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ABSTRACT 

A main advantage of Architecture Description Languages (ADL) is their aptitude to facilitate formal analysis and veri-
fication of complex software architectures. Since some researchers try to extend them by new techniques, we show in 
this paper how the use of tile logic as extension of rewriting logic can enforce the ability of existing ADL formalisms to 
cope with hierarchy and composition features which are more and more present in such software architectures. In or-
der to cover ADL key and generic concepts, our approach is explained through LfP (Language for rapid Prototyping) 
as ADL offering the possibility to specify the hierarchical behaviour of software components. Then, our contribution 
goal is to exploit a suitable logic that allows reasoning naturally about software system behaviour, possibly hierarchi-
cal and modular, in terms of its basic components and their interactions. 
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1. Introduction 

Software Architecture (SA) has emerged as a principle 
method of understanding and developing high level 
structures of complex software systems. Nowadays, SA 
artifacts are becoming the foundation for building 
families of such systems. Then, the problem of ensuring 
as early as possible the correctness of an SA occupies 
increasing importance in the development life-cycle of 
software products. Formal approaches should be used to 
describe software architectures and express their dynamic 
evolution so that one could reason on them. 

Over past two decades there has been considerable 
research devoted to modeling and analysis of software 
architectures; among other, architecture description 
languages (or ADL) as suitable notation for SA formal 
specification. Their common advantage is their impressive 
body representation of evidence about the utility of 
architectural modeling and analysis [1]. Some of them 
attempted to provide behavioral modeling and analysis 
via numerous complementary behavioral formalisms. 
However, the most of applied approaches share the goal 
of defining mismatches in component composition. 

Recently, some researchers in industry and academia 
try to extend these ADL, by new techniques to analyze 

and validate architectural choices, both behavioral and 
quantitative, complementing traditional code-level analysis 
technique [2]. 

According to this motivation, we show through this 
paper how the tile logic as extension of rewriting logic 
can support ADL artifacts allowing and enforcing formal 
reasoning on software system behavior and dynamics. In 
particular, we show that tile system is closely joined to 
important inherent aspects of ADL, especially hierar- 
chical behavior of components and compositional one. 
We explain our proposed approach concretely through 
LfP architecture description language [3] as ADL offering 
the possibility to specify the hierarchical behavior of soft- 
ware components (in terms of LfP-BD diagrams) in 
addition to their structure that can be also of hierarchical 
nature (LfP-AD).  

Tile Logic [4] has been introduced for modular 
description of open, distributed and interactive systems. It 
constitutes a rewriting logic [5] extension taking into 
account rewriting with side effects and rewriting 
synchronization. So, it supports modular specification of 
concurrent system behaviors, their interaction and 
synchronization semantics thanks to its particular rules of 
rewrite called tiles. These rules can be instantiated with 
special terms in a given context. The main idea behind this 
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logic is to impose dynamic restraints on terms to which a 
rule may be applied by decorating rewrite rules with 
observations ensuring synchronizations and describing 
interactions. 

Authors of [6,7] have proposed a mapping approach of 
LfP architectural description into rewriting logic in order 
to formalize its semantics and exploit this latter for 
hierarchical verification of some properties using model 
checking. The interest of such approach is the well care 
in purely formal way of concurrency in a distributed 
configuration through executable specification.  

In this paper, we use Tile logic strength the results 
obtained in [6,7] related to formalization and verification 
of LfP software architecture description via rewriting 
logic and its Maude language. Hence, owing to tile logic 
elements, we can deal with and preserve naturally the 
hierarchical structure and the hierarchical behavior of 
SA. Besides, executable specification of tile systems 
may be naturally defined by mapping tile logic into 
rewriting logic which is a semantic basis of several 
language implementations. In particular the proposed 
model implementation requires developing a set of 
strategies to control rewriting by discarding compu- 
tations that do not correspond to any deduction in tile 
logic.  

In the remainder of this paper, Section 2 situates our 
work among analogous ones in order to better surround 
its problematic. Section 3 is devoted to summarize basic 
concepts of tile logic. In Section 4, we present our 
approach to map an architectural description into tile 
logic. It is then explained and illustrated in Section 5 
through LfP language. So, a successful classic case study 
of Producer/Consumer system is considered to show how 
we proceed to clutch tile logic to software architecture 
description language. Some comments evaluating our 
contribution are presented in Section 6. Last section 
concludes our work and gives its perspectives.  

2. Contribution Setting 

It is not a novel idea to give a formal specification for 
software architecture. Most of existing ADL concentrates 
on providing a precise mathematical semantics for 
software architecture description of a system. All well 
known semantic formalisms for ADL give limitation 
when software architectures deal not only with structural 
aspects but also with behavioral ones. Besides, hierarchy 
concept, synchronization and reconfiguration ones 
restrict the use of these ADL formalisms.  In the case of 
Rapid [8] for example, based on POSets (Partially 
Ordered event Sets), only architectural components 
interactions are formalized in addition to the architectural 
elements. Also, Wright [9] uses a subset process algebra 
named CSP (Communicating Sequential Processes) 

formal notation to describe partially components abstract 
behavior in a simple manner. Recent related works focus 
on defining rewriting logic based model for some 
existing ADL. For example, authors in [10] define a 
mapping of CBabel concepts into rewriting logic. A 
particular attention has been given to specify syntactic 
constructs semantic of this ADL example. LfP [3] 
integrating UML notations and state/transition automaton 
has been considered by the work of to associate to each 
of its views (LfP-AD and LfP-BD diagrams) possibly 
hierarchical an appropriate semantic meaning based on 
rewriting logic too. In fact, rewriting logic has been 
recognized as a semantic framework to model software 
system architecture. However, complexity of such 
systems structure and behavior induces rewriting logic 
flat models that do not preserve compositional and 
hierarchical features of ADL, so they are often difficult to 
manage. In this paper, we will show that tile logic based 
model, even if it is more complex to grasp, is much more 
appropriate and efficient. 

