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ABSTRACT 

EPR experiment on 0 0K K  system in 1998 [1] strongly hints that one should use operators ˆ icE
t


 


  and 

ˆ ic  p  for the wavefunction (WF) of antiparticle. Further analysis on Klein-Gordon (KG) equation reveals that there 

is a discrete symmetry hiding in relativistic quantum mechanics (RQM) that   . Here   means the (newly 

defined) combined space-time inversion (with ,x x t t  ), while   the transformation of WF   between 

particle and its antiparticle whose definition is just residing in the above symmetry. After combining with Feshbach- 
Villars (FV) dissociation of KG equation       [2], this discrete symmetry can be rigorously reformulated by 

the invariance of coupling equation of   and   under either the combined space-time inversion   or the mass 

inversion  m m , which makes the KG equation a self-consistent theory. Dirac equation is also discussed accord- 

ingly. Various applications of this discrete symmetry are discussed, including the prediction of antigravity between 
matter and antimatter as well as the reason why we believe neutrinos are likely the tachyons. 
 
Keywords: CPT Invariance; Antiparticle; Quantum Mechanics; Quantum Field Theory 

1. Introduction 

In 1956-1957, the historical discovery of the parity vio- 
lation [3-6] reveals that both P and C symmetries are 
violated to maximum in weak interactions. Then in 1964- 
1970, both CP and T are experimentally verified to be 
violated in some cases (though to a tiny degree) [7,8] 
whereas the product symmetry CPT holds intact to this 
day [9]. The CPT invariance in quantum field theory 
(QFT) was first proved by Lüders and Pauli in 1954- 
1957 [10-12] via the introduction of the “strong reflec- 
tion” for proving the CPT theorem. In 1965, Lee and Wu 
proposed that the definition of particle a  versus its 
antiparticle a  should be [13]  

CPTa a                (1.1) 

Regrettably, the counterpart of “strong reflection” at 
the level of RQM went nearly unnoticed in the past 
decades. In this paper, we are going to study the RQM 
thoroughly. Not only a discrete symmetry    is 
found in RQM as the counterpart of “strong reflection” in 
QFT, it is also evolved into the invariance of space-time 
inversion  , t t   x x  or mass inversion  

 m m , showing that a WF in RQM is always com- 
posed of two parts in confrontation inside a particle and 
then RQM becomes a self-consistent theory. Furthermore, 
this symmetry can serve as a “theoretical tool” in search- 
ing for new applications in today’s physics. 

The organization of this paper is as follows: In section 
II, the EPR paradox [14] is discussed together with the 

0 0K K  correlation experimental data [1], yielding a 
strong hint that the energy-momentum operators for anti-  

particle’s WF should be ˆ = icE
t





  and ˆ ic  p  re-  

spectively. Section III is focused on a discrete symmetry 
  , here   means the (newly defined) com- 

bined space-time inversion (with , t t x x ), 
while   the transformation of WFs between particle 
and antiparticle, whose definition is just residing in the 
symmetry. Then after combining with FV dissociation of 
KG equation [2] in which the WF   is composed of 
two fields:     , the above symmetry can be rea- 
lized in terms of   and   rigorously via the inva- 
riance of their coupling equation either under the space- 
time inversion or a mass inversion  m m  In this 
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way, the probability density is ensured to be positive 
definite for WFs of either particle or antiparticle. Section 
IV ascribes various phenomena in the theory of special 
relativity (SR) to the effects of enhancement of the hid- 
den   field in a moving particle. In Section V, Dirac 
equation is discussed accordingly with the importance of 
helicity being stressed. Section VI contains a brief dis- 
cussion on the QFT. Sections VII, VIII and IX are de- 
voting to seek for possible applications of the above 
symmetry in today’s physical problems: Why a parity 
violation phenomenon was overlooked since 1956-1957? 
Why we believe neutrinos are likely the tachyons? And 
the prediction of antigravity between matter and anti- 
matter. The last Section X contains a summary. In the 
Appendix, the Klein paradox is solved for both KG equa- 
tion and Dirac equation without resorting to the “hole 
theory”. 

2. What the 0 0K K  Correlation 
Experimental Data Are Telling? 

To our knowledge, beginning from Bohm and Bell [15,16], 
physicists gradually turned their research of EPR paradox 
[14] onto the entangled state composed of electrons, es- 
pecially photons with spin and achieved fruitful results. 
However, as pointed out by Guan (1935-2007), EPR’s 
paper [14] is focused on two spinless particles and Guan 
found that there is a commutation relation hiding in such 
a system as follows [17]: 

Consider two particles in one dimensional space with 
positions  1, 2ix i   and momentum operators 

ˆ ii
i

p
x


 


 . Then a commutation relation arises as 

 1 2 1 2ˆ ˆ, 0x x p p               (2.1) 

According to QM’s principle, there may be a kind of 
common eigenstate having eigenvalues of these two 
commutative (i.e., compatible)observables like: 

   1 2 2 1 1 20, andp p p p x x D         (2.2) 

with D being their distance. The existence of such kind 
of eigenstate described by Equation (2.2) puzzled Guan, 
he asked: “How can such kind of quantum state be 
realized?” A discussion between Guan and one of present 
authors (Ni) in 1998 led to a paper [18]. 

Here we are going to discuss further, showing that the 
correlation experiment on a 0 0K K  system (which just 
realized an entangled state composed of two spinless 
particles) in 1998 by CPLEAR collaboration [1] actually 
revealed some important features of QM and then an- 
swered the puzzle raised by EPR in a surprising way. 
First, besides Equation (1), let us consider another three 
commutation relations simultaneously: 

1 2 1 2
ˆ ˆ, 0t t E E                  (2.3) 

 1 2 1 2ˆ ˆ, 0x x p p                 (2.4) 

1 2 1 2
ˆ ˆ, 0t t E E                   (2.5) 

( ii
i

E
t





  with it  being the time during which the  

i-th particle is detected). In accordance with Ref. [1], we 
also focus on back-to-back events. The evolution of 

0 0K K ’s wavefunction (WF) will be considered in three 
inertial frames: The center-of-mass system S is at rest in 
laboratory with its origin x = 0 located at the apparatus’ 
center, where the antiprotons’ beam is stopped inside a 
hydrogen gas target to create 0 0K K  pairs by pp  an- 
nihilation. The 0 0K K  pairs are detected by a cylindrical 
tracking detector located inside a solenoid providing a 
magnetic field parallel to the antiprotons’ beam. For 
back-to-back events, the space-time coordinates in Equa- 
tions (1)-(5) refer to particles moving to the right  
 1 0x   and left  2 0x   respectively. Second, we 
take an inertial system S  with its origin located at par- 
ticle 1 (i.e., 1 0x  ). S  is moving in a uniform velocity 
v  with respect to S . (For Kaon’s momentum of 
800 MeV/c, 0.849v c   ). Another S  system is 
chosen with its origin located at particle  22 0x  . S  
is moving in a velocity  v  with respect to S . Thus 
we have Lorentz transformation among the space-time 
coordinates being 

2 2

2 2

2 2

, ,
1 1

, ,
1 1

x vt x vt
x x

t vx c t vx c
t t

 

 

       
 

       

       (2.6) 

Here 1t  and 2t  correspond to the proper time at  
and bt  in Ref.[1] respectively. The common time origin 

0t t t     is adopted. 
A 0 0K K  pair, created in a 1PCJ   antisymmetric 

state, can be described by a two-body WF depending on 
time as ([1], see also [19,20]) 

   

       

   

     

     

antisym

0 0 0 0

antisym

i

i

0,0

1
0 0 0 0

2

,

1
0 0 e

2

0 0 e

S a L b

L a S b

a b a b

a b

t t
S La b

t t
L Sa b

K K K K

t t

K K

K K

 

 

 

 



   



 

 

 (2.7) 

with 

0 0 0 01 1
,

2 2
S LK K K K K K           (2.8) 
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where the CP violation has been neglected and  

, , ,i 2S L S L S Lm   , ,S Lm  and ,S L  being the ,S LK  
masses and decay widths, respectively. From Equation 
(7), the intensities of events with like-strangeness ( 0 0K K  
or 0 0K K ) and unlike-strangeness ( 0 0K K  or 0 0K K ) 
can be evaluated as  

   

  

antisy 2
like

1
, e

8

e e 2e cosS a b L a b a b

t
a b

t t t t t t
a b

I t t

m t t



  



     



      



 (2.9) 

   

  

antisy 2
unlike

1
, e

8

e e 2e cosS a b L a b a b

t
a b

t t t t t t
a b

I t t

m t t



  



     



      



(2.10) 

where  , 2L S S Lm m m         and  

 fora a bt t t t   or  forb a bt t t t  . 

