ance 1 0C  , th
se picture. For 
e presented in 

linear vort
d trajectory on a 

Figure 7. In th

see 

ructures 
of peri cal ns are -5. If 
one of e c s, for en one 
hyperb  poi rs on instance, 
phase pi ures Figure 6. 
An ex ex structure 
which c rres phase 
plan  is case the 

Figure 

m [28]: 

odi
 th
olic

ct
am

o
e with

 solutio
onstant
nt appea
 with 

ple of a pe
ponds

2 , i

pr
i

1

n i

esent
nst

 pha
 ar
 non
ose
n 

1 0.C 
riodical

 to the cl
s giveRa

linear instability is obviously absent. The solution which 
corresponds to the separatrix on Figure 6. is of particular 
interest. This solution describes the solitary spiral turn of 
he velocity field around the axe z  (soliton): t

8. Moving away from the soliton the velocity field 
becomes constant. This kind of soliton was not known 
earlier. The interesting particularity of this soliton is the 
fact that it is also the solution for the boundary problem 
with free boundaries. For this boundary proble

1 2 0
W W

z z
 

 
 

on the fluid boundary. In addition ndaries must be at 
a great distance from soliton, much bigger than the 
soliton’s characteristic dimensions. In this case at great 
distances from soliton: 1 2Const, ConstW W  . In a 
case when there are two constants 1 20, 0C C   two 
hyperbolic and two elliptical points appear on the phase 
picture. The example of this phase picture with C1 = 0.1,  

 

Figure 3. Helical vortex structure wit Ra = 3, C1 = 0, C2 = 
0. 
 

h 

 

Figure 4. Helical vortex structure with Ra = 1.8, C1 = 0, C2 = 
0. 
 

 

Figure 5. Example of a vortex structure with Ra = 1.6, C1 = 
0, C2 = 0. 
 
C2 = 0.1 is shown in Figure 9. As above, the periodic 
vortex structures correspond to closed trajectories around 
elliptical points. Localized solutions (solitons) corre- 

ow two different limiting values, with , Figure 
10. This soliton is called a kink. Therefore, spiral kinks 
correspond to the separatrix in Figure 9. These kinks are  

 

, bou

spond to the separatrix on Figure 9. Since the separatrix 
connects two different hyperbolic points the soliton has 
n z 
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igure 6. F Phase picture of a dynamical system with Ra = 2, 
C1 = 0, C2 = 0. 
 

 

Figure 7. Helical vortex structure with Ra = 2, C1 = 0, C2 = 0. 
This structure corresponds to the closed trajectory around 
the elliptical point in Figure 6. 
 

 

Figure 8. Helical soliton which corresponds to the sepa- 
ratrix in Figure 6 with Ra = 2, C1 = 0, C2 = 0. 
 
also solutions for the boundary problem with free 
boundaries. Thereby in the hamiltonian scheme which 
we consider there are three kinds of solutions: periodical 
waves, solitons and solutions moving to infinity. The last 
ones are not of interest from the point of view of the 
problem of large cale instability stabilizatio  In con- 
clusion it should be remembered that the system of the  

n.

 

Figure 9. Phase picture of the dynamical system with Ra = 2, 
C1 = 0.1, C2 = 0.1. One can see the appea

yperbolical and two elliptical points. 
rance of two 

h
 

 

Figure 10. Helical kink which corresponds to the separatrix 
in Figure 9. 
 
Equations (82), (83) is closed. The velocity field 
determines the pressure 

1 2,W W  

1P  and contributes to th
ation for temperature (32). Closure of this eq
made in much the same way as closure for locity. 

n of Results 

In this work, it is shown that in fluid with stable strati- 
fication a large scale instability appears under the action 
of small scale helical force. The result of the instability is 
the generation of vortex structures of the Beltrami type. 
These vortices have the characteristic vertical dimension 

e equ- 
uation is 
ve

Nevertheless this equation is secondary and here we do 
not give the result of this closure. 

. Conclusions and Discussio6

0zL 

velocity 

 and a horizontal dimension much bigger than 
the vertical one. Since the vertical component of the 

zW  
e stratifi

 ha
tion
atio

is equal to zero in the main approximation 
cation is stable, then the found instability 

ve any relation to convection. The structure of 
 which describes the instability in linear 
n is the same as the equation of 

and th
does not
the equa
approxim  -effect 
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or more precisely as the equation of AKA-effect. But as 
opposed to the AKA-effect,   

ab
lt, in

pola
litu
y no

nni

tures. 

 be

aries. On
y sol

is function of Rayleigh 
number. This means the inst ility vanishes in the non 
stratified fluid. As a resu stability generates plane 
spiral waves with circular rization (Beltrami run- 
away). With increases in amp de, the instability and its 
stabilization are described b n linear theory. With 

 the instability has an essentially non linear 
r from the very begi ng. Stationary equations 

 to be hamiltonian that is why they are a rich set of 
cal spiral vortex struc Notwithstanding that, 

 in this work was essentially paid to the boun- 
ee problem, it should  noted that so e perio- 

h rigid bound e of the most interest- 
note is the stationar iton and kink, which 

his is a
In

n of the problem. The 
rm in 
ictly 

2Ra 
characte
appear
periodi
attention
dary fr

o 

m
dical solutions turn out to be solutions for the boundary 
problem wit
ing t
correspond to the separatrix on the phase plane. T  
soliton of the new type.  real space, it describes one 
spiral turn of the velocity vector field around the axe z. 
The soliton and kink are also the solutions for the boun- 
dary problem with free boundaries. 

Let us return to the formulatio
external helical force 0f  is given in the explicit fo
order to make calculations more transparent. Str
speaking, its explicit form is not very important for the 
existence of  -effect itself. It is only necessary that 

0 0rot f f . The external force could be chosen statisti- 
cally with specifying the correlator: 

     , , , .i m im i m imn nf f A r B r rr G r r         (94) 

It is fundamental that the last term  ,G r  (helicity) 
in this co lator is not equal to zero, otherwise the rre  - 
effect is absent. Nevertheless the statistical method is 
more bulky since it requires us to specify the functions 

, ,A B G  and calculations of rather complicated integrals. 
If we specify the external force dynamically, the  avera- 
ging over fast oscillations is performed easily. In conclu- 
sion, it should be noted that te perature stratification is 
necessary for the existence of the instability. Previously 
it was supposed that this stratification was stable. How- 
ever, the formulae for the large scale instability also 
admit the transition to an unstable fluid stratification, i.e. 
allow the substitution .Ra Ra  But one has to re- 

 that the number Ra  has to be sufficiently 
small so that the usual convective instability should not 
appear in the system. 
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