J. Software Engineering & Applications, 2010, 3, 1067-1079
doi:10.4236/jsea.2010.311126 Published Online November 2010 (http://www.SciRP.org/journal/jsea)

o5 Scientific
(> J
+* Research

A Tile Logic Based Approach for Software
Architecture Description Analysis

Aicha Choutri*, Faiza Belala', Kamel Barkaoui®

'LIRE Laboratory, University Mentouri of Constantine, Constantine, Algeria; 2CEDRIC, Conservatoire National des Arts et
Meétiers, Paris, France.
Email: aichachoutri@gmail.com, belalafaiza@hotmail.com, kamel.barkaoui@cnam.fr

Received July 13™, 2010; revised August 31%, 2010; accepted September 3, 2010.

ABSTRACT

A main advantage of Architecture Description Languages (ADL) is their aptitude to facilitate formal analysis and veri-
fication of complex software architectures. Since some researchers try to extend them by new techniques, we show in
this paper how the use of tile logic as extension of rewriting logic can enforce the ability of existing ADL formalisms to
cope with hierarchy and composition features which are more and more present in such software architectures. In or-
der to cover ADL key and generic concepts, our approach is explained through LfP (Language for rapid Prototyping)
as ADL offering the possibility to specify the hierarchical behaviour of software components. Then, our contribution
goal is to exploit a suitable logic that allows reasoning naturally about software system behaviour, possibly hierarchi-

cal and modular, in terms of its basic components and their interactions.

Keywords: Tile Logic, LfP Model, Software Architecture, Hierarchical Composition

1. Introduction

Software Architecture (SA) has emerged as a principle
method of understanding and developing high level
structures of complex software systems. Nowadays, SA
artifacts are becoming the foundation for building
families of such systems. Then, the problem of ensuring
as carly as possible the correctness of an SA occupies
increasing importance in the development life-cycle of
software products. Formal approaches should be used to
describe software architectures and express their dynamic
evolution so that one could reason on them.

Over past two decades there has been considerable
research devoted to modeling and analysis of software
architectures; among other, architecture description
languages (or ADL) as suitable notation for SA formal
specification. Their common advantage is their impressive
body representation of evidence about the utility of
architectural modeling and analysis [1]. Some of them
attempted to provide behavioral modeling and analysis
via numerous complementary behavioral formalisms.
However, the most of applied approaches share the goal
of defining mismatches in component composition.

Recently, some researchers in industry and academia
try to extend these ADL, by new techniques to analyze

Copyright © 2010 SciRes.

and validate architectural choices, both behavioral and
quantitative, complementing traditional code-level analysis
technique [2].

According to this motivation, we show through this
paper how the tile logic as extension of rewriting logic
can support ADL artifacts allowing and enforcing formal
reasoning on software system behavior and dynamics. In
particular, we show that tile system is closely joined to
important inherent aspects of ADL, especially hierar-
chical behavior of components and compositional one.
We explain our proposed approach concretely through
LfP architecture description language [3] as ADL offering
the possibility to specify the hierarchical behavior of soft-
ware components (in terms of LfP-BD diagrams) in
addition to their structure that can be also of hierarchical
nature (LfP-AD).

Tile Logic [4] has been introduced for modular
description of open, distributed and interactive systems. It
constitutes a rewriting logic [5] extension taking into
account rewriting with side effects and rewriting
synchronization. So, it supports modular specification of
concurrent system behaviors, their interaction and
synchronization semantics thanks to its particular rules of
rewrite called tiles. These rules can be instantiated with
special terms in a given context. The main idea behind this

JSEA

1068 A Tile Logic Based Approach for Software Architecture Description Analysis

logic is to impose dynamic restraints on terms to which a
rule may be applied by decorating rewrite rules with
observations ensuring synchronizations and describing
interactions.

Authors of [6,7] have proposed a mapping approach of
LfP architectural description into rewriting logic in order
to formalize its semantics and exploit this latter for
hierarchical verification of some properties using model
checking. The interest of such approach is the well care
in purely formal way of concurrency in a distributed
configuration through executable specification.

In this paper, we use Tile logic strength the results
obtained in [6,7] related to formalization and verification
of LfP software architecture description via rewriting
logic and its Maude language. Hence, owing to tile logic
elements, we can deal with and preserve naturally the
hierarchical structure and the hierarchical behavior of
SA. Besides, executable specification of tile systems
may be naturally defined by mapping tile logic into
rewriting logic which is a semantic basis of several
language implementations. In particular the proposed
model implementation requires developing a set of
strategies to control rewriting by discarding compu-
tations that do not correspond to any deduction in tile
logic.

In the remainder of this paper, Section 2 situates our
work among analogous ones in order to better surround
its problematic. Section 3 is devoted to summarize basic
concepts of tile logic. In Section 4, we present our
approach to map an architectural description into tile
logic. It is then explained and illustrated in Section 5
through LfP language. So, a successful classic case study
of Producer/Consumer system is considered to show how
we proceed to clutch tile logic to software architecture
description language. Some comments evaluating our
contribution are presented in Section 6. Last section
concludes our work and gives its perspectives.

2. Contribution Setting

It is not a novel idea to give a formal specification for
software architecture. Most of existing ADL concentrates
on providing a precise mathematical semantics for
software architecture description of a system. All well
known semantic formalisms for ADL give limitation
when software architectures deal not only with structural
aspects but also with behavioral ones. Besides, hierarchy
concept, synchronization and reconfiguration ones
restrict the use of these ADL formalisms. In the case of
Rapid [8] for example, based on POSets (Partially
Ordered event Sets), only architectural components
interactions are formalized in addition to the architectural
elements. Also, Wright [9] uses a subset process algebra
named CSP (Communicating Sequential Processes)

Copyright © 2010 SciRes.

formal notation to describe partially components abstract
behavior in a simple manner. Recent related works focus
on defining rewriting logic based model for some
existing ADL. For example, authors in [10] define a
mapping of CBabel concepts into rewriting logic. A
particular attention has been given to specify syntactic
constructs semantic of this ADL example. LfP [3]
integrating UML notations and state/transition automaton
has been considered by the work of to associate to each
of its views (LfP-AD and LfP-BD diagrams) possibly
hierarchical an appropriate semantic meaning based on
rewriting logic too. In fact, rewriting logic has been
recognized as a semantic framework to model software
system architecture. However, complexity of such
systems structure and behavior induces rewriting logic
flat models that do not preserve compositional and
hierarchical features of ADL, so they are often difficult to
manage. In this paper, we will show that tile logic based
model, even if it is more complex to grasp, is much more
appropriate and efficient.