Similarly, for 0 0K K  created in a 0PCJ   or 2  
symmetric state as:  

   

       

   

     

     

0 0 0 0

i

i

0,0

1
0 0 0 0

2

,

1
0 0 e

2

0 0 e

L a L b

S a S b

sym

a b a b

sym

a b

t t
L La b

t t
S Sa b

K K K K

t t

K K

K K

 

 

 

 



   



 

 

 (2.11) 

the predicted intensities read  
   

        
   

        

like

unlike

,

1
e e 2e cos

8

,

1
e e 2e cos

8

S a b L a b a b

S a b L a b a b

sym
a b

t t t t t t
a b

sym
a b

t t t t t t
a b

I t t

m t t

I t t

m t t

  

  

     

     

      

      

 

(2.12) 

The experiment [1] reveals that the 0 0K K  pairs are 
mainly created in the antisymmetric state shown by 
Equations (2.9) and (2.10) while the contribution in a 
symmetric state shown by Equations (2.11) and (2.12) 
accounts for 7.4%. 

What we learn from Ref. [1] in combination with Equ- 
ations (2.1)-(2.5) are as follows: 

(a) Because only back-to-back events are involved in 
the S  system, we denote three commutative operators 
as: the “distance” operator  

 1 2 1 2 1 2
ˆˆ ˆ ˆ,D x x v t t A p p       and 1 2

ˆ ˆ ˆB E E  , 
Equations (2.1) and (2.3) read 

ˆ ˆˆ ˆ ˆ ˆ, 0, , 0, , 0D A D B A B               (2.13) 

So they may have a kind of common eigenstate during 
the measurement composed of 0 0K K  and projected 
from the symmetric state shown by Equation (11). It is 
assigned by a continuous eigenvalue  1 2jD v t t   
(with continuous index j ) of operator D̂  acting on the 
WF,  0 0 1 1 2 2, ; ,sym

K K
x t x t , as1 

 
 

   

0 0

0 0

0 0

1 1 2 2

1 1 2 2

1 2 1 1 2 2

ˆ , ; ,

, ; ,

, ; ,

sym

K K

sym
j K K

sym

K K

D x t x t

D x t x t

v t t x t x t



 

  

    (2.14a) 

 
 

   

0 0

0 0

0 0

1 1 2 2

like
1 1 2 2

1 2 1 1 2 2

ˆ , ; ,

, ; ,

, ; ,

sym

K K

sym
j K K

sym

K K

A x t x t

A x t x t

p p x t x t



 

  

      (2.15) 

 
 

   

0 0

0 0

0 0

1 1 2 2

like
1 1 2 2

1 2 1 1 2 2

ˆ , ; ,

, ; ,

, ; ,

sym

K K

sym
j K K

sym

K K

B x t x t

B x t x t

E E x t x t



 

  

     (2.16) 

where the lowest eigenvalue of Â  is  

 like
1 2 2 10,jA p p p p     , and that of B̂  is  

 like
1 2 2 10,jB E E E E     respectively. These eigen- 

states of like-strangeness events predicted by Equation 
(11) are really observed in the experiment [1] (these 
eigenstates of 0 0K K  were overlooked in the Ref. [18]). 

(b) The more interesting case occurs for 0 0K K  pair 
created in the antisymmetric state with intensity given by 
Equation (10) being a function of  a bt t  (not  
 a bt t  as shown by Equation (12) for symmetric states)  
which is proportional to  1 2t t  in the S system. In the  

EPR limit 1 2t t , 0 0K K  events dominate whereas like- 
strangeness events are strongly suppressed as shown by 
Equation (9) (see Figure 1 in [1]). So the experimental 
facts remind us of the possibility that 0 0K K  events may 
be related to common lowest (zero) eigenvalues of some 
commutative operators (just like what happened in Equ- 
ations (15) and (16) for operators Â  and B̂  (which 
are applied to symmetric states (due to  

 1 2 1 2D̂ x x v t t    ) but are not suitable for antisym- 
metric states), there are another three operators shown by 
Equations (4) and (5) being: the operator of “flight-path 
difference”  1 2 1 2 1 2

ˆ ˆ ˆ ˆ,F x x v t t M p p       and  

1 2
ˆ ˆ ˆG E E   with commutation relations as: 

1
The WF reads approximately as: 

     1 1 1 1 2 2 2 2

0 0

i i

1 1 2 2, ; , e ep x E t p x E tsym

K K
x t x t              (2.14b)

which can be calculated from  0 0 ,
sym

a bK K t t  with two terms. The 

squares of WF’s amplitude reproduces the    like ,sym

a bI t t  in Equation 

(2.12). 
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ˆ ˆˆ ˆ ˆ ˆ, 0, , 0, , 0F M F G M G                  (2.17) 

which are just suitable for antisymmetric states. For 
0 0K K  back-to-back events, assume that one of two par- 

ticles, say 2, is an antiparticle with its momentum and 
energy operators being 

ˆˆ i , ic c
xp E

x t

 
  

 
           (2.18) 

(the superscript c  means “antiparticle”) versus that for 
particle being 

ˆˆ i , ixp E
x t

 
  

 
            (2.19) 

For instance, a freely moving particle’s WF reads2: 

   i
, expx t px Et     

       (2.20) 

whereas 

   i
, expc c cx t p x E t      

    (2.21) 

for its antiparticle with cp p  and  0cE   being 
momentum and energy of the antiparticle in accordance 
with Equation (2.18). If using Equations (2.18)-(2.21), 
we find  

 
 

   

0 0

0 0

0 0

antisym
1 1 2 2

unlike antisym
1 1 2 2

antisym
1 2 1 1 2 2

ˆ , ; ,

, ; ,

, ; ,

K K

k K K

K K

F x t x t

F x t x t

v t t x t x t



 

  

    (2.22) 

with continuous index k  referring to continuous eigen- 
values  1 2kF v t t  . Here, the WF in space-time of 
this system during measurement reads approximately:  

     2 2 2 21 1 1 1
0 0

iiantisym
1 1 2 2, ; , e e

c cp x E tp x E t

K K
x t x t

     (2.23) 

with antiparticle 2 moving opposite to particle 1 and 

2 1
cp p  . 
Now we use  1 2 1 2

ˆ ˆ ˆ ˆ ˆ cM p p p p     on 0 0K K  
system, yielding 

 
 

   

0 0

0 0

0 0

antisym
1 1 2 2

unlike antisym
1 1 2 2

antisym
1 2 1 1 2 2

ˆ , ; ,

, ; ,

, ; ,

K K

k K K

c

K K

M x t x t

M x t x t

p p x t x t



 

  

      (24) 

Similarly, we have  1 2 1 2
ˆ ˆ ˆ ˆ ˆ cG E E E E     and find 

 
 

   

0 0

0 0

0 0

antisym
1 1 2 2

unlike antisym
1 1 2 2

antisym
1 2 1 1 2 2

ˆ , ; ,

, ; ,

, ; ,

K K

k K K

c

K K

G x t x t

G x t x t

E E x t x t



 

  

     (25) 

Hence we see that once Equations (2.18) and (2.21)  

are accepted, the WFs  0 0
antisym

1 1 2 2, ; ,
K K

x t x t  show up in  

experiments as the only WFs with strongest intensity at 
the EPR limit  1 2t t  corresponding to their three 
eigenvalues being all zero: unlike unlike 0k k kF M G    and 
they won’t change even when accelerator’s energies are 
going up. 