Tile logic is an extension of rewriting logic, supporting 
modular description of concurrent system behaviors, and 
their interaction and synchronization semantics. These 
assets delegate it as being the most suitable formalism to 
support semantic of more complex ADL, namely those 
having the possibility to describe hierarchical and mo- 
dular specification of distributed and open architectural 
applications such as LfP descriptions. 

In particular, both static and dynamic views of LfP 
architecture are naturally translated according to the tile 
system structure (space), and its computation flow (time), 
preserving hierarchical and compositional nature of this 
architectural description. Furthermore, this tile model 
may be then successfully exploited to formal reasoning 
on such descriptions and their analysis. 

3. Tile Logic 

In this section, we recall some fundamental concepts of 
the underlying semantic framework, namely tile logic. 
More interested readers may consult [4]. 

Tile Logic has been introduced for modular description 
of open, distributed and interactive systems. This 
formalism reminiscent to term rewriting and concurrency 
theory, constitutes a rewriting logic [5] extension taking 
into account rewriting with side effects and rewriting 
synchronization. Although, ordinary format of rewrite 
rules allows state changes expression and concurrent 
calculus in a natural manner, it lacks tools to express 
interactions with the environment, i.e., rewrite rules can 
be freely instantiated with any term in any context. The 
main idea behind tile logic is to impose dynamic 
restraints on terms to which a rule may be applied by 
decorating rewrite rules with observations ensuring 
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synchronizations and describing interactions. gory, the superposition of these two categories of cells
The obtained rules are then called tiles, defining the 

behavior of partially specified components, called 
configurations, in terms of actions related to their input 
and output interfaces (the possible interactions with the 
internal/external environment).  

Each tile, having one of the forms in Figure 1, ex-
presses that initial configuration s evolves to the final 
configuration t via the tile , producing the effect b, 
which can be observable by the rest of the system. Such a 
rewriting local step is allowed, only if the sub-compo-
nents of s (its arguments) evolve to the sub-components 
of t producing an effect a, which acts as a trigger for α 
application. 

Arrows s and t of the tile α (in Figure 1) are called 
configurations (system states). They are algebraic 
structures equipped with operations of parallel and 
sequential composition. Each system configuration has 
both input and output interfaces responsible of system 
interactions with the environment.  

, 
ould be considered as a natural model for tile system. 

x, y the 
in t interfaces and, w, z the output interfaces.  

on-
fig

 

4. Tile Logic for Architecture Description 

and an internal behavior, specified by a set of tiles, to 

 

sh
 
Definition 1. A tile system is a 4-tuple T = (H, V, N, R) 
where H, V are monoïdal categories with the same set of 
objects OH = OV, N being a set of rule names  and  R: 
N→ H x V x V x H a function where for each α in N, if 
R(α) = (s, a, b, t), then s:x y, a:x w, b:y z and t: 
w  z, for suitable objects x, y, z and w; with 

pu
 
Auxiliary tiles set may be necessary to specify consis-

tent interfaces rearrangements. A standard set of infer-
ence rules (Figure 2) allows building larger rewriting 
steps, by composing tiles freely via horizontal (through 
side effects), vertical (computational evolution of c

uration) and parallel (concurrent steps) operations. 
In the recent literature, tiles representing an extension 

of the SOS specification approach are designed for deal-
ing with open states. They seem apt for many current 
applications [11-13]. Indeed, they have been used with 
success to model in detail several application classes such 
as coordination languages (triggers and effects represent 
coordination protocols) and software architecture styles 
[13,14]. This paper contributes to another meaningful and 
interesting application of Tile logic, it generalizes the 
approach proposed in [15] by defining a common formal 

Arrows a and b decorating tile α (in Figure 1) are also 
algebraic structures, they define observable effects 
(actions) for coordinating local rewrites through confi- 
guration interfaces (input and output ones).  

In general, configurations and observations give rise to 
two categories having the same class of objects (inter-
faces). The former (horizontal so-called configuration) 
defines effects propagation; the latter (vertical so-called 
observations) describes state evolution. Then, double cate- 

model based on tile logic for architecture descriptions. 

 
Languages 

Tile logic has been exploited as a common semantic 
framework to define both abstract software architectures 
and their behaviors [16]. Generally, each component in a 
distributed system specification is described by a set of 
external ports, ensuring interactions with the environment 

  

 or : a
b

s t 

                          
            x                          y 
 

         a                            b 
 
           w                           z 

s 

t 

x, y: initial and final input interfaces 
w, z: initial and final output interface

 

Figure 1. A tile representation. 