Tile logic is an extension of rewriting logic, supporting
modular description of concurrent system behaviors, and
their interaction and synchronization semantics. These
assets delegate it as being the most suitable formalism to
support semantic of more complex ADL, namely those
having the possibility to describe hierarchical and mo-
dular specification of distributed and open architectural
applications such as LfP descriptions.

In particular, both static and dynamic views of LfP
architecture are naturally translated according to the tile
system structure (space), and its computation flow (time),
preserving hierarchical and compositional nature of this
architectural description. Furthermore, this tile model
may be then successfully exploited to formal reasoning
on such descriptions and their analysis.

3. Tile Logic

In this section, we recall some fundamental concepts of
the underlying semantic framework, namely tile logic.
More interested readers may consult [4].

Tile Logic has been introduced for modular description
of open, distributed and interactive systems. This
formalism reminiscent to term rewriting and concurrency
theory, constitutes a rewriting logic [5] extension taking
into account rewriting with side effects and rewriting
synchronization. Although, ordinary format of rewrite
rules allows state changes expression and concurrent
calculus in a natural manner, it lacks tools to express
interactions with the environment, i.e., rewrite rules can
be freely instantiated with any term in any context. The
main idea behind tile logic is to impose dynamic
restraints on terms to which a rule may be applied by
decorating rewrite rules with observations ensuring

JSEA

A Tile Logic Based Approach for Software Architecture Description Analysis 1069

synchronizations and describing interactions.

The obtained rules are then called tiles, defining the
behavior of partially specified components, called
configurations, in terms of actions related to their input
and output interfaces (the possible interactions with the
internal/external environment).

Each tile, having one of the forms in Figure 1, ex-
presses that initial configuration s evolves to the final
configuration t via the tile o, producing the effect b,
which can be observable by the rest of the system. Such a
rewriting local step is allowed, only if the sub-compo-
nents of s (its arguments) evolve to the sub-components
of t producing an effect a, which acts as a trigger for a
application.

Arrows s and t of the tile o (in Figure 1) are called
configurations (system states). They are algebraic
structures equipped with operations of parallel and
sequential composition. Each system configuration has
both input and output interfaces responsible of system
interactions with the environment.

Arrows a and b decorating tile a (in Figure 1) are also
algebraic structures, they define observable -effects
(actions) for coordinating local rewrites through confi-
guration interfaces (input and output ones).

In general, configurations and observations give rise to
two categories having the same class of objects (inter-
faces). The former (horizontal so-called configuration)
defines effects propagation; the latter (vertical so-called
observations) describes state evolution. Then, double cate-

x— 3 5y
a: S—Z)t or al a lb
Wﬁz

X, y: initial and final input interfaces
w, z: initial and final output interface

Figure 1. A tile representation.

gory, the superposition of these two categories of cells,
should be considered as a natural model for tile system.

Definition 1. A4 tile system is a 4-tuple T = (H, V, N, R)
where H, V are monoidal categories with the same set of
objects Oy = Oy, N being a set of rule names and R:
N— H x Vx Vx H a function where for each o in N, if
R(a) = (s, a, b, 1), then s:x =y, a:x ->w, by >z and t:
w — z, for suitable objects x, y, z and w; with x, y the
input interfaces and, w, z the output interfaces.

Aucxiliary tiles set may be necessary to specify consis-
tent interfaces rearrangements. A standard set of infer-
ence rules (Figure 2) allows building larger rewriting
steps, by composing tiles freely via horizontal (through
side effects), vertical (computational evolution of con-
figuration) and parallel (concurrent steps) operations.

In the recent literature, tiles representing an extension
of the SOS specification approach are designed for deal-
ing with open states. They seem apt for many current
applications [11-13]. Indeed, they have been used with
success to model in detail several application classes such
as coordination languages (triggers and effects represent
coordination protocols) and software architecture styles
[13,14]. This paper contributes to another meaningful and
interesting application of Tile logic, it generalizes the
approach proposed in [15] by defining a common formal
model based on tile logic for architecture descriptions.

4. Tile Logic for Architecture Description
Languages

Tile logic has been exploited as a common semantic
framework to define both abstract software architectures
and their behaviors [16]. Generally, each component in a
distributed system specification is described by a set of
external ports, ensuring interactions with the environment
and an internal behavior, specified by a set of tiles, to

R(a)=(s,a,b,1) t:x >yeH

Rules generating the basic tiles, horizontal and vertical identities:

a:x—>zelV

a
a:s—t

idn t —X ¢
b y

Horizontal, vertical and parallel compositions

. a
idr - x——z
a

a:s%ﬂ ﬁ;hi)f a:s%)tﬁ:t—cm as Z tf:h ; I
- — —.
axpBisih —Ss 4 f LGN . a®c
¢ a‘ﬂsg’b;d (X@ﬂ.s@h—)b®d t®f

Figure 2. Inference rules.

Copyright © 2010 SciRes.

JSEA

1070

a deliver component functionalities. It is defined by a tile
system, where objects of the two categories correspond to
component interfaces. Vertical category (observations)
defines its possible actions corresponding to component
required/provided services and horizontal category gen-
erates all component possible configurations. Gathered
together via a set of tiles, horizontal and vertical catego-
ries define expected behavior of the underlying compo-
nent. Starting from a basic set of tiles and deduction rules
of this logic, system global behavior defined as a coordi-
nated evolution of its subcomponents, is naturally de-
duced. We take in what follows all these ideas formulated
through a generic semantic framework applicable for
ADL either their semantics. It will be then applied on a
specific case study.

4.1. Modeling Process and Fundamental
Definitions

Since in existing ADL, a complete software architecture
description has to consider static architectural configura-
tion and dynamic evolution (behavior) of software system,
our proposed model follows the same separation of con-
cerns. Two distinct, but not completely independent
views are considered. For the first one, expressed by a set
of existing components, connectors (often considered as
particular components) and connection topology, we
associate a tile system integrating these components (and
connectors) definitions. In the second view, state transi-
tion system, which is usually devoted to define compo-
nent and system behavior, is extended and formally de-
fined in the context of tile logic.