If using Equation (2.18), the eigenvalues of Â  and  

B̂  for the WF  0 0
antisym

1 1 2 2, ; ,
K K

x t x t  are  
unlike

1 2 12c
jA p p p    and unlike

1 2 12c
jB E E E    re- 

spectively, while that of M̂  and Ĝ  for the WF  

 0 0
antisym

1 1 2 2, ; ,
K K

x t x t  are like
1 2 12kM p p p    and  

like
1 2 12kG E E E   , respectively, those eigenvalues are 

much higher than zero and going up with the acce- 
lerator’s energy. 

Something is very interesting here: If we deny Equ- 
ation (2.18) but insist on unified operators p̂  and Ê  
for both particle and antiparticle, there would be no diffe- 
rence in eigenvalues between like-strangeness events and 
unlike-strangeness ones. For example, the unlike

kM  and 
unlike
kG  would be 12 p  and 12E  too (instead of “0” as 

in Equations (2.24) and (2.25)). This would mean that 
three commutative operators ˆ ˆ,F M  and Ĝ  are not  

enough to distinguish the WF  0 0
antisym

1 1 2 2, ; ,
K K

x t x t  from  

the WF  0 0
antisym

1 1 2 2, ; ,
K K

x t x t  even they behave so diffe-  

rently as shown by Equations (9) and (10)), especially at 
the EPR limit  1 2t t . 

Equation (2.18) together with the identification of WF  

 0 0
antisym

1 1 2 2, ; ,
K K

x t x t  by three zero eigenvalues implies  

that the difference of a particle from its antiparticle is not 
something hiding in the “intrinsic space” like opposite 
charge (for electron and positron) or opposite strangeness 
(for 0K  and 0K ) but can be displayed in their WFs 
evolving in space-time at the level of QM. 

In summary, instead of one set of WF with its ope- 
rators (Equations (2.19) and (2.20)), two sets of WFs 
with operators separately (shown as Equations (2.18)- 
(2.21)) are strongly supported by the original EPR para- 
dox and its “solution” provided by the 0 0K K  experi- 
ment. 

To our knowledge, Equation (2.18) can be found at a 
page note of a paper by Konopinski and Mahmaud in 
1953 [21], also appears in Refs. [18,22-28]. 

3. How to Make Klein-Gordon Equation a 
Self-Consistent Theory in RQM? A 
Discrete Symmetry 

3.1. The Negative Energy Solution and the WF of 
Antiparticle 

Let us begin with the energy conservation law for a parti- 
2
Please see the derivation of Equations (2.20) and (2.21) from the quan-

tum field theory (QFT) at the end of Section VI. 
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cle in classical mechanics: 

 21
=

2
E V x

m
p              (3.1) 

Consider the rule promoting observables into ope- 
rators: 

ˆ ˆi , iE E
t


     


 p p     (3.2) 

and let Equation (3.1) act on a wavefunction (WF) 
 , t x , the Schrödinger equation 

       
2

2i , , ,
2

t t V t
t m
  

   


 x x x x  (3.3) 

follows immediately. In mid 1920’s, considering the 
kinematical relation for a particle in the theory of special 
relativity (SR): 

 2 2 2 2 4E V c m c  p           (3.4) 

and using Equation (3.2) again, the Klein-Gordon (KG) 
equation was established as: 

 

   

2

2 2 2 2 4

i ,

, ,

V x t
t

c x t m c x t



 

   
   




    (3.5) 

For a free KG particle, its plane-wave solution reads: 

   i
, expt Et      

x p x         (3.6) 

However, two difficulties arose: 
(a) The energy E in Equation (6) has two eigenvalues: 

2 2 2 4E c m c  p             (3.7) 

In general, 0V  , the WFs of KG particle’s energy 
eigenstates can always be divided into two parts: 

i
exp , 0Et E     

 
         (3.8) 

i
exp , 0Et E     

 
         (3.9) 

where only the original operators Equation (3.2) are used. 
But what the “negative energy” means? 

(b) The continuity equation is derived from Equation 
(5) as 

0
t


  


j              (3.10) 

where 

2 2

i 1

2
V

t tmc mc
               


 (3.11) 

and 

 i

2m
       


j         (3.12) 

are the “probability density” and “probability current 
density” respectively. While the latter is the same as that 
derived from Equation (3.3), Equation (3.11) seems not 
positive definite and dramatically different from  
    in Equation (3.3). Why? 

In hindsight, for a linear equation in RQM, either KG 
or Dirac equation, the emergence of WFs with both posi- 
tive and negative energy  E  is inevitable and natural. 
From mathematical point of view, the set of WFs cannot 
be complete if without taking the negative energy so- 
lutions into account. And physicists believe that these 
negative-energy solutions might be relevant to anti- 
particles. However, we physicists admit that both a rest 
particle’s energy 2E mc  and a rest antiparticle’s en- 
ergy 2 2

c cE m c mc   are positive, as verified by nume- 
rous experiments like that of pair-creation process  

e e    . The above contradiction constructs so- 
called “negative-energy paradox” in RQM. For Dirac 
particle, majority (not all) of physicists accept the “hole 
theory” to explain the “paradox”. But for KG particle, no 
such kind of “hole theory” can be acceptable. It was this 
“negative-energy paradox” as well as the four “com- 
mutation relations”, Equations (2.1)-(2.5), hidden in the 
two-particle system discussed by EPR [14] gradually 
prompted us to realize that the root cause of difficulty in 
RQM lies in an a priori notion—only one kind of WF 
with one set of operators (like Equation (3.2)) can be ac- 
ceptable in QM, either for NRQM or RQM. 

Once getting rid of the constraint in the above notion 
and introducing two sets of WFs and operators for par- 
ticle and antiparticle respectively, we can identify the 
negative energy solution, Equation (3.9), with the anti- 
particle’s WF directly 

i
exp , 0c c cE t E    

 
         (3.13) 

which implies an antiparticle with positive energy cE  
by using Equation (2.18). This claim will be proved 
rigorously in the next subsection. 

One may ask: When you assume the negative energy 
solution being the WF of antiparticle, how about the dif- 
ficulty of negative probability density? Below we will 
see how to solve these two difficulties simultaneously 
and make KG equation a self-consistent theory at the 
level of RQM. 