Rules generating the basic tiles, horizontal and vertical identities:  

 
  R()=(s,a,b,t) 

   
:

a

 
     t :x  y H 

    :H
x

id t t
y

    a : x  z  V 

    
:V

a
id x z

a
s t

b
 

 
   

 

Horizontal, vertical and parallel compositions 
 

:   :
a b

s t h f
b c

  

:  ;  ;
a

s h t f
c

     
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: s t  :t
b

c
h

d
  

     ;
: 

;
a c

  

    : :
a c

s t h f
b d

               

 : s
a c

h t f
b d

 s h
b d

  
 

    


 

 
 

Figure 2. Inference rules. 
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a deliver component functionalities. It is define

cess and Fundamental    

Sinc DL, a complete software architectur

 that could be eithe
co

ociated mainly to

 (internal) description given by a tile

ng, we present the four essential steps o
til

tep 1: Each software architectural Configuration in-

rizontal and vertical categories are formed (see 

tion) that are 

ded/required 

ting hidden sub components 

model Configura-
ti TS for a given architectural configuration Con-

ntation deduced from their partial description. 

gCset, MsgCget provided 

 computation component name with a 

at formalize 

s         (1) 

        (2) 

d by a tile tion. Its ho
system, where objects of the two categories correspond to 
component interfaces. Vertical category (observations) 
defines its possible actions corresponding to component 
required/provided services and horizontal category gen-
erates all component possible configurations. Gathered 
together via a set of tiles, horizontal and vertical catego-
ries define expected behavior of the underlying compo-
nent. Starting from a basic set of tiles and deduction rules 
of this logic, system global behavior defined as a coordi-
nated evolution of its subcomponents, is naturally de-
duced. We take in what follows all these ideas formulated 
through a generic semantic framework applicable for 
ADL either their semantics. It will be then applied on a 
specific case study. 

4.1. Modeling Pro
Definitions 

e in existing A e 

tiles formalize binding connection. Some auxiliary 
tiles may be added to these basic tiles in order to 
deal with some particular ADL connection aspects 
like dynamic connection (components synchroni- 
zation) as it is the case for parameterized dynamic 
connection tiles defined in [16]. 


Definition 2. A tile system based 

description has to consider static architectural configura-
tion and dynamic evolution (behavior) of software system, 
our proposed model follows the same separation of con-
cerns. Two distinct, but not completely independent 
views are considered. For the first one, expressed by a set 
of existing components, connectors (often considered as 
particular components) and connection topology, we 
associate a tile system integrating these components (and 
connectors) definitions. In the second view, state transi-
tion system, which is usually devoted to define compo-
nent and system behavior, is extended and formally de-
fined in the context of tile logic. 

Then, a software component, r a connection points. 
 Morphisms of VConf-TS are simplified to design only 

two types of services: Ms
mputation component or a connector, may have two 

definitions according to its granularity: 
 A partial (external) description, ass  o

its interface, evolving an abstract data type for each 
component type (sort, operations and their pro- 
perties).  

 A detailed  c
system formalizing both structure and behavior 
component. Computation or storage component may 
be either primitive or composite. For later case, the 
associated tile system is a composition of a set of 
hierarchical sub tile systems. If the component is a 
connector (communication entity), the associated tile 
system defines the corresponding communication 
protocol. 

In the followi f 

binding connection deduced from configuration 
topology-connection. Two general forms of tiles can 
be defined here:  

1 '
1 2 :

MsgC set
C C se model generation for any software architecture 

description:  
 
S
volves an associated tile system Configuration–TS defini-

Definition 2) by the involved architectural elements 
(components, connectors, ports, etc.). 
 Morphisms of the horizontal category formalize 

connection points (in Configura
characterized by essentially components names and 
interfaces, in terms of algebraic terms.  

 On the other hand, morphisms of the vertical 
category (observations) formalize provi
components services.  

 Both categories have the same set of objects that are 
algebraic terms represen
models that will be described at the next lower level.  

 The set of tiles expresses configurations evolution 
and its propagation over all sub-components. These 

on-
figuration = (Components, toplogy-connection) is de-
fined by the 4-tuple (HConf-TS, VConf-TS, NConf-TS, RConf-TS) 
such that: 
 OConf-TS is composed of all components abstract 

represe
 Morphisms of HConf-TS are formed upon algebraic 

terms specifying component interfaces intervening in 

r required by a component of name C under a 
message form. 

 NConF-TS is the set of tile names. Each one is obtained 
by combining a
ommunication component name. If there is no 

explicit connector (i.e., case of dynamic connector), 
the second name will be that of other computation 
component connected to the first one.  

 RConf-TS: NConf-TS → HConf-TS × VConf-TS VConf-TS 

HConf-TS is a function defining tiles th

1 1
2MsgC get

  

2 '
2 3 2 2

3
:

MsgC get
C C s s

MsgC set
  
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s1, s1’, s2, s2’ are configurations, i.e. morphisms of
HConf-TS, C1, C3 are computation com
C2 is a connector name and MsgC1set, MsgC2get


Step
prese

articular tile system (Definitions 3 and 4).  

uration-TS 

 of any ADL architecture de
ription, is defined in the same way as for configu

tion 4) is conceived on the 

onent software architecture de-
ribed by a given state transition system with respect to 

s. 

is the set of tile names. Each one is 

formalize all tran- 

label transition and identity morphism respectively 
while t-TS-trigger denotes transition 
as trigger for hidden transition tile system. 

 

mpu- 

nt may be hierarchical, they 
h e other sub state transition systems. So, recursively we 

It is clear that our approach for defining a formal 

general as it provides concise and complete se-
m

scribing 
tructuring aspects of a SA. It is re-

ving characteristics of a coordi-

e style of components as-
mplementary views 

 

e

ponent name, 
 



are possible observation, i.e. morphisms of Hconf-TS. 

 2: For each computation component type in the 
nt software architecture configuration, we associate 

s

a p
 If it is the case of a composite computation 

component (Composite-Component), then the tile 
system in question Component-Config
(Definition 3) formalizes its architectural configu- 
ration and has the same definition of Configu- 
ration-TS. Hence, it is necessary to perform all the 
process steps while adopting appropriate notations to 
avoid any confusion.  

 
Definition3. Tile system Composite-Component-TS mod-
eling composite component -
sc ra-

tation component.  
 