Then, a software component, that could be either a
computation component or a connector, may have two
definitions according to its granularity:

o A partial (external) description, associated mainly to
its interface, evolving an abstract data type for each
component type (sort, operations and their pro-
perties).

o A detailed (internal) description given by a tile
system formalizing both structure and behavior
component. Computation or storage component may
be either primitive or composite. For later case, the
associated tile system is a composition of a set of
hierarchical sub tile systems. If the component is a
connector (communication entity), the associated tile
system defines the corresponding communication
protocol.

In the following, we present the four essential steps of

tile model generation for any software architecture
description:

Step 1: Each software architectural Configuration in-
volves an associated tile system Configuration—TS defini-

Copyright © 2010 SciRes.

A Tile Logic Based Approach for Software Architecture Description Analysis

tion. Its horizontal and vertical categories are formed (see
Definition 2) by the involved architectural elements
(components, connectors, ports, etc.).

e Morphisms of the horizontal category formalize
connection points (in Configuration) that are
characterized by essentially components names and
interfaces, in terms of algebraic terms.

e On the other hand, morphisms of the vertical
category (observations) formalize provided/required
components services.

e Both categories have the same set of objects that are
algebraic terms representing hidden sub components
models that will be described at the next lower level.

e The set of tiles expresses configurations evolution
and its propagation over all sub-components. These
tiles formalize binding connection. Some auxiliary
tiles may be added to these basic tiles in order to
deal with some particular ADL connection aspects
like dynamic connection (components synchroni-
zation) as it is the case for parameterized dynamic
connection tiles defined in [16].

Definition 2. 4 tile system based model Configura-
tion-TS for a given architectural configuration Con-
figuration = (Components, toplogy-connection) is de-
fined by the 4-tuple (HE"™, yCoTs, NConfTs - pConfTs)
such that:
e OS5 is composed of all components abstract
representation deduced from their partial description.

e Morphisms of H"™ are formed upon algebraic
terms specifying component interfaces intervening in
connection points.

o Morphisms of V"™ are simplified to design only
two types of services: MsgCset, MsgCget provided
or required by a component of name C under a
message form.

o NS5 the set of tile names. Each one is obtained
by combining a computation component name with a
communication component name. If there is no
explicit connector (i.e., case of dynamic connector),
the second name will be that of other computation
component connected to the first one.

° RConf-TS-_ NConf-TS N HConf-TS x VConf-TS x VConf-TS
x H"™S is a function defining tiles that formalize
binding connection deduced from configuration
topology-connection. Two general forms of tiles can
be defined here:

MsgClset '

1C2 : sl ———+—>5l
Cica:s MsgC2get S (1)

MsgC2get '

C2C3:52———————>52
S T MsgCsser ()

JSEA

A Tile Logic Based Approach for Software Architecture Description Analysis 1071

s1, s1°, 52, s2° are configurations, i.e. morphisms of
HS 1, C3 are computation component name,
C2 is a connector name and MsgClset, MsgC2get
are possible observation, i.e. morphisms of H""™™.

Step 2: For each computation component type in the
present software architecture configuration, we associate
a particular tile system (Definitions 3 and 4).

o If it is the case of a composite computation
component (Composite-Component), then the tile
system in question Component-Configuration-TS
(Definition 3) formalizes its architectural configu-
ration and has the same definition of Configu-
ration-TS. Hence, it is necessary to perform all the
process steps while adopting appropriate notations to
avoid any confusion.

Definition3. Tile system Composite-Component-TS mod-
eling composite component of any ADL architecture de-

scription, is defined in the same way as for configura-
tion-TS, by the 4-tuple (HC””"”CC”"/‘;TS, yCompCConf1S
NCompCszf-TS’ RCompCConf-TS).

o If the software component is primitive (Primitive-
Component), its associated tile system Primitive-
Component-TS (Definition 4) is conceived on the
basis of state transition system elements which is
usually used to describe the component behavior.
The set of common objects of its both categories
(horizontal and vertical) is composed of all
elementary architectural elements of the component
like attributes, ports, constraints, or other eventual
annotations. Horizontal (configurations) category
formalizes in this case component states, vertical
(observations) one specifies all its possible transition
triggers given in terms of labels. Two general tile
forms are then defined for either simple transition or
hierarchical one.

Definition4. Tile system Primitive-Component-TS mod-

eling a primitive component software architecture de-

scribed by a given state transition system with respect to

a given ADL, is defined by the 4-tuple (H™™<*"rom" TS,

VPrimComponent—TS’ NPrimComponent-TS, RPrimComponent—TS) su Ch th at:

is composed of algebraic terms
associated to all architectural elements of the
component.

o Morphisms of are formed upon
algebraic definitions of states in terms of well
defined tuples.

o Morphisms of are formed upon
algebraic definitions of all existing transition labels.

o NPrimComponentIS yo the set of tile names. Each one is
either a transition name or defined to formally

° OanComponent-TS

HPrimComponent- 78

VPrim Component-TS

Copyright © 2010 SciRes.

identify an unnamed transition.

RPrthomponent-TS: NanComponent-TS N HPrthomponent—TS x

VPrimComponent-TS x VPrimComponent—TS XHPrimComponent-TS is
the function defining tiles that formalize all tran-
sitions.

Two general tile forms are proposed for either simple

(tile3) or hierarchical (tile4) such as [and id denote

rsl—L e 3)
idH
I
t:sl s2 4)

t—-TS—trigger

label transition and identity morphism respectively
while t-TS-trigger denotes transition effect that acts
as trigger for hidden transition tile system.

e Finally, If the component is a communication one
(Communication-Component), its tile system model
is defined in the same way as for primitive compu-
tation component.

Step 3: Since transitions in the state/transition model that
describes primitive component may be hierarchical, they
hide other sub state transition systems. So, recursively we
associate to each hierarchical transition, at the next lower
level, a novel tile system as we have proceed in the pre-
vious step.

Step 4: Step 3 is repeated until all transitions become
simple.