3.2. The Proof of a Discrete Symmetry P   
for KG Particle 

Let us introduce an operator of (newly defined) com- 
bined space-time inversion   for KG equation. It 
should change the space-time coordinates as 
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, t t x x          (3.14) 
then accordingly 

 

 

1

1

ˆ ˆ ˆi i ,

ˆ ˆ ˆi i

c

cE E E
t t





      

 
    

 

 

 

p p p 

 
    (3.15) 

Because the antiparticle has opposite charge  q  
versus q  for particle, so 

    
   

1
, ,

, ,c

V t V t

V t V t



  

 x x

x x
      (3.16) 

When performing   inversion on KG equation, 
Equation (3.5), from left to right, we meet eventually the 
WF and define the antiparticle’s WF as 

     , , ,ct t t    x x x     (3.17) 

Thus KG particle’s equation, Equation (3.5), is trans- 
formed into  1  

   
   

2

2 2 2

ˆ ,

, ,

c c c

c c

E V t

c t m t



 



   

x

x x
   (3.18) 

or 

 

   

2

2 2 2

i ,

, ,

c

c c

V t
t

c t m t



 

   
   

x

x x

     (3.19) 

which is formally the same as Equation (3.5) though we 
should use ˆˆ ,c cEp  for  ,c t x . Hence the KG equ- 
ation remains invariant under the   operation, Equ- 
ations (3.14)-(3.17). Notice further that Equation (3.18) 
is just the “quantized” equation of the kinematical rela- 
tion for an antiparticle in SR 

 2
2 2 2 4ˆ

c c cE V c m c  p          (3.20) 

which is the counterpart of Equation (3.4) for a particle. 
For example, a KG particle’s scattering WF  
   1i

1 1, ; e E tt E E m  x  is attracted by an spherically 
symmetric potential   0V r   and so has a positive 
phase-shift 1 0   (in the, say,  0S l   state). Then 
physically, its antiparticle’s WF  

   1i
1 1 1, ; e

cE tc c
c t E E E m   x  is repelled by the po-  

tential     0cV r V r    and has a negative phase- 
shift 1 0c  . 

Note that, however, corresponding to  1, ;t E x , 
there is another negative energy particle’s WF 
  1i

1, ; e E tt E  x  satisfying Equation (3.5) 

 

   
   

2

1

2

1 1

2 2 2
1 1

i , ;

, ;

, ; , ;

V t E
t

E V t E

c t E m t E





 

    

   

     

x

x

x x

 (3.21) 

whose space-time behavior is precisely the same as the  

antiparticle’s WF   1i
1, ; e

cE tc
c t E x  with 1 1

cE E m    

as shown by Equation (3.18) since 
   22

1 c cE V E V   . Thus, for avoiding confusion, we 
have 

 
   
   

1

1 1

1 1

, ;

, ; , ;

, ; , ;c
c

t E

t E t E

t E t E



 

 

  

   





x

x x

x x

    (3.22) 

and 

 
   
  

,

, ,

, 0c

t

t t

t V



 



   

 





x

x x

x

        (3.23) 

achieving the proof of the discrete symmetry    
for KG particle shown by Equation (3.17). In summary, 
the “negative-energy paradox” for KG equation is solved 
in a physical way with following advantages: 

a) By using two sets of WFs and momentum-energy 
operators for particle and antiparticle respectively, both 
particle’s WF  , t x  and antiparticle’s WF  ,c t x  
have positive energies 0E   and 0cE   respectively. 

b) While satisfying the same KG equation with same 
potential  V r  formally,  , t x  and  ,c t x  are 
actually subject to opposite “force” for particle and 
antiparticle respectively. 

c) The space-time behavior of  1, ; c
c t E x  can be 

identified with that of a negative energy particle’s WF  

  1 1 1, ; ct E E E  x , in a one-to-one correspondence.  

Thus from mathematical point of view, all solutions of 
KG equation form a complete set including both positive  

and negative energy values of one operator ˆ iE
t





  

exactly. 
By contrast, usually, aiming at finding an anti-par- 

ticle’s WF, one performs the CPT transformation on a 
particle’s WF  , t x , yielding [29-32]  

     , , ,t CPT t t     x x x     (3.24) 

whose character can also be summed up as follows: 
a’) By using one set of WF and relevant operators for 

both particle and antiparticle, at the LHS of Equation 
(3.24),  , t x , and  , t  x  at RHS must have 
opposite energies inevitably. 

b’) By design in the C transformation,  , t x  and 
 , t  x  in Equation (3.24) satisfy different equations 

with V  and cV V   respectively. But with opposite 
energies, they are actually subject to the same (either 
attractive or repulsive) “force”. So one cannot distinguish 
particle from antiparticle through what their WFs “feel” 
after the CPT transformation. 
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c’) From mathematical point of view, we should keep 
all negative-energy solutions for one equation. However, 
even facing WFs in doubled numbers, we still don’t 
know how to choose half of them for describing particle 
and its antiparticle separately in physics. 

But we haven’t solve the difficulty of negative pro- 
bability density in KG equation yet, awaiting for another 
enlightenment which was already there since 1958. 

3.3. Feshbach and Villars (FV) Dissociation of 
KG WF     , a Reformulated 
Symmetry between   and   under the 
Space-Time (or Mass) Inversion 

In 1958, dividing the WF into     , Feshbach and 
Villars [2] recast Equation (5) into two coupled Schröd- 
inger-like equations as3: 

 

 

2
2 2

2
2 2

i
2

i
2

V mc
t m

V mc
t m

   

   

        


          




  (3.25) 

where 

2 2

2 2

1 1 i
1

2

1 1 i
1

2

V
mc mc

V
mc mc

  

  

           


          

 

 
     (3.26) 

t

    
 . Interestingly, the “probability density”, Equ-  

ation (3.11) can be recast into a difference between two 
positive-definite densities [18,20]: 

                    (3.27) 

while the probability current density contains inter- 
ference terms between   and  : 

   
   

i

2m
       

       

   

   

       

        


j

  (3.28) 

The expression of   as shown by Equation (3.27) 
strongly hints that the    symmetry proved in the 
last subsection may be combined with the FV dissoci- 
ation of KG equation such that the positive-definite pro- 
perty of   can be ensured for both particle and anti- 
particle. 

Indeed, after inspecting Equation (3.25) carefully, we 
do find a hidden symmetry in the sense that it is invariant 

(in its form) under the following reformulated space-time 
inversion  , t t x x , i.e.,    transforma- 
tion: 

     
     
     
     

, ,

, , , ,

, , , ,

, , , ,

, , ,

c

c

c

c

t t

V t V t V t

t t t

t t t

t t t

  

  

  

    


  
  
  
  







x x

x x x

x x x

x x x

x x x

     (3.29) 

Performing transformation Equation (3.29) on Equ- 
ation (3.26), we find c  satisfying the same equation of 
  and c  satisfying that of  . They read 

2 2

2 2

1 1 i
1

2

1 1 i
1

2

c c c

c c c

V
mc mc

V
mc mc

  

  

           


          

 

 
    (3.30) 

Remember, for c , we should use operator Equation 
(3.15). Accordingly, the probability density for c  is 
defined as 

 2 2

i 1

2

c

c c c c c c

c c c c

V
mc mc

  

     

   

  

 

 

  

 

  



   (3.31) 

Similarly, we have  c     

 i

2c c c c cm
         


j j j   (3.32) 

For simplicity, consider a free KG particle  0V   
with WF Equation (3.6). Then     

2 2
2

2

2

1
1 02

, 11
1

2

E

mc

E
mmc

    

 

           
 

        
j p

  (3.33) 

But for a free  0V   KG antiparticle with WF Equ- 
ation (2.21), it has c c   

2 2
2

2

2

1
1 02

, 11
1

2

c
c c c c c

c c c c
c c

E

mc

E
mmc

    

 

           
 

        
j p

 (3.34) 

Equations (3.33) and (3.34) satisfy all physical con- 
ditions we need. If 0V  , as long as   0E V   for 
particle or   0c cE V   for antiparticle, the situation 
remains the same. However, once   0E V   or 
  0c cE V  , some complications would occur. For 
further discussion, please see the Appendix. 

Therefore, we see that the reformulated space-time 

3Interestingly, if ignoring the coupling between   and  and 

0V   in Equation (25), they satisfy respectively the “two equations”
written down by Schrödinger in his 6th paper in 1926, titled “Quantisa-
tion as a problem of proper values (Part IV)” (Annalen der Physik Vol.
81, No. 4, 1926, p. 104) when he invented NRQM in the form of wave 
mechanics. 
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inversion, Equation (3.29), reflects the underlying sym- 
metry between a particle’s WF   and its antiparticle’s 
WF c . As both E  and   in   or cE  and c  
in c  are positive definite, all difficulties in KG equ- 
ation disappear and the latter becomes a self-consistent 
theory. 