Step 3: Since transitions in the state/transition model that 
describes primitive compone

tion-TS, by the 4-tuple (HCompCConf-TS, VCompCConf-TS, 
NCompCConf-TS, RCompCConf-TS). 
 If the software component is primitive (Primitive- 

Component), its associated tile system Primitive- 
Component-TS (Defini
basis of state transition system elements which is 
usually used to describe the component behavior. 
The set of common objects of its both categories 
(horizontal and vertical) is composed of all 
elementary architectural elements of the component 
like attributes, ports, constraints, or other eventual 
annotations. Horizontal (configurations) category 
formalizes in this case component states, vertical 
(observations) one specifies all its possible transition 
triggers given in terms of labels. Two general tile 
forms are then defined for either simple transition or 
hierarchical one.  

 
Definition4. Tile system Primitive-Component-TS mod-
eling a primitive comp
sc
a given ADL, is defined by the 4-tuple (HPrimComponent-TS, 
VPrimComponent-TS, NPrimComponent-TS, RPrimComponent-TS) such that: 
 OPrimComponent-TS is composed of algebraic terms 

associated to all architectural elements of the 
component. 

 Morphisms of HPrimComponent-TS are formed upon 
algebraic definitions of states in terms of well 
defined tuple

 Morphisms of VPrimComponent-TS are formed upon 
algebraic definitions of all existing transition labels. 

 NPrimComponent-TS 
ither a transition name or defined to formally 

identify an unnamed transition.  
 RPrimComponent-TS: NPrimComponent-TS → HPrimComponent-TS × 
VPrimComponent-TS VPrimComponent-TS HPrimComponent-TS is 
the function defining tiles that 
itions. 

Two general tile forms are proposed for either simple 
(tile3) or hierarchical (tile4) such as l and id denote 

: 1 s2
l

t s
idH

               (3) 

: 1
l

t s
t TS trigge


 

s2
r
          (4) 

effect that acts 

Finally, If the component is a communication one 
(Communication-Component), its tile system model 
is defined in the same way as for primitive co

id
associate to each hierarchical transition, at the next lower 
level, a novel tile system as we have proceed in the pre-
vious step. 
 
Step 4: Step 3 is repeated until all transitions become 
simple. 

model based on tile logic for any ADL is quite generic 
and too 

antics definitions for all important common ADL con-
cepts, mainly the hierarchy. Indeed, this may reduce con-
siderably the semantic gap between ADL noted before. 
We will show through the instantiation of this modeling 
process to the LfP language case, that the resulting model 
covers entirely and naturally its formal semantics while 
preserving its modular and hierarchical structure. There-
fore, we resolve the usual problem (flat model) still posed 
in previous ADL formalization approaches (such as those 
based on Petri nets and rewriting logic models). 

4.2. Case of LfP 

LfP (Language for Prototyping) [2,16] allows de
both control and s
garded as a language ha
nation language and an ADL. 

4.2.1. LfP Software Architecture  
LfP, like all other ADL, provides a concrete syntax to 
describe SA with a declarativ
sembly. It offers two distinct and co
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finition, their links and all system global decla-
rat

d execution flow belonging to LfP class 
or

s, a guard or a post con-
di

ar

Model for LfP 
ically basic LfP methodology 

 to LfP lan-
gu

 

e all concentrated on Petri nets formalism in order to 
use their well known analysis tools. But in practice, these 
models have already proved their insufficiencies. Indeed, 
the hierarchical behavior greatly expressed in LfP com-
ponents is not preserved by this translated model and 
even those based on rewriting logic, recently introduced 
by [5,6].  

4.2.2. Tile 

to allow a complete description of software system. Ar-
chitectural view uses LfP-AD diagram to define system 
architectural configuration and its components, behav-
ioral view specification deals with system dynamic be-
havior in terms of hierarchical behavior diagrams: 
LfP-AD. LfP constructs are well defined in [17]. In what 
follows, we recall the most used ones in our approach 
context. 

Architecture diagram (LfP-AD): It is LfP static model 
description defining the participating components to a 
system de

Figure 3 summarizes graph
defined in [3] to which our approach (bold part) is trans-
planted as a new possible alternative formal semantic 
model emphasizing both software system compositional 
behavior and hierarchical one. LfP software architecture 
description is naturally translated into set of tile systems. 
Each tile system allows the formal specification of an LfP 
software component (LfP-AD, class, class instance, me-
dia) or sub-component one (methods, block transitions) 
including the declaration of their constraints. 

The proposed generic model is instantiated

ions. More precisely, LfP-AD describes system soft-
ware architecture as a graph whose nodes are the soft-
ware entities (LfP classes) and their link edges are com-
munication entities (LfP media). The interaction point’s 
connection (LfP ports) allows these entities to be assem-
bled. Any connection has to respect binding contracts 
(LfP binders).  

Behavior diagram (LfP-BD): it specifies LfP class be-
havior, or a communication protocol associated to LfP 
media or a metho

age with respects to its methodology different views 
(Functional, properties and implementation). This will 
help us then to give more precise and complete definition 
of all different LfP architectural elements semantics in 
Tile logic based framework. Besides, executable specifi-
cation of this new LfP model may be naturally defined by 
mapping [18,19] tile logic into rewriting logic which is a 
semantic basis of Maude language [20] and will extend 
the proprieties view in LfP methodology, by the specifi-
cation and formal analysis of other behavior constraint 
kinds, strongly related to LfP features (synchronization, 
hierarchical behavior, etc.). Therefore, we apply to LfP 
software architecture description, the construction tile 
model process presented previously, step by step while 
highlighting the hierarchy preservation. 