It is clear that our approach for defining a formal
model based on tile logic for any ADL is quite generic
and too general as it provides concise and complete se-
mantics definitions for all important common ADL con-
cepts, mainly the hierarchy. Indeed, this may reduce con-
siderably the semantic gap between ADL noted before.
We will show through the instantiation of this modeling
process to the LfP language case, that the resulting model
covers entirely and naturally its formal semantics while
preserving its modular and hierarchical structure. There-
fore, we resolve the usual problem (flat model) still posed
in previous ADL formalization approaches (such as those
based on Petri nets and rewriting logic models).

4.2. Case of LfP

LfP (Language for Prototyping) [2,16] allows describing
both control and structuring aspects of a SA. It is re-
garded as a language having characteristics of a coordi-
nation language and an ADL.

4.2.1. LfP Software Architecture

LfP, like all other ADL, provides a concrete syntax to
describe SA with a declarative style of components as-
sembly. It offers two distinct and complementary views

JSEA

1072

to allow a complete description of software system. Ar-
chitectural view uses LfP-AD diagram to define system
architectural configuration and its components, behav-
ioral view specification deals with system dynamic be-
havior in terms of hierarchical behavior diagrams:
LfP-AD. LfP constructs are well defined in [17]. In what
follows, we recall the most used ones in our approach
context.

Architecture diagram (LfP-AD): It is L{P static model
description defining the participating components to a
system definition, their links and all system global decla-
rations. More precisely, LfP-AD describes system soft-
ware architecture as a graph whose nodes are the soft-
ware entities (LfP classes) and their link edges are com-
munication entities (LfP media). The interaction point’s
connection (LfP ports) allows these entities to be assem-
bled. Any connection has to respect binding contracts
(LP binders).

Behavior diagram (LfP-BD): it specifies L{P class be-
havior, or a communication protocol associated to Lf{P
media or a method execution flow belonging to LfP class
or LfP media. Formally, this diagram type expresses
component (class or media) behavior through state/tran-
sition automaton. Communication between component
automatons is achieved by message queues. Since LfP
allows the description of hierarchical behaviors, two
types of transitions are defined in LfP-BD behavior
model: simple transitions and hierarchical ones (method
transitions, block transitions).

These latter, encapsulate other behaviors also ex-
pressed by sub-LfP-BD that may be reused. A transition
can be provided with annotations, a guard or a post con-
dition which must be checked.

Research works around LfP semantics formalization

Reformulation
Enrichement

Pivot model

UML model

Formal d

A Tile Logic Based Approach for Software Architecture Description Analysis

are all concentrated on Petri nets formalism in order to
use their well known analysis tools. But in practice, these
models have already proved their insufficiencies. Indeed,
the hierarchical behavior greatly expressed in LfP com-
ponents is not preserved by this translated model and
even those based on rewriting logic, recently introduced
by [5,6].

4.2.2. Tile Model for LfP

Figure 3 summarizes graphically basic LfP methodology
defined in [3] to which our approach (bold part) is trans-
planted as a new possible alternative formal semantic
model emphasizing both software system compositional
behavior and hierarchical one. LfP software architecture
description is naturally translated into set of tile systems.
Each tile system allows the formal specification of an LfP
software component (LfP-AD, class, class instance, me-
dia) or sub-component one (methods, block transitions)
including the declaration of their constraints.

The proposed generic model is instantiated to LfP lan-
guage with respects to its methodology different views
(Functional, properties and implementation). This will
help us then to give more precise and complete definition
of all different LfP architectural elements semantics in
Tile logic based framework. Besides, executable specifi-
cation of this new LfP model may be naturally defined by
mapping [18,19] tile logic into rewriting logic which is a
semantic basis of Maude language [20] and will extend
the proprieties view in LfP methodology, by the specifi-
cation and formal analysis of other behavior constraint
kinds, strongly related to LfP features (synchronization,
hierarchical behavior, etc.). Therefore, we apply to L{P
software architecture description, the construction tile
model process presented previously, step by step while
highlighting the hierarchy preservation.

Tile logic
based model

veritication

g
. s
Petrinet o _
based model = K]
S
(N E
— =[e
Veritication
Program

Refinement

Figure 3. LfP methodology extension.

Copyright © 2010 SciRes.

JSEA

A Tile Logic Based Approach for Software Architecture Description Analysis

Table 1. Mapping LfP Concepts into Tile Logic.

LfP elements Tile model elements

LfP-AD LfP-AD-TS

Class Sub-sort of component sort

Media Sub-sort of component sort
Binder Sorts, Configurations, Binder-tiles

Global declarations Global definitions

Component LfP-BD
Local declarations

Component sort, Component-TS
Objects of horizontal and vertical catego-

ries
1. Class LfP_BD 1. Class-TS
States Configurations

Transition Name-Tile

Objects (interfaces or particular con-
figurations)

Simple-Transition-Tiles
Method-Tiles, Method-TS

Entailed Block-Tiles, Block-TS

Transition Name
Annotations, guards,
post-conditions
Simple transitions
Method transitions
Block transitions
Transition actions Observations
2. Media LfP-BD 2. Media-TS: Particular case of Class-TS

Similar to LfP-BD class ~ with Simple-Transition-Tiles only.

except: no media type

and no method transition

Table 1 summarizes the mapping of most LfP
concepts into tile logic. It helps to dress the tile model.

LfP-AD Tile Based Model (Step 1):

Architectural view specified in LfP by an architecture
diagram (LfP-AD) is formalized by a configuration tile
system LfP-AD-TS as defined in Definition 2, enriched
with global definitions as translation of global
declarations of the LfP-AD (sorts for types, operations for
constants and static instances). So, this Tile system is
noted by the instantiated tuple (HAD'TS, VAD'TS, N D'TS,
R* D'TS) such as:

e 0"" is composed of component algebraic terms
defined according to signatures as presented in
(Figure 4). These terms are in fact abstraction of
hierarchical component tile systems (Component-T5S)

o H*PS (configurations) formalize binders as they
support the binding connection point’s semantics of
LfP components. Their definition is based on
signature given in (Figure 5).

o VP75 (observations) formalize LfP message sending
and receiving. Each one may have one of the
following form:

MsgCset: send message by class C.
MsgCget: receive message by class C.
Msg-Mget: receive message by a media M.
MsgMset: send message by media M.