Moreover, instead of Equation (3.29), a “mass inver- 
sion  m m ” can realize the same symmetry, the 
invariance under a    transformation, via the fol- 
lowing operation on Equation (3.25): 

     
   
   
   

, , , ,

, , ,

, , ,

, ,

c

c

c

c

c

m m m

V t V t V t

t t

t t

t t

 

 

 

    


  
 
 
 

x x x

x x

x x

x x

     (3.35) 

Notice that, when m m , we have ˆ ˆ cp p  and  

ˆ ˆ
cE E , i.e. i i     , i i

t t

 


 
  , in contrast  

to Equation (3.15) [1].4 
The reason why V V  in the space-time inversion 

Equation (3.29) whereas V V  in the mass inversion 
Equation (3.35) can be seen from the classical equation: 
The Lorentz force F on a particle exerted by an external 
potential   reads:  V q m     F a . As the 
acceleration a  of particle will change to a  for its 
antiparticle, there are two alternative explanations: either 
due to the inversion of charge q q  (i.e., V V  
but keeping m  unchanged) or due to the inversion of 
mass m m  (but keeping V  unchanged). 

4. Reinterpretation of WF and the 
Relativistic Effects 

The success of FV’s dissociation of KG equation should 
be ascribed to their deep insight that a unified WF   is 
composed of two fields   and   in confrontation. 
Note that Equation (3.25) reduces into two equations se- 
parately for a static KG particle  0, 1V c   : 

i ,

i

m
t

m
t

 

 

  
   
 

             (4.1) 

with two separated solutions being: 

ii

0, 00,

e , , e ,

0 0

c

c c

E tEt
c

c

E m E E mE m

 
 



        


  
   

 (4.2) 

Once the particle (antiparticle) is moving with a ve- 

locity, 0v  ,   and   ( c  and c ) couple toge- 
ther and the WF       c c c     for a free 
particle (antiparticle) read (in one-dimensional space) 

   exp i ,px Et              (4.3a) 

   exp i ,c c c c c c cp x E t             (4.3b) 

 0, 0c cp p E E     respectively. In Equation (4.3a), 
  dominates  >   . By contrast, in Equation 
(4.3b) it is c  who dominates c  (The status remains 
the same for 0V   cases as discussed in the last sec- 
tion). 

Despite   and c  (   and c ) having the “intrin- 
sic tendency” to evolve as  

    exp i exp ipx Et px Et         , however, in a WF  

of particle (antiparticle),  c   must follow  c   to 
evolve like that shown by Equation (4.3a) (Equation  

(4.3b)), as  c c     . So it seems suitable to  

name   the “hidden particle field” inside a particle 
while   the “hidden antiparticle field” (rather than the 
“negative-energy component”) inside the same particle. 

Let us try to reinterpret the phenomena displayed in 
the kinematics of special relativity (SR) via the enhance- 
ment of   field in a particle [22-25]: 

(a) Lorentz transformation 
Consider a particle’s WF shown by Equation (4.3a) in 

an inertial frame S (laboratory). Then take another S  
frame resting on the particle, so 0p   and  

2
0E E mc   . The WF in S  frame reads: 

    0

i i
, exp expx t p x E t E t                    

 (4.4) 

Here the space-time coordinates  ,x t  are introduced 
and defined in the S   frame via the phase of WF as 
follows: Based on the assertion that “phase remains 
invariant under the coordinate transformation” which 
was named the “law of phase harmony” by de Broglie 
and was regarded by himself as the fundamental achieve- 
ment all his life [34], comparing the phase in Equation 
(4.4) with that in Equation (4.3a) and using  

2 2 2
0 1 ,E E v c p Ev c   , one finds 

2

2 21

t vx c
t

v c

 


              (4.5) 

Then, all formulas in the Lorentz transformation can 
be obtained. In some sense, what used here is a particle’s 
wave-packet which serves as a microscopic “ruler”, also 
a “clock” simultaneously. 

(b) There is a speed limit c for a massive particle. 
For a free KG particle, using Equation (3.33), we may 

define an “impurity ratio” R  for the amplitude of 
4Here m always refers to the “rest mass” also the “inertial mass” for a 
particle or its antiparticle, see the excellent paper by Okun in Ref. [33]. 
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hidden   field to that of   field and calculate it being  

 
 

2

KG
free 2

1 1

1 1

v c
R

v c




    
   

      (4.6) 

When 0, 0v   , with the increase of v,    
increases monotonously. The particle becomes more and 
more “impure” until 1    as a limit of particle 
being still a particle. As shown by Equation (4.6), the 
reason why its velocity has a limiting value c (the speed 
of light) is because   and   have opposite evolution 
tendencies in space-time as shown by Equations (4.1)- 
(4.3) essentially,   strives to hold   back from going 
forward until a balance nearly reached when    
and v c . 

(c) The “length contraction” (FitzGerald-Lorentz con- 
traction) and “time dilation” 

As usual, we will show “length contraction” via a 
wave-packet of KG particle moving at a high-speed  v  
but further ascribe it to the enhancement of   field 
hidden inside the particle. 

First, consider a wave-packet of KG particle at rest [25, 
35] 

 

   
2

1 43

,

4 π exp exp i d
2

x t

k
kx t k



 






 
      

 


 (4.7) 

Assuming 
mc 


, we have approximately that  

 
 

   

1 4 2 2

1 2

,

π i
exp

2 1 i1 i

x t

x mc t

t mt m



 


 
   

    

 (4.8) 

If 1t m  , the diffusion of wave-packet at low 
speed  v c  can be ignored. Then we perform a 
“boost transformation”  

    2 2 21 , 1 ,x x vt t t vx c v c          

to push the wave-packet to high velocity  v c , 
yielding 

 
1 4

i
boost

2 2
2

2

, e
π

exp i 1 exp
2

x t

mc
t






   
 

   
      

   

    (4.9) 

where   2, 1
mc

x vt      


 and  

2
21

1
mc 

 



  


        (4.10) 

Here   is the width of wave-packet measured from 
its center 0  . Equations (4.7)-(4.10) show the “length 
contraction”. 

Second, we calculate from Equations (4.9) and (3.33)  

the values of 
2 2

,   and the probability density 
2 2     respectively.5 Their peak values all in- 

crease with the increase of v (boost effect). However, the 
“intensity” of 

2  or 
2  increases even faster than 

that of   while keeping the constraint    in the 
boosting process. 

We also calculate the square of “impurity ratio” R  
for this moving wave-packet: 

 
 

2 2
2

2

free 22

d
1 1

1 1d

KG

x
v c

R
v cx












           




    (4.11) 

which is the counterpart of Equation (4.6) for a plane WF 
of KG particle. 

With these calculations, we might intuitively under- 
stand the length contraction as an effect of coupling (i.e. 
entanglement) between   and   fields due to their 
opposite evolution tendencies in space as discussed in 
previous point (b). 

Let’s turn to the “time dilation” shown by the variation 
of the mean life 

0

21







             (4.12) 

of a particle, say, a pion ( π  or π ) with its velocity 
v . 

To understand it, let’s return back to Equations (4.1)- 
(4.3) at 0x   and view the WF  c   on its complex 
plane with Re  and Im  ( Re c  and Im c ) as 
abscissa and ordinate. We may see that the time reading 
of the “inner clock” for a particle (or an antiparticle) is 
“clockwise” (or “counter clockwise”). Thus with the 
increase of particle velocity, though the time reading 
remains clockwise (due to the dominance of   field), it 
runs slower and slower because of the enhancement of 
hidden   field. 