 LfP media. Formally, this diagram type expresses 
component (class or media) behavior through state/tran-
sition automaton. Communication between component 
automatons is achieved by message queues. Since LfP 
allows the description of hierarchical behaviors, two 
types of transitions are defined in LfP-BD behavior 
model: simple transitions and hierarchical ones (method 
transitions, block transitions).  

These latter, encapsulate other behaviors also ex-
pressed by sub-LfP-BD that may be reused. A transition 
can be provided with annotation

tion which must be checked. 
Research works around LfP semantics formalization 

 

Figure 3. LfP methodology extension. 
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Table 1. Mapping LfP Concepts into Tile Logic. 

LfP elements Tile model elements 
LfP-AD 
Class 
Media 
Binder 
Global declarations  
 

LfP-AD-TS 
Sub-sort of component sort 
Sub-sort of component sort 
Sorts, Configurations, Binder-tiles 
Global definitions  
 

Component LfP-BD 
Local declarations 
 
1. Class LfP_BD 

States 
Transition Name 
Annotations, guards, 
post-conditions 
Simple transitions  
Method transitions 
Block transitions 
Transition actions  

2. Media LfP-BD 
Similar to LfP-BD class 
excep
and n

Component sort, Component-TS 
Objects of horizontal and vertical catego-
ries 
1. Class-TS 

Configurations 
Transition Name-Tile 
Objects (interfaces or particular con-
figurations) 
Simple-Transition-Tiles 
Method-Tiles, Method-TS 
Entailed Block-Tiles, Block-TS 
Observations 

2. Media-TS: Particular case of Class-TS 
with Simple-Transition

t: no media type 
o method transition  

 
-Tiles only. 

 
 1 summari most LfP 

c ts into tile logic e model. 
 
L d M

 sp tecture
D) is 

 as ition 2, enriched 
definiti ation of global 

declarations of the LfP-A perations for 
con inst is 
not tiated AD-TS, NAD-TS

RA

 posed term
ng
se
ponent tile systems (Component-TS)  

tions) formalize binders as they

AD-TS message sending 

 NAD-TS is set of tile names. Each one is defined by 
combining associated component and media names 
or the reverse noted in general: B-CM, B-MC. 

 RAD-TS: NAD-TS  HAD-TS  VAD-TS  VAD-TS  HAD-TS is 
a function to formalize binding contracts. For 
synchronous case, each resulting tile has one of the 
following forms with respect to general tiles (1) and 
(2) defined in the tile model construction process. 

Where:  
Conf-BCM2 = binder-CM(c, p, m, i1, i2+1, synch, po),  
Conf-BMC1 = binder-MC(m, c, p, i1, i2, synch, po),  
Conf-BMC2 = binder-MC(m, c, p, i1, i2+1, synch, po),  
c: class-name, p: port, m: media-name, i1and i2: inte-

ger that represent binder capacity and message number 
respectively and po: policy. 

For example, the tile B-CM expresses connection be-
tween any obj  of a class c that sends a m ssage 

SubSort computeComponent, connector < component

Table zes the mapping of 
oncep . It helps to dress the til

fP-AD Tile Base odel (Step 1): 
Architectural view ecified in LfP by an archi  

 

s

diagram (LfP-A formalized by a configuration tile
defisystem LfP-AD-TS

wit obal 
ned in Defin

onh gl s as transl
D (sorts for types, o

stants and static ances). So, this Tile system 
AD-TSed by the instan

D-TS
 tuple (H , V , 

s 

Operations 
… : name, interface → component 
NameC: component → name 
InterfaceC: component → interface 

) such as: 
 OAD-TS is com  of component algebraic 
defined accordi  t s as presented in

 terms are in fact abstraction of 
o signature  

 

(Figure 4). The
hierarchical com

 HAD-TS (configura
support the binding connection point’s semantics of 
LfP components. Their definition is based on 
signature given in (Figure 5). 

 V  (observations) formalize LfP 
and receiving. Each one may have one of the 
following form:  
MsgCset: send message by class C.  
MsgCget: receive message by class C.  
Msg-Mget: receive message by a media M.  
MsgMset: send message by media M.  
 

ect
through its port 

e
p and the media m which must perform 

s outing towards a receiving class object. This connec-it  r
tion can be accomplished only during execution with 
class and media instances, by horizontal composition 
(synchronization) of this tile with: on the one hand, a 

n er tile having MsgCset as effe d ect, and a media tile 
having MsgMget as trigger, on the other hand. By analogy, 
 

Sorts name, interface  
Operations 
… : string → name 
(….,…): port, msg → interface 
 
Sort component 

Figure 4. Signatures for component algebraic definition. 
 

Sort binder 
Operations 

Binder-CM: class-name, port, media-name, integer, integer, 
mode, policy → binder 

W

G:   → policy 

Binder-MC: media-name, class-name, port, integer, integer, 
mode, policy → binder 
here 
-Arguments of integer sort correspond respectively to binder 
storage capacity de and the number of messages. 
-Sorts mode and policy are defined by: 

Synch, Asynch:   → mode 
FIFO, LIFO, BA

Figure 5. Signature of bine. 

g.C.set
 binder-CM(c, p, m, i1, i2, synch, po) 

g.M.get
       (5) 

Msg.M.set
 binder-MC(m, c, p, i1, i2+1, synch, po) 

Msg.C.get
 (6) 

Ms
nch   i1)

Ms
 B-CM : binder-CM(c, p, m, i1, i2, sy , po) (i2 < 

B-MC : binder-MC(m, c, p, i1, i2, synch, po)  (i2+1 < i1) 
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tile B-MC expresses a connection between media and 
any receiving class instance. 
 