1073

o N7 ig set of tile names. Each one is defined by

combining associated component and media names
or the reverse noted in general: B-CM, B-MC.

o RADTS. NAD-TS _ ppAD-IS | pAD-TS | pAD-TS | ppdD-TS 5o

a function to formalize binding contracts. For

synchronous case, each resulting tile has one of the

following forms with respect to general tiles (1) and

(2) defined in the tile model construction process.
Where:

Conf-BCM2 = binder-CM(c, p, m, i1, i2+1, synch, po),

Conf-BMC1 = binder-MC(m, ¢, p, i1, 12, synch, po),

Conf-BMC2 = binder-MC(m, c, p, i1, i2+1, synch, po),

c: class-name, p: port, m: media-name, iland i2: inte-
ger that represent binder capacity and message number
respectively and po: policy.

For example, the tile B-CM expresses connection be-
tween any object of a class ¢ that sends a message
through its port p and the media m which must perform
its routing towards a receiving class object. This connec-
tion can be accomplished only during execution with
class and media instances, by horizontal composition
(synchronization) of this tile with: on the one hand, a
sender tile having MsgCset as effect, and a media tile
having MsgMget as trigger, on the other hand. By analogy,

Sorts name, interface

Operations
... : string — name
(....,...): port, msg — interface

Sort component

SubSort computeComponent, connector < component
Operations

... : name, interface — component

NameC: component — name

InterfaceC: component — interface

Figure 4. Signatures for component algebraic definition.

Sort binder
Operations
Binder-CM: class-name, port, media-name, integer, integer,
mode, policy — binder
Binder-MC: media-name, class-name, port, integer, integer,
mode, policy — binder
Where
-Arguments of integer sort correspond respectively to binder
storage capacity de and the number of messages.
-Sorts mode and policy are defined by:
Synch, Asynch: — mode
FIFO, LIFO, BAG: — policy

Figure 5. Signature of bine.

B-CM : binder-CM(c, p, m, il, 12, synch, po) ® (i2 < il)M—>

B-MC : binder-MC(m, c, p, il, 12, synch, po) ® (i2+1 <il)

MsgCset 4 inder-CM(c. p, m, il, i2, synch, po) (5)
sg.M.get
MsgMset 4 inder-MC(m, ¢, p, i1, i2+1, synch, po) (6)
Msg.C.get

Copyright © 2010 SciRes.

JSEA

1074 A Tile Logic Based Approach for Software Architecture Description Analysis

tile B-MC expresses a connection between media and
any receiving class instance.

LfP-BD Tile Based Model (Step 2):

Through behavioral view, we generate Component-TS
tile system to each LfP-BD diagram defined by the tuple
(HComponent-TS, VComponent-TS’ NComponent-TS, RComponent-TS as
given by Definition 4. Particularly, Component-TS would
be either Class-TS or Media-TS and for simple and con-
cise presentation we consider only primitive component
which may have hierarchical behavior.

o OComronent TS i composed of semantic elements
expressed as algebraic terms that correspond to
component architectural elements like attributes,
local declarations, or annotations defined in the
component LfP-BD.

o Hmroner TS (configurations) formalizes states of the
underlined LfP-BD.

o pComposant—(ohservations) formalizes all transition
actions (from simple action to sequential compo-
sition of actions, call method, perform block).

TS - s
o NCOmPonentIS s the set of transition names.
° RComponent-TS., NComponent-TSﬁ‘ HComponent-TS x VComposant-TS

x peomposantTS . ppComponentTS ig o function formalizing
transitions in terms of tiles having forms (3) or (4).
In any form of tile, initial configuration could be a
composition of initial transition state with eventual guards
or precondition, as well as final configuration could be a
composition of resulting transition state with eventual
post-condition. For both cases, the used operator is ®.

Hierarchical Transition Formalization (Step 3):
All tiles associated to LfP hierarchical transitions,
method transitions and bloc transitions, have to be in fact
entailed by sub tile systems Method-TS and Bloc-TS
associated to the hidden sub-LfP-BD respectively.

Bloc-TS = (HBlock-TS’ VBlock-TS, NBlock—TS’ RBlock-TS) is de-
fined recursively in the same way as Component-TS
replacing component name by LfP block name.

But, the tile system defined for a method transition is
given by the tuple Method-TS = (H""4TS, pmethodIs
]vaethod-TS, Rmethod—TS) such that:

o O""dTS is composed of semantic

associated to attributes and annotations.

° Hmethod—TS, Vmethod—TS and Nmethod—TS are deﬁned in
similar way as for HCmPorentIs pComponentIS gy g
NComporentIS respectively.

° Rmethod—TS: NBD—TS» HBD—TS x VBD-TS x VBD-TSXHBD-TS 7s
is a function formalizing only simple transitions as
defined in the underlined sub-LfP-BD in terms of
tiles of form (3).

elements

Step 4: Lastly, step3 must be repeated with respect to the

Copyright © 2010 SciRes.

number of sub LfP-BD specified in LfP architecture
description.

5. Case Study: Simple Client-Server
Application

The aim of this section is to illustrate the proposed ge-
neric semantic model concepts to a classical client-sever
(CS) architectural application example and show that tile
logic provides effectively a powerful semantic frame-
work for LfP description language in particular and for
any ADL in general.

5.1. CS LfP Model

The architectural view (LfP-AD) of our application
stated in Figure 6 contains three components: two
classes “Client” and “Server” connected via a media
named “MsgPassing”. Connexion is represented by in-
terposing binders (messages queues with multiplicity and
interaction semantics noted by annotations) at media
binding ports level.

We will present a part of the whole LfP specification,
example sufficient to deal with all architectural and be-
havioural LfP concepts mainly modular and hierarchical
ones. We only give server class behaviour (Figure 7).
The corresponding LfP-BD defines concurrent execution
of actions requested by the client. It consists of three
states BEGIN, S1, END and four hierarchical transitions
init, start, worker and daemon.

The sub-LfP-BD (right of Figure 7) describes meth-
ods and blocks invoked by various associated hierarchi-
cal transitions. As it is shown in the figure, we have pre-
sented only three sub-LfP-BD. From top to bottom, the
first one describes the init method role by a simple tran-
sition T1 (pseudo code). Both other sub-L{fP-BD describe
roles of block transitions worker (by a not detailed sim-
ple transition) and daemon (by two possible not detailed
execution paths: transition methods exec and nofify),
respectively.