(d) WF’s group velocity gu  versus phase velocity 

pu . 
In RQM, a particle’s velocity v  should be identified 

with its group velocity gu . Actually, we have  

2 2 2 4

2

d d d

d d dg

E

E
u p c m c

k p p

pc
v c

E





   

  

  (4.13) 

5Some pictures of numerical calculation are shown in Ref. [35] and 
section 9.5C at Ref. [25], where an error in Equation (9.5.26) is cor-
rected here. 
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However, the fact that there is an upper bound for 
particle’s velocity doesn’t mean that no speed can exceed 
that of light, c . Indeed, there is another velocity pu , the 
phase velocity in the WF 

p

E
u

k p


                 (4.14) 

And the relation 2 2 2 2 4E p c m c   implies that 

2 2
2 ,g p p

g

c c
u u c u

u v
         (4.15) 

In our opinion, the role of pu c  here is crucial to 
maintain the quantum coherence of WF in the space-time 
globally, we will further discuss this problem elsewhere. 
In 1923, de Broglie discovered Equation (4.15) in his 
relativistic theory. However, in the Schrödinger equation 
of NRQM, the phase velocity remains undefined. See 
Ref [34]. 

5. Dirac Equation as Coupled Equations of 
Two-Component Spinors 

Let us turn to the Dirac equation describing an electron 

 2i iV H c mc
t

            
   (5.1) 

with α  and   being 4 4  matrices, the WF   is a 
four-component spinor  





 

  
 

              (5.2) 

Usually, the two-component spinors   and   are 
called “positive” and “negative” energy components. In 
our point of view, they are the hiding “particle” and 
“antiparticle” fields in a particle (electron) respectively 
([25], see below). Substitution of Equation (2) into 
Equation (1) leads to 

2

2

i i

i i

V c mc
t

V c mc
t

  

  

         


         

 

 




   (5.3) 

(  are Pauli matrices). Equation (3) is invariant under 
the combined space-time inversion with 

     
     
     

, ,

, , , ,

, , ,

, , ,

c

c

c

t t

t t t

t t t

V t V t V t

  

  

   
  
  
   

x x

x x x

x x x

x x x




      (5.4) 

showing that in its form of two-component spinors, Dirac 

equation is in conformity with the underlying symmetry 
Equation (3.29). Note that under the space-time inversion, 
the   remain unchanged (However, see Equations (9)- 
(11) below). Alternatively, Equation (3) also remains in- 
variant under a mass inversion as 

   
   

, , , ,

, , ,

c

c

m m t t

t t V V

 

 

  

 

x x

x x
       (5.5) 

In either case of Equation (5.4) or (5.5), we have6 

 
 
 

 
 

 
, ,

, ,
, ,

c

c

c

t t
t t

t t

 
 

 

   
        

   

x x
x x

x x
  (5.6) 

For concreteness, we consider a free electron moving 
along the z axis with momentum 0zp p   and having 
a helicity 1h   p p , its WF reads: 

   

1

0
, exp i

0

z t pz Etp

E m






 
 
  

       
     
 

  (5.7) 

with   . Under a space-time inversion  

 , , ,c cz z t t p p E E     or mass inversion  

 , ,c cm m p p E E     , it is transformed into a 
WF for positron (moving along z  axis) 

   

1

0

, exp i

0

c
c c cc

c
c

z t p z E tp

E m






 
 
                
 
 

  (5.8) 

with  , 0, 0c c c cp E    . However, the positron’s  

helicity becomes 1c c
c

c

h


  
p

p


. This is because the  

total angular momentum operator for an electron reads  

ˆ ˆ
2

 


J L                (5.9) 

Under a space-time inversion, the orbital angular 
momentum operator is transformed as  

 
 

ˆ ˆ i

ˆˆi c c

     

        





L r p r

r r p L
   (5.10) 

To get ˆ ˆ
cJ J  with ˆ ˆ ˆ

2c c cL 


J  , we should have  

ˆ ˆc                   (5.11) 

6The reason why we use c   instead of c  will be clear in Equations 

(5.12)-(5.15). Actually, we emphasize Dirac equation as a coupling 
equation of two two-component spinors, Equation (3), rather than 
merely a four-component spinor equation. 
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Hence the values of matrix element for positron’s spin 
operator c  is just the negative to that for   in the 
same matrix representation. 

Notice that Equation (7) describes an electron with 
positive helicity, i.e., ˆ zp p    p 7. Under a 
space-time inversion, it is transformed into 

  ˆ ic c c z c c cp
z

           
p  in Equation (8), i.e.,  

ˆc c c c cp     p , meaning that Equation (8) describes a 
positron with negative helicity. 

In its form of four-component spinor, Dirac equation, 
Equation (5.1) with 0V  , is usually written in a co- 
variant form as (Pauli metric is used:  

4 4 5 1 2 3 4

0
i , i , ,

0k k

I
x ct

I
        

 
       

 
, see  

Ref. [25]):  

  0m               (5.12) 

Under a space-time (or mass) inversion, it turns into an 
equation for antiparticle: 

  0cm               (5.13) 

with an example of c   shown in Equation (8). Let us 
perform a representation transformation: 

 5
c

c c c
c


   


       
 

    (5.14) 

and arrive at 

  0cm                 (5.15) 

due to  5 , 0   . Since c  and c   are essentially 
the same in physics, (this is obviously seen from its 
resolved form, Equation (5.3)), it is merely a trivial thing 
to change the position of c  in the 4-component spinor 
(lower in Equation (5.14) and upper in Equation (5.8)).  
What important is c c   for characterizing an anti-  

particle versus >   for a particle. Therefore, if a 
particle with energy E runs into a potential barrier 

0V V E m   , its kinetic energy  
 0 0T E V   becomes negative, and its WF’s third 
component in Equation (5.7) suddenly turns into 

 2 2
0

0 0

,
p p

p E V m
E V m V E m

       
     

, whose  

absolute magnitude is larger than that of the first com- 
ponent. This means that it is an antiparticle’s WF satis- 
fying Equation (5.15) (with  0cE V E m    and 

c c  ) and will be crucial for the explanation of 
Klein paradox in Dirac equation (For detail, please see 
Appendix). However, we need to discuss the “probability 
density”   and “probability current density” j  for a 
Dirac particle versus c  and cj  for its antiparticle. 
Different from that in KG equation, now we have 

† † †

† † †
c c c c c c c

      

      

  

   
       (5.16) 

which is positive definite for either particle or anti- 
particle. On the other hand, we have  

 
 

† † †

† † †
c c c c c c c

c c

c c

     

     

  

   

j

j

  

  
  (5.17) 

(we prefer to keep   rather than c  for antiparticle). 
For Equations (5.7), (5.8) and (5.14), we find  1c     

 22
0 0 0c c

z z
c

pp
j j V

E m E m
     

 
  (5.18) 

which means that the probability current is always along 
the momentum’s direction for either a particle or anti- 
particle. 

Above discussions at RQM level may be summarized 
as follows: The first symptom for the appearance of an 
antiparticle is: If we perform an energy operator  

 iE t   on a WF and find a negative energy  

 0E   or a negative kinetic energy  0E V  , we’d 
better doubt the WF being a description of antiparticle 
and use the operators for antiparticle, Equation (2.18). 
Then for further confirmation, two more criterions for 
  and j  are needed (see Appendix). 