LfP-B l (Step 2): 
Throu ew, we generate Component-TS 
tile sy ram defined by the tuple 
(HComp , V , N ponent-TS, RComponent-TS) as 
given  would 
be eith d con-
cise p  primitive component 
which or.  
 O semantic elements 

to 
component architectural elements like attributes, 
local declarations, or annotations defined in the 
component LfP-BD.  

 HComponent-TS (configurations) formalizes states of the 
underlined LfP-BD. 

 VComposant- (observations) formalizes all transition 

hod, perform block). 
 NComponent-TS is the set of transition names. 

nent-TS  VComposant-TS 

perator is Ä. 

ms Method-TS and Bloc-TS

Block-TS, NBlock-TS, RBlock-TS) is de-

ion is 
method-TS

defined in the underlined sub-LfP-BD in terms of 

n sub LfP-BD specified in LfP architecture 
d

5. ple Client-Server     

T  ge-
ner r 
(CS ple and show that tile 
logic provides emantic frame-
work for LfP icular and for 
any ADL in ge

5.1. CS LfP Model 

The architectural view (LfP-AD) of our application 
stated in Figure 6 contains three compon
classes “Client” and “Server” connected via a m
named “MsgPassing”. Connexion is represented by in-
terposing binders (messages queues with multiplicity 
interaction semantics noted by annotations) at media 

ation, 
ex

gure 7). 
Th

ur hierarchical transitions 

ibes meth-

h

on (by two possible not detailed 
xecution paths: transition methods exec and notify), 

re-
s 

(CS-AD-TS, Client-TS, Msg-Passing-TS, Server-TS, Start-TS, 

    → 5 
  → 1 

D Tile Based Mode
gh behavioral vi
stem to each LfP-BD diag

nent-TS Component-TS Como

by Definition 4. Particularly, Component-TS
S or Media-TS and for simple aner Class-T

resentation we consider only
 may have hierarchical behavi
Component-TS is composed of 

expressed as algebraic terms that correspond 

actions (from simple action to sequential compo- 
sition of actions, call met

 RComponent-TS: NComponent-TSHCompo

 VComposant-TS  HComponent-TS is a function formalizing 
transitions in terms of tiles having forms (3) or (4).  

In any form of tile, initial configuration could be a 
composition of initial transition state with eventual guards 
or precondition, as well as final configuration could be a 
composition of resulting transition state with eventual 
post-condition. For both cases, the used o
 
Hierarchical Transition Formalization (Step 3): 
All tiles associated to LfP hierarchical transitions, 
method transitions and bloc transitions, have to be in fact 
entailed by sub tile syste  

o

associated to the hidden sub-LfP-BD respectively. 
Bloc-TS = (HBlock-TS, V

fined recursively in the same way as Component-TS 
replacing component name by LfP block name. 

But, the tile system defined for a method transit
given uple Method-TS = (Hmethod-TS, Vby the t , 
Nmethod-TS, Rmethod-TS) such that: 
 Omethod-TS is composed of semantic elements 

associated to attributes and annotations.  
 Hmethod-TS, Vmethod-TS and Nmethod-TS are defined in 

similar way as for HComponent-TS, VComponent-TS and 
NComponent-TS respectively. 

 Rmethod-TS: NBD-TS  HBD-TS  VBD-TS  VBD-TS  HBD-TS TS 
is a function formalizing only simple transitions as 

tiles of form (3).  
 
Step 4: Lastly, step3 must be repeated with respect to the 

binding ports level. 
We will present a part of the whole LfP specific

umber of 
escription. 

Case Study: Sim
Application  

he aim of this section is to illustrate the proposed
ic semantic model concepts to a classical client-seve
) architectural application exam

ef
description language in part

fectively a powerful s

neral.  

ents: two 
edia 

and 

ample sufficient to deal with all architectural and be-
havioural LfP concepts mainly modular and hierarchical 
ones. We only give server class behaviour (Fi

e corresponding LfP-BD defines concurrent execution 
of actions requested by the client. It consists of three 
states EGI , S1, END and foB N
init, start, worker and daemon. 

The sub-LfP-BD (right of Figure 7) descr
ods and blocks invoked by various associated hierarchi-
cal transitions. As it is shown in the figure, we have pre-
sented hree sub-LfP-BDnly t . From top to bottom, t e 
first one describes the init method role by a simple tran-
sition T1 (pseudo code). Both other sub-LfP-BD describe 
roles of block transitions worker (by a not detailed sim-
ple transition) and daem
e
respectively. 

5.2. CS Tile Model 

With respect to LfP definition instantiation given p
viously, we deduce a set of hierarchical tile system

init-TS, Daemon-TS, worker-TS,…) for our client-server 
application following especially the proposed genera-
tion steps. 
 
Step1: 
Global definitions : 
Opérations MaxClient:

MaxServeur:  

CS-AD-TS = (HCS-AD-TS, VCS-AD-TS, NCS-AD-TS, RCS-AD-TS) 
where: 
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S-LfP-AD). Figure 6. Client-Server L
 

fP-AD (C

 

Figure 7. ClienFt-server LfP-BD (CS-LfP-BD). 
 
 OCS-AD-TS = {Client-TS, Serveur-TS, MsgPassing-TS}. 

At this granularity level, elements of this set are name 
of the tile systems modeling LfP classes involved in 
the LfP-BD diagram.  

 HCS-AD-TS = {binder-ClientMsgPassing (client, 
client.P, Msg-Passing, 1, i2, synch, fifo), binder- 
MsgPassingServer (MsgPassing, server, server.P, 10, 
i2, synch, fifo), binder-MsgPassing Client 
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(Msg-Passing, client.P, client, 1, i2, synch, fifo), 
binder-ServerMsgPassing (server, server.P, 
MsgPassing, 10, i2, synch, fifo)}. All binder 
declarations are considered by this configurations 
category (objects of the category). 