5.2. CS Tile Model

With respect to LfP definition instantiation given pre-
viously, we deduce a set of hierarchical tile systems
(CS-AD-TS, Client-TS, Msg-Passing-TS, Server-TS, Start-TS,
init-TS, Daemon-TS, worker-TS,...) for our client-server
application following especially the proposed genera-
tion steps.

Stepl:
Global definitions :
Opérations MaxClient: —5
MaxServeur: —1
CS-AD-TS = (HCS-AD-TS’ VCS-AD-TS, NCS-AD-TS’ RCS-AD-TS)

where:

JSEA

A Tile Logic Based Approach for Software Architecture Description Analysis 1075

/ MaxClient is 5

MaxServeur is 1

% C]icnt.]s‘ Server.P %
Msg] assing.P1 MsgPassjfig P2
. { \
Client o:r .)MsgPassing)<4—>L>ﬁq» Server
‘/,'// ‘\\ ‘//
1:all all:all
. 1 i 10
: FIFO : FIFO
Class | ! Media

1

1

:

/ il =1 |
N i

’ T1 | cl :=ClientID |

7 1

/) dl :=d :

J/ END :

/ I

7 e T R S o O

/ -

P2:init(r :t-role, ClientID :int, d : opaque)
<clientID :=0>

P1 P2 r
P1:Start()
I T g

X

Server worker /' (@ BEGIN
* <r = "worker" > /// @ |
N :
Seee : END
W BEGIN !
b . ;
[- . U
\ / P1: éxec(d : opaque) P2 : notify()
|
END :
Figure 7. ClienFt-server LfP-BD (CS-LfP-BD).

o O“SAPTS = (Client-TS, Serveur-TS, MsgPassing-TS}. o HOSAPTS = fhinder-ClientMsgPassing (client,
At this granularity level, elements of this set are name client.P, Msg-Passing, 1, i2, synch, fifo), binder-
of the tile systems modeling L{P classes involved in MsgPassingServer (MsgPassing, server, server.P, 10,
the LfP-BD diagram. i2, synch, fifo), binder-MsgPassing Client

Copyright © 2010 SciRes. JSEA

1076 A Tile Logic Based Approach for Software Architecture Description Analysis

(Msg-Passing, client.P, client, 1, i2, synch, fifo),
binder-ServerMsgPassing (server, server.P,
MsgPassing, 10, i2, synch, fifo)}. All binder
declarations are considered by this configurations
category (objects of the category).

o VE5APTS — iMsg-ServerGet, Msg-ServerSet, Msg-
ClientGet, Msg-MsgPassingGet, Msg-MsgPassing

B-Client-MsgPassing: binder-ClientMsgPassing(P1) ® (i2 < 1)

binder-ClientMsgPassing(P1") ® (i2 < 1)
with:
P1 = (client, client.P, MsgPassing, 1, i2, synch, fifo)

B-Server-MsgPassing: binder-ServerMsgPassing(P2) ® (i2 < 10)

binder-ServerMsgPassing(P2") ® (i2 < 10)

with:
P2 = (serveur, server.P, MsgPassing, 10, i2, synch, fifo)

B-MsgPassing-Client: binder-MsgPassingClient(P3) ® (i2 < 1)

binder-MsgPassingClient(P3") ® (i2 < 1)

With:
P3 = (MsgPassing, client, Msg-Passing.P, 1, i2, synch,
fifo)

B-MsgPassing-Server: binder-MsgPassingServer(P4) ® (i2 < 10)

binder-MsgPassingServer(P4') ® (i2 < 10)

With:

P4 = (MsgPassing, server, MsgPassing.P, 10, i2, synch,
fifo)

P4' = (MsgPassing, server, MsgPassing.P, 10, i2+1,
synch, fifo)

For example, the tile B-ClientMsgPassing means that
starting from the configuration binder-ClientMsgPassing
(client, client.P, Msg-Passing, 1, i2, synch, fifo) of the
connection point between the Client and the media
MsgPassing, while the number i2 of messages in the
binder file is less than its capacity (equals to one), the
client can set its message (Msg-ClientSet trigger) and so,
the configuration evolves to binder-ClientMsgPassing
(client, client.P, MsgPassing, 1, i2+1, synch, fifo) while
i2 will be incremented. The final effect of this rewriting
(Msg-MsgPassingGet) is necessary to ensure synchroni-
zation of rewrites with a particular tile (having
Msg-MsgPassingGet as a trigger) to be defined into
MsgPassing-TS.

The tile B-MsgPassingServer means that starting from
the configuration binder-MsgPassingServer (MsgPassing,
server, server.P, 10, i2, synch, fifo) of the connection

Copyright © 2010 SciRes.

Set}. Here all observable actions are summarized.
o NAPTS = (B_ClientMsgPassing, B-MsgPassingClient

B-MsgPassingServer, B-Server-Msgpassing}.
o RCS-AD-TS. NCS-AD-TS _ [CS-AD-TS | y/CS-ADTS

CS-AD-TS _, 17CS-AD-TS
AV x H .

For synchronous case, we can define four basic tiles,
with RESAPTS:

Msg-ClentSet
Msg-MsgPassingGet

P1'= (client, client.P, MsgPassing, 1, i2+1, synch, fifo)
Msg-ServerSet

Msg-MsgPassingGet

P2' = (serveur, server.P, MsgPassing, 10, i2+1, synch, fifo)
Msg-MsgPassingSet
Msg-ClientGet

P3' = (Msg-Passing, client, MsgPassing.P, 1, i2+1, synch,
fifo)
Msg-MsgPassingSet

Msg-ServerGet

point between the media Msg-Passing and the Server,
while the number i2 of messages in the binder file is less
than its capacity (equals to 10), the media can set a mes-
sage received from the Client (Msg-MsgPassingSet
trigger) and so, the configuration evolves to binder-
MsgPassingServer (MsgPassing, server, server.P, 10,
i2+1, synch, fifo) while i2 will be incremented. The final
effect of this rewriting (Msg-SeverGet) is necessary to
ensure synchronization of rewrites with a particular tile
(having Msg-ServerGet as a trigger) to be defined into
Server-TS.

By analogy, the meaning of both other tiles can be
casily deduced.

Step 2:

At this granularity level, we associate to each hierarchi-
cal tile systems defined in the previous step a refined
model in terms of tile systems. As we have noted just the
server class LfP-BD is concerned by our approach illus-
tration. Its associated model is given by the following tile
system:

Server-TS = (HServer-TS’ VServer-TS’ NServer-TS RServer-TS)

bl

JSEA

A Tile Logic Based Approach for Software Architecture Description Analysis 1077

where:
OServer-TS

is a set of algebraic terms defining Server class
attributes, guards and post-conditons.

H3™ TS = (BEGINgerveurs Slserveurs ENDserveur}. Objects
of this category correspond to tile systems associated to
LfP-BD states.

Ve TS — (p1: call start (), P2: call init (r: t-role, ClientID:int,

d:opaque), Perform daemon, Perform worker}. These cate-

gory objects (tile systems) are formed around actions or
transitions of the LfP-BD.

NServerTS — fStart, Init, Daemon, Worker}
RServer-TS: N Server-TS SH Server-TS xV Server-TS <V Server-TS x

H Server-TS

As basic tiles example let us consider one method-
transition tile: init tile (7) and one bloc-transition-tile:
worker tile (8).

Msg—ServeurGet

init: BEGIN ® < ClientID =0 —— - >)
Serveur init(r,ClientID,d) serveur

worker: S1 ® < r:="worker' Msg —ServeurGet > ®)
Serveur perform worker serveur

Tile (7) expresses evolution involved by firing action
Msg-ServerGet (tile trigger) of initial configuration
BEGINgepvew composed with a new interface<ClientID ! =
0>(precondition) that is noted by BEGINgwew &
<ClientID ! = 0>. Effect of this tile is materialized by the
init method invocation. We notice that in a lower
abstraction level, we can define a more detailed model
through their associated hidden tile system init-TS (step 3).
The meaning of tile (8) is similar to that of tile (7).

Step 3:
For each transition method or Bloc-transition is associated

init(r,ClientID,d)

a hidden sub-LfP-BD, its corresponding sub-tile system is
naturally deduced preserving hierarchical behaviour view,
let us consider the init-TS and the worker-TS respec-
tively:

inlt'TS — (Hinil—TS’ Vinit—TS’ Nini[-TS’ Rini[-TS)

O™ = {r, clienID, d, ;. ¢, d}

H"T5 = {BEGINyi, ENDji}

VIlTS = fp = 1; ¢;:= ClientID; d;:= d; ! (r®ClientID®d)}
Sequential composition of T1 actions with local context
destroy ! (reClientID®d).

Ninit—TS — {Tl}

RInTS. NJinit-TS _y pyinit-TS y7init-TS | yinit-TS | pyinit-TS

T1: BEGIN. .

Similarly, we define the following detailed tile system:
worker—TS _ (Hworker-TS’ Vworker-TS’ Nworker-TS, Rworker-TS)
QverkerTs = gServer TS | (<= worker}

H"*™S = {BEGINyorkers ENDyoricer} With ENDyorieer = S1
a Server state

T2: BEGIN
worke

6. Comments and Evaluation

The proposed Tile model for a given software architecture
description is in fact a set of hierarchical tile systems.
Each one denotes and formalizes a particular architectural
description element (architecture configuration, composite
component, primitive component). Our defined modeling
process is then applied to a particular ADL, L{P allowing
modular and hierarchical description of not only software
structure, but also its behavior. Besides, LfP language
formalization has some limits provided by the based flat
model since it doesn’t preserve the concepts of hierarchy
and modularity [3,6,7]. Through detailed evaluation of
our approach, we highlight and summarize the important
features of our proposed tile model and that strength
rewriting model defined in [6].

Copyright © 2010 SciRes.

. : END. .
mit 1= r; cy:= ClientID; dj:=d; |(r&ClientID®d) mit

©)

/Worker-TS _ {T2 actions}
Nworker-TS — {Tz}

Rworker-TS: Nworker-TS N Hworker-TS x Vworker-TS % Vworker-TS x

Hworker-TS

perform worker
—

® < r ='worker' >
T

END (10)

T2 actions worker

It is very interesting and very useful to define semantics
of both architectural and behavioural description in the
same formalism. This advantage has been well enough
provided by rewriting logic but, it is even better, if the
formalism in question could be self-sufficient to provide
in a natural way a complete compositional model thanks
to some owner theoretical and practical characteristics.
This extraordinary privilege is exactly and easily offered
by so called tile logic; a particular extension of rewriting
logic. This unique formal support gives good solution to
extend ADL notation at a Meta level that will facilitate
formal analysis and verification.

Tile logic as extension of rewriting logic supports not
only static and dynamic aspects of any ADL, but also
practical ones, such as hierarchical behaviour composi-
tion and synchronization. Its specific inference rules are in

JSEA

1078 A Tile Logic Based Approach for Software Architecture Description Analysis

turn instantiated not freely as for rewriting logic, but in
specific context and then composed implicitly to deduce
further possible behaviours. For example, in the case of
CS-tile model, the effect (call init (r, ClientID, d)) of init
tile (7), defined in Server-TS, will be the trigger of the
tile T1 (9), defined in the sub tile system init-7S. During
a computation, if init tile is executed, the system instan-
tiates T1 automatically (rewriting synchronization rule)
and then applies the horizontal tiles composition (init
+ T1) that involves T1 execution which creates its local
context at the beginning and destroys it at the end. In the
same way, worker tile (8) effect (perform worker), de-
fined in server-TS, triggers the tile T2 (10) defined in the
sub tile system worker-TS. Though these concrete exam-
ples, we remark that compositional and hierarchical be-
haviour semantics are really and naturally considered
with a good rewriting synchronization; what is not so
evident in ordinary rewriting logic.

7. Conclusions

The main contribution of this paper is to propose tile logic
based modelling process of a system architectural
description preserving the modularity and the hierarchy of
initial specification, avoiding its flat form. We highlight
the interest of our approach through LfP description
language since it is equipped with rich notation allowing
modular and hierarchical specification of software
systems.