6. The Strong Reflection Invariance in CPT 
Theorem and QFT 

In QFT, the starting point is the field operator which is 
constructed for free complex boson field as [36] 

 

      

      

†

† †

1 ˆˆ ˆ, exp i exp i
2

1 ˆˆ ˆ, exp i exp i
2

t a Et b Et
V

t a Et b Et
V







             


             






p p
p p

p p
p p

x p x p x

x p x p x

                (6.1) 
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Similarly, the field operator for free Dirac field reads: 

         

         

i

1

† † i†
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1
ˆ ˆ, e

1
ˆ ˆ, e
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h
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h

m
t a u

EV

m
t a u

EV





 



 




  


  

 



p x
p

p

p x
p

p

x p

x p

       

       

† i

† i

ˆ

e

e

ˆ

h h Et

h h Et

b v

b v

  

 




 

p x
p

p x
p

p

p

              (6.2) 

 
In Equation (6.1), the annihilation operator âp  for par- 

ticle and the creation operator †b̂p  for antiparticle in 
Fock space are introduced. In Equation (6.2), instead of 
index s  ( 1 2  , the spin’s projection along the fixed 
z  axis in space), the helicity h  is used. See Ref. [37]. 

Let us return back to the CPT theorem proved by 
Lüders and Pauli in 1954-1957 [10-12]. The proof of 
CPT theorem contains a crucial step being the con- 
struction of so-called “strong reflection”, consisting in a 
reflection of space and time about some arbitrarily 
chosen origin, i.e. , t t r r . 

Pauli proposed and explained the strong reflection in 
Ref. [12] as follows: When the space-time coordinates 
change their sign, every particle transforms into its anti- 
particle simultaneously. The physical sense of the strong 
reflection is the substitution of every emission (absorp- 
tion) operator of a particle by the corresponding absorp- 
tion (emission) operator of its antiparticle. And there is 
no need to reverse the sign of the electric charge when 
the sign of space-time coordinates is reversed. 

What Pauli claimed, in our understanding, means that 
under the strong reflection for boson field, one has  

† †

, ,

ˆ ˆˆ ˆ,

t t

a b a b

 

  p p p p

x x
            (6.3) 

The mutual transformation, Equation (6.3), in Fock 
space ensures the field operators, Equation (6.1), invari- 
ant under the strong reflection in the sense of (see also 
[25,26]): 

       
   

       
   

1

1
† †

† †

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

t t

t t

t t

t t

 

 

 

 







   



   

x x

x x

x x

x x

 

 
   (6.4) 

Here let us introduce the notation   to represent 
the strong reflection so that the presentation could be 
easier and clearer as shown above. Similarly, for Dirac 
field, under the strong reflection one has 

       † †

, ,

ˆ ˆˆ ˆ,h h h h

t t

a b a b 

   

  p p p p

x x
         (6.5) 

Here it is important to notice that the helicity, h , will 
be reversed before and after the strong reflection for a 

particle and its antiparticle respectively as discussed in 
Section V. Because Equation (6.2) is written in 4 com- 
ponent spinor covariant form, the invariance of Dirac 
field operator under the strong reflection should be ex- 
pressed rigorously as 

       
   

       
    

1

5

1
† †

† †
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ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

t t

t t

t t

t t

 

  

 

  







    



    

x x

x x

x x

x x

 

 
     (6.6) 

   
    

5

† †
5

ˆ ˆ, , ,

ˆ ˆ, ,

t t

t t

  

  

   

   

x x

x x
          (6.7) 

which are useful in proving the “spin-statistics con- 
nection” by strong reflection invariance. 

QFT is a successful theory just because it is estab- 
lished on sound basis with the field operator being one of 
its cornerstones. Historically, through various trials and 
checks, Equations (6.1)-(6.2) were eventually found (see 
Section 3.5 of Ref. [36]). Why they are correct and why 
one would fail otherwise? In our understanding, it is just 
because they are invariant under the strong reflection as 
shown by Equations (6.4) and (6.6). 

However, as emphasized by Pauli [12] and further 
stressed by Lüders [11], at least two more rules should be 
added in doing calculations: 

(a) The order of an operator product in Fock space has 
to be reversed under the strong reflection, e.g.,  

           1 1 1
ˆ ˆˆ ˆAB B A

  
      . So  

is the order of a process occurred in a many-particle 
system. 

(b) Another rule is: One should always take the normal 
ordering when dealing with quadratic forms like  
   ˆ ˆx x   etc. 
Then Pauli and Lüders were able to prove that the 

Hamiltonian density  , t x  for a broad kind of model 
in relativistic QFT is invariant under an operation of 
“strong reflection”, i.e., 

      
   

1
ˆ ˆ, ,

ˆ ˆ, ,

t t

t t




   

x x

x x

   

 
      (6.8) 
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The Hamiltonian density is also invariant under a Her- 
mitian conjugation (H.C.) as: 

     †ˆ ˆ ˆ, , ,t t t   x x x        (6.9) 

Furthermore, they proved the CPT theorem via the 
identification of the product of T, C, and P in QFT with 
the combined operation of the strong reflection and a 
Hermitian conjugation. 

The validity of CPT invariance, i.e. Equations (6.8) 
and (6.9) has been verified experimentally since the dis- 
covery of parity violation ([3-8] etc.) and the establish- 
ment (and development) of standard model ([38] etc.) in 
particle physics till this day. See the excellent book, Ref. 
[19] and the Review of Particle Physics, Ref. [9]. 

After restudying the historical contribution of Pauli- 
Lüders strong reflection invariance, we feel good in un- 
derstanding that what we claim in RQM (Sections III-V) 
is essentially the same as or very close to their idea. 

In fact, this paper is the direct continuation of our first 
one in 1974 [22], which was inspired jointly by the dis- 
coveries of violations in P, C, CP, T symmetries in- 
dividually (but CPT invariance holds), also by Lee-Wu’s 
proposal in 1965 that the relationship between a particle 
a  and its antiparticle a  should be [13]: 

a CPT a            (6.10) 

and especially by Pauli’s invention of the strong re- 
flection in 1955 [12]. 

Below, we would like to show that WFs for a particle 
and its antiparticle given in Equations (5.7) and (5.8) are 
precisely that derived from QFT as expected. 

Using Equation (6.2) for Dirac field, we find the WF 
of an electron being 
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  (6.11) 

but the hermitian conjugate of a positron’s WF is given 
by 
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p x

x x p
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   (6.12) 

which leads to positron’s WF being  

       i1
, ec c ch E t

ce
c

m
t v

EV
 

   p xx p    (6.13) 

Similarly, Equations (2.20) and (2.21) can be derived 
from Equation (6.1) as expected. 

7. An Oversight in QFT (Helicity States or 
Spin States?)—Why a Parity-Violation 
Phenomenon Was Overlooked Since 
1956-1957? 

Through analysis in RQM till QFT, we stress the ne- 
cessity of using helicity  h  to describe a fermion or 
antifermion. Here is an interesting example. Since 2002, 
Shi and Ni [39-43] predicted a parity-violation pheno- 
menon as follows: 

An unstable (decaying) fermion (e.g., neutron or muon) 
has different mean lifetimes for being right-handed (RH) 
or left-handed (LH) polarized during its flight with the 
same speed  v v c   

,
1 1R L

  
 

 
 

           (7.1) 

where 2
0 1    , 0  the mean lifetime when it is  

at rest. Similarly, for its antifermion, their lifetimes will 
be  

,
1 1R L

  
 

 
 

          (7.2) 

Hence, the lifetime asymmetry can be defined as  

R L

R L

A
  
 


 


             (7.3) 

This is not a small effect. For instance, in Fermilab, 
physicists consider to build a muon collider [44]. The 
collision of   and   beams must happen before the 
muons decay. It was estimated that if a muon rings along 
at 1.5 TeV, the time dilation of SR stretches its lifetime 
to 30 milliseconds—up from 2 microseconds when it’s 
still. That’s time enough for 500 circuits in the final ring. 
However, as discussed in Ref. [43], if the prediction of 
life asymmetry Equation (7.1) is correct, the lifetime of 
RH   will be stretched to 146 days while that of LH 
  only 15 milliseconds. The lifetime asymmetry of 
  will be just the opposite as shown by Equation (7.2). 
Therefore, it seems necessary to take Equations (7.1)- 
(7.2) into account in the design of a muon collider. 