 VCS-AD-TS = {Msg-ServerGet, Msg-ServerSet, Msg- 
ClientGet, Msg-MsgPassingGet, Msg-MsgPassing 

Set}. Here all observable actions are summarized.  
 NCS-AD-TS = {B-ClientMsgPassing, B-MsgPassingClient 

B-MsgPassingServer, B-Server-Msgpassing}. 
 RCS-AD-TS: NCS-AD-TS  HCS-AD-TS  VCS-AD-TS  

VCS-AD-TS  HCS-AD-TS. 
For synchronous case, we can define four basic tiles, 
with RCS-AD-TS.. 

Msg-ClentSet
B-Client-MsgPassing: binder-ClientMsgPassing(P1) ( 2 1)

Msg-MsgPassingGet

binder-ClientMsgPassing(P1') ( 2 1)

i

i

  

 

with: 

P1 = (client, client.P, MsgPassing, 1, i2, synch, fifo) 
 
P1' = (client, client.P, MsgPassing, 1, i2+1, synch, fifo) 

Msg-ServerSet
B-Server-MsgPassing: binder-ServerMsgPassing(P2) ( 2 10)

Msg-MsgPassingGet

binder-ServerMsgPassing(P2') ( 2 10)

i

i

  

 

with: 
P2 = (serveur, server.P, MsgPassing, 10, i2, synch, fifo) 

 
P2' = (serveur, server.P, MsgPassing, 10, i2+1, synch, fifo) 

Msg-MsgPassingSet
B-MsgPassing-Client: binder-MsgPassingClient(P3) ( 2 1)

Msg-ClientGet

binder-MsgPassingClient(P3') ( 2 1)

i

i

  

 

With: 
P3 = (MsgPassing, client, Msg-Passing.P, 1, i2, synch, 
fifo) 

 
P3' = (Msg-Passing, client, MsgPassing.P, 1, i2+1, synch, 
fifo) 

Msg-
: binder-MsgPassingServer(P4) ( 2 10)i

MsgPassingSet
B-MsgPassing-Server

Msg-ServerGet

binder-MsgPassingServer(P4') ( 2 10)i

  

 

With: 
P4 = (MsgPassing, server, MsgPassing.P, 10, i2, synch, 
fifo) 
P4' = (MsgPassing, server, MsgPassing.P, 10, i2+1, 
synch, fifo) 

For example, the tile B-ClientMsgPassing means that 
starting from the configuration binder-ClientMsgPassing 
(client, client.P, Msg-Passing, 1, i2, synch, fifo) of the 
connection point between  the Client and the media 
MsgPassing, while the number i2 of messages in the 
binder file is less than its capacity (equals to one), the 
client can set its message (Msg-ClientSet trigger) and so, 
the configuration evolves to binder-ClientMsgPassing 

, client.P, MsgPassing, 1, i2+1, synch, fifo) while 
g 

oni-
zation of rewrites with a particular tile (having 
Msg-MsgPassingGet as a trigger) to be defined into 
MsgPassing-TS.  

The tile B-MsgPassingServer means that starting from 
nfiguration binder-MsgPassingServer (MsgPassing, 

 

 Msg- rverGet as a trigger) to be defined into 
Server-TS. 

By analogy, the meaning of both other tiles can be 
easily deduced. 

cal tile systems defined in the previous step a refined 
model in terms of tile systems. As we have noted just the 
server class LfP-BD is concerned by our approach illus-
tration. Its associated model is given by the following tile 
ystem: 

(client
i2 will be incremented. The final effect of this rewritin
(Msg-MsgPassingGet) is necessary to ensure synchr

the co
server, server.P, 10, i2, synch, fifo) of the connection 

point between  the media Msg-Passing and the Server, 
while the number i2 of messages in the binder file is less 
than its capacity (equals to 10), the media can set a mes-
sage received from the Client (Msg-MsgPassingSet 
trigger) and so, the configuration evolves to binder- 

, MsgPassingServer (MsgPassing, server server.P, 10, 
i2+1, synch, fifo) while i2 will be incremented. The final 
effect of this rewriting (Msg-SeverGet) is necessary to 
ensure synchronization of rewrites with a particular tile 
(having Se

 
Step 2: 
At this granularity level, we associate to each hierarchi-

s
Server-TS = (HServer-TS, VServer-TS, NServer-TS, RServer-TS) 
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where: 
OServer-TS is a set of algebraic terms defining Server class 
attributes, guards and post-conditons. 
HServer-TS = {BEGINServeur, S1Serveur, ENDServeur}. Objects 

category correspond to tile systems associated to 

r-TS = {P1: call start (), P2: call init (r: t-role, ClientID:int, 
d:opaque), Perform daemon,  Perform worker}. These cate-

gory objects (tile systems) are formed around actions or 
transitions of the LfP-BD.  
NServer-TS = {Start, Init, Daemon, Worker} 
RServer-TS: N Server-TS H Server-TS  V Server-TS  V Server-TS  

 Server-TS  

tion tile: init tile (7) and one bloc-transition-tile: 
worker tile (8). 

of this 
LfP-BD states. 
VServe

H
As basic tiles example let us consider one method- 

transi

 
Msg ServeurGet

init: BEGIN ClientID !=0 S1
Serveur serveurinit r,ClientID,d

                  (7) 

Msg ServeurGet
END

serveurperform worker
worker: S1 r: 'worke

Serveur
r '

                   (8) 

Tile (7) expresses evolution involved by firing action 
Msg-ServerGet (tile trigger) of initial configuration 
B

a h
d preserving hierarchical behaviour view, 

t us consider the init-TS and the worker-TS respec- 

 

 (rÄClientIDÄd).  