Tile logic taking into account state changes with side
effects and rewriting synchronization, has been proven as
a high level (Meta) semantic framework, more
appropriate to deal naturally with important ADL features
that are more frequent, namely their structural and
behavioural hierarchy as well as any components
composition or synchronization. This particular advan-
tage is due to the theoretical and practical characteristics
of tile logic: categorical structures, guided rewriting via
observations, flexible formats of configurations, tiles
composition through interfaces, exploitation of three
dimensional views (horizontal for structure, vertical for
behaviour evolution and the third dimension for distri-
bution).

It is obvious that defining ADL semantics within a
complete semantic framework facilitates formal executing
and analyzing of software system specification. This work
enforces and offers new possibilities for formal debugging,
checking and executing the obtained tile logic model by
mapping it into rewriting logic [18,19]. We note here that
the executable specification to be obtained consequently,
has the advantage to discard useless deductions thanks to
guided rewritings in particular. Hence, our proposed
model for LfP architecture description can provide an
executable specification in Maude system [20] and its

Copyright © 2010 SciRes.

practical checking tools [21,22]. Our model also opens
way to several other perspectives such as semantics
enrichment of LfP component behaviour under particular
constraints such dynamic reconfiguration.

REFERENCES

[1] D. Garlan and B. Schmerl, ‘“Architecture-Driven
Modelling and Analysis,” Proceedings of the 11th
Australian Workshop on Safety Related Programmable
Systems (SCS’06), Vol. 69, 2006, pp.3-17.

[2] P. Zhang, H. Muccini and B. X. Li, “A Classification and
Comparison of Model Checking Software Architecture
Techniques,” The Journal of Systems and Software, Vol.
83, No. 5, May 2010, pp. 723-744.

[3] D. Regep, “LfP: un langage de spécification pour
supporter une démarche de développement par
prototypage pour les systémes répartis,” thése de doctorat,
Université de Paris VI, 2003.

[4] R. Bruni, “Tile logic for Synchronized Rewriting of
Concurrent Systems,” PhD. Thesis, Computer Science
Department, University of Pisa, Pisa, 1999.

[51 J. Meseguer, “Conditional Rewriting Logic as a Unified
Model of Concurrency,” Journal of Theoretical
Computer Science, Vol. 96, No. 1, April 1992, pp.
73-155.

[6] C. Jerad and K. Barkaoui, “On the Use of Rewriting Logic
for Verification of Distributed Software Architecture
Description Based LfP,” 16th I[EEE International
Workshop on Rapid System Prototyping (RSP'05), June
2005, pp. 202-208.

[7] C. Jerad, K. Barkaoui and G. Touzi, “A. Hierarchical
Verification in Maude of LfP Software Architectures,”
Lecture Notes in Computer Science, Vol. 4758, 2007, pp.
156-170.

[8] D. C. Lukham, “Rapide: A language Toolset for
Simulation of Distributed System by Partial Ordering of
Events,” DIMACS Workshop on Partial Order Methods
in Verification (POMIV), July 25-26, 1996, pp. 329-358.
http://pavg.stanford.edu/rapide/rapide-pubs.html

[9] R.1J. Allen, “Formal Approach to Software Architecture,”
PhD. Thesis, University of Carnegie Mellon, Pittsburgh,
May 1997.

[10] C. Braga and A. Sztajnberg, “Towards a Rewriting
Semantics for a Software Architecture Description
Language,” Proceedings of the Brazilian Workshop on
Formal Methods, Vol. 95, May 2004, pp. 149-168.

[11] R. Bruni, J. Fiadeiro, I. Lanese, A. Lopes and U.
Montanari, “New Insights into the Algebraic Properties
of Architectural Connectors,” International Federation
for Information Processing, Vol. 155, 2004, pp. 367-380.

[12] R. Bruni, U. Montanari and U. Sassone, “Observational
Congruences for Dynamically Reconfigurable Tile
Systems,” Theoretical Computer Science, Vol. 335, No.
2-3, May 2005, pp. 331-372.

[13] D. Hirsch and U. Montanari, “Consistent Transformations

JSEA

[14]

[15]

[17]

A Tile Logic Based Approach for Software Architecture Description Analysis

for Software Architecture Styles of Distributed Systems,”
Workshop on Distributed Systems, Vol. 28, 1999.

F. Arbab, R. Bruni, D. Clarke, 1. Lanese and U.
Montanari, “Tiles for Reo,” Lecture Notes in Computer
Science, Vol. 5486, 2009, pp. 37-55

A. Choutri, F. Belala and K. Barkaoui, “Towards a Tile
Based LfP Semantics,” Second International Conference
on Research Challenges in Information Science (RCIS
2008), June 2008, pp. 9-16.

C. Bouanaka, A. Choutri and F. Belala, “On Generating
Tile System for Software Architecture: Case of a Colla-
borative Application Session,” /ICSOFT’07, Barcelone,
2007, pp. 123-126.

F. Gilliers, “Développement par prototypage et Génération
de Code a partir de LfP, un langage de modélisation de
haut niveau,” thése de doctorat, Université P. & M. Curie,
Paris, 2005.

Copyright © 2010 SciRes.

[18]

[19]

[20]

[22]

1079

R. Bruni, J. Meseguer and U. Montanari, “Tiling Tran-
sactions in Rewriting Logic,” Electronic Notes in Theore-
tical Computer Science, Vol. 71, April 2004, pp. 90-109.

J. Meseguer and U. Montanari, “Mapping Tile Logic into
Rewriting Logic,” Lecture Notes in Computer Science,
Vol. 1376, 1998, pp.62-91.

M. Clavel, F. Duran, E. Eker, S. N. Marti-Oliet, Lincoln,
P. J. Meseguer and C. Talcott, “Maude 2.0 Manual,” June
2003. http://maude.cs.uiuc.edu

S. Eker, J. Meseguer and A. Sridharanarayanan, “The
Maude LTL Model Checker and Its Implementation,”
Proceedings of the 10th International Conference on
Model Checking Software, 2003, pp. 230-234.

R. Bruni, A. Lluch and U. Montanari, “Hierarchical
Design Rewriting with Maude,” Electronic Notes Theore-
tical Computer Science, Vol. 238, No. 3, June 2009, pp.
45-62.

JSEA