The problem is: How can such a parity-violation phe- 
nomenon be overlooked since 1956-1957? One the- 
oretical reason is: in the past, for describing a fermion in 
flight  0v  , instead of helicity states, the “spin-states” 
assigned by s  (spin’s projection along the fixed z  
axis in space) were often incorrectly used (see [40-42]). 
So previous calculations on the lifetime always led to a  
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prediction that 2
0 1     without parity-violation  

in contrast to Equations (7.1)-(7.3).8 
The interesting thing is: While Equations (7.1) and 

(7.2) display the violation of P or C symmetry to its 
maximum, their “cross-symmetry”, R L   and  

L R  , reflects the symmetry of    shown by 
Equation (6.5) exactly. 

8. Dirac Particles Conserve the Parity 
Whereas Neutrinos Are Likely the 
Tachyons 

8.1. Why Dirac Equation Respects the Parity 
Symmetry? 

In the standard representation of Dirac equation for free 
particle  1c   

     i iD D Dm
t
   
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


      (8.2) 

As discussed in section V, Equations (8.1) and (8.2) 
are invariant under the space-time inversion: 
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   (8.3) 

with subscript “c” meaning the antiparticle. 
After transforming  D  into the “Weyl representa- 

tion” (chiral representation) as 
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we have 
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      (8.5) 

If 0m  , Equation (8.5) reduces into two Weyl equ- 
ations describing two kinds of permanently LH and RH 
polarized massless fermions respectively. So we may 
name  D  and  D  (which are usually called as chi- 
rality states or chiral fields in 4-component covariant 
form) as the “hidden LH and RH spinning fields” inside 
a Dirac particle, which can be either LH or RH polarized 
(with helicity 1h    or 1) explicitly. See below. 

A new symmetry is hidden in Equation (8.5), which 
remains invariant under the pure space inversion  
 , t t x x  transformation, i.e., the parity opera- 
tion as 
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Here we add “ ' ” in the superscript of RHS to stress 
that the WF after the space inversion may be different 
from that at the LHS (before the space inversion). We 
knew that the WF in Dirac representation after a space 
inversion reads 

       4
ˆ , ,D DP t t   x x      (8.7) 

Using Equation (8.6), the RHS of Equation (8.7) turns 
out to be 
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 (8.8) 

Hence, we understand the reason why a Dirac particle 
respects the parity symmetry as shown by Equation (8.7) 
is because it enjoys the symmetry Equation (8.6) hiding 
in the 2-component spinor form (in Weyl representation). 
For concreteness, let’s write down the solution of Equa- 
tion (8.1) 
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     (8.9) 

Furthermore, we choose a simplest “spin state” with  
   ˆ D D

zp p  and    ˆ D D
z   : 

8The wonderful experiment by Wu et al. [6] reveals the decay configu-
ration of a polarized neutron bearing a strong resemblance to a “comet”
with its “head” oriented along neutron’s spin parallel to z axis in 
space (note that a static neutron has no helicity h , see [45]) while its 

“tail” composed of emitted e  and e . So it was expected intuitively 

that [39] if one pushes the “comet” along its “head”’s direction, it (sud-
denly has a helicity 1h   and) will be relatively more stable than it is 
pushed along its “tail” (when it has 1h   ). That’s what Equation (7.1)
means and why the use of “spin state” fails to get it right. 
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   
 

 
   i

1 2

1

0
, e 0

0

z

z

D
D p z Et

s zD
z t Ep

E m









 
 
  

            
 

 (8.10) 

While Equation (8.10) is an eigenfunction of ˆ z  with 
eigenvalue 1 2zs  , its helicity h  remains unfixed, 
depending on the value of zp  being positive or negative. 
Only after 0zp p   is fixed, can we have a “helicity 
state” describing a RH particle with 1h  : 

   
 

 
 

 

i
RH

1

0
, e

0

0, 0

D
D pz Et

D
z t p

E m

p E







 
 
  

           
 

 

     (8.11) 

Looking at Equation (8.11) in the Weyl representation, 
we see that 

      

      

11 1
,

2 2 0

11 1

2 2 0

D D D

D D D

p

E m

p

E m

  

  

       
 
       
 

  (8.12) 

   D D  . So Equation (8.11) describes a RH particle  

just because the  D  field dominates the  D  field. 
Now we perform a space inversion on Equation (8.11), 
according to the rule Equation (8.7), yielding 

     
 

 

   

      

      
       

i
RH

1

0
ˆ , e ,

0

11 1
,

2 2 0

11 1

2 2 0

,

D
D pz Et D

D

D D D

D D D

D D D D

P z t z tp

E m

p

E m

p

E m

E p

m


 



  

  

   


 



  

  

   

 
 

  
    
      

 
       
 
       
 


 

 

(8.13) 
Hence we see that the reason why    ,D z t


 be- 

comes a LH WF, i.e., 

       RH LH
ˆ , ,D DP z t z t          (8.14) 

is just because of the dominance of  D

 field over  

 D

 field after the P-operation. Before and after the  

operation, p p , the dominant (subordinate) field is 
transformed into dominant (subordinate) field:  

        ,D D D D   
 

  , as shown by Equation (8.6). 

In summary, Dirac equation is invariant under a space 
inversion whereas its concrete solution of WF may be not. 
The latter may change from that for a RH particle to a 
LH one or vice versa, but with the same mass m, showing 
the law of parity conservation exactly. 

8.2. Tachyon Equation as a Counterpart of the 
Dirac Equation 

Now a question arises: Can we find an equation which 
violates the symmetry of pure space inversion? 

The answer is “yes”. Let’s introduce a new equation in 
Weyl representation from Equation (8.5) by erasing the 
superscript (D), replacing the mass term by sm m  
and changing its sign from “+” to “−” in the first equ- 
ation of Equation (8.5) only [46] 

i i

i i

s

s

m
t

m
t

  

  

    
     
 




        (8.15) 

where sm  (real and positive) refers to the mass of a 
hypothetical particle. We will see immediately that it is a 
“superluminal particle” or “tachyon”. 

Indeed, substituting a plane-wave solution 

 
0

exp i
1zp z Et 
 

      
 

      (8.16) 

with the particle’s helicity 1h    into Equation (8.15), 
we find that  0, 0zp p E    

2 2 2
sE p m                   (8.17) 

 1
,

s

p E
m

              (8.18) 

Since E    and k p , from Equation (8.17), 
the dispersion-relation of wave reads 

2 2 2
sk m                 (8.19) 

As in Section IV, we define the wave’s phase velocity 

pu  as 

pu
k


                 (8.20) 

while its group velocity gu  
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d

dgu v
k


               (8.21) 

being identical with the particle’s velocity v . Equation 
(8.19) yields a relation between them coinciding with 
Equation (4.15) exactly: 

2
p gu u c                (8.22) 

However, the relations among ,E p  and v  are 
dramatically different  

2

2 2

2 2

,

1 1

s sm c m v
E p

v v

c c

 

 

       (8.23) 

which dictate v c  such that ,E p  are real and 
0E  . 

Like Equation (8.4), we define: 

   1 1
,

2 2
               (8.24) 

and find from Equation (8.15) that (in Dirac represen- 
tation) 

i i s sm
t
   
   


       (8.25) 

i i

i i

s

s

m
t

m
t

  

  

    
    
 




         (8.26) 

0
,

0s

I

I


 


    

         
. Despite the difference be-  

tween Equation