 Hinit-TS  V it-TS  V  H

EGINServeur composed with a new interface<ClientID ! = 
0>(precondition) that is noted by BEGINserveur Ä 
<ClientID ! = 0>. Effect of this tile is materialized by the 
init method invocation. We notice that in a lower 
abstraction level, we can define a more detailed model 
through their associated hidden tile system init-TS (step 3). 
The meaning of tile (8) is similar to that of tile (7). 
 
Step 3:  
For each transition method or Bloc-transition is associated 

idden sub-LfP-BD, its corresponding sub-tile system is 
naturally deduce
le
tively: 
init-TS = (Hinit-TS, Vinit-TS, Ninit-TS, Rinit-TS)  
Oinit-TS = {r, clienID, d, r1, c1, d1} 
Hinit-TS = {BEGINinit, ENDinit} 
Vinit-TS = {r1:= r; c1:= ClientID; d1:= d; ! (rÄClientIDÄd)}
Sequential composition of T1 actions with local context 
destroy !
Ninit-TS = {T1} 
Rini-TS: Ninit-TS in init-TS init-TS 

 init
T1: BEGIN

init r :  r; c :  ClientI1 1


 

Similarly, we define

r,C

D;

lientID,d
END

ind)



    

it d : d; !(r ClientID1  

Vworker-TS = {T2 actions} 
Nworker-TS = {T2}

          (9) 

 the following detailed tile system: 
w   

      (10) 

Each one denotes and formalizes a particular architectural 
description element (architecture configuration, composite 
component, primitive component). Our defined modeling 
process is then applied to a particular ADL, LfP allowing 
modular and hierarchical description of not only software 
structure, but also its behavior. Besides, LfP language 

 interesting and very useful to define semantics 
of

riting logic but, it is even better, if the 
formalism in question could be self-s
in a natural way a complete compos
to some owner theoretical and practical characteristics. 
This extraordinary privilege is exactly and 
by so called tile logic; a particular e
logic. This unique formal support gives good solution to 

ts not 
nly static and dynamic aspects of any ADL, but also 

ones, such as hierarchical behaviour composi-

orker-TS = (Hworker-TS, Vworker-TS, Nworker-TS, Rworker-TS) 
Oworker-TS = OServer-TS È {<r:= worker}  
Hworker-TS = {BEGINworker, ENDworker} with ENDworker = S1 
a Server state 

T2: BEGIN r 'worke
worker

  

6. Comments and Evaluation 

The proposed Tile model for a given software architecture 
description is in fact a set of hierarchical tile systems. 

Rworker-TS: Nworker-TS  Hworker-TS  Vworker-TS  Vworker-TS  
Hworker-TS  

perform worker
END           r'  

workerT2 actions 

It is very

formalization has some limits provided by the based flat 
model since it doesn’t preserve the concepts of hierarchy 
and modularity [3,6,7]. Through detailed evaluation of 
our approach, we highlight and summarize the important 
features of our proposed tile model and that strength 
rewriting model defined in [6]. 

extend ADL notation at a Meta level that will facilitate 
formal analysis and verification. 

 both architectural and behavioural description in the 
same formalism. This advantage has been well enough 
provided by rew

ufficient to provide 
itional model thanks 

easily offered 
xtension of rewriting 

Tile logic as extension of rewriting logic suppor
o
practical 
tion and synchronization. Its specific inference rules are in 
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turn instantiated not freely as for rewriting logic, but in 
specific context and then composed implicitly to deduce 
further possible behaviours. For example, in the case of 
CS-tile model, the effect (call init (r, ClientID, d)) of init 

trigger of the 
 system init-TS. During 

a computation, if init tile is executed, the system instan-
tiates T1 automatically (rewriting synchronization rule) 
and then applies the horizontal tiles composition (init 

l 
e 

orm rker), e-

hat compositional and hierarchical be-
haviour semantics are really and naturally considered 
with a good rewriting synchronization; what is not so 

2]. Our model also opens 

nfiguration. 
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7. Conclusions 

The main contribution of this paper is to propose tile logic 
based modelling process of a system architectural 
description preserving the modularity and the hierarchy of 
initial specification, avoiding its flat form. We highlight 
the interest of our approach through LfP description 
language since it is equipped with rich notation allowing 
modular and hierarchical specification of software 
systems.  

Tile logic taking into account state changes with side 
effects and rewriting synchronization, has been proven as 
a high level (Meta) semantic framework, more 
appropriate to deal naturally with important ADL features 
that are more frequent, namely their structural and 
behavioural hierarchy as well as any components 
composition or synchronization. This particular advan- 
tage is due to the theoretical and practical characteristics 
of tile logic: categorical structures, guided rewriting via 
observations, flexible formats of configurations, tiles 
composition through interfaces, exploitation of three 
dimensional views (horizontal for structure, vertical for 
behaviour evolution and the third dimension for distri- 
bution).  

It is obvious that defining ADL semantics within a 
complete semantic framework facilitates formal executing 
and analyzing of software system specification. This work 
enforces and offers new possibilities for formal debugging, 
checking and executing the obtained tile logic model by 
mapping it into rewriting logic [18,19]. We note here that 
the executable specification to be obtained consequently, 
has the advantage to discard useless deductions thanks to 
guided rewritings in particular. Hence, our proposed 
model for LfP architecture description can provide an 
executable specification in Maude system [20] and its 
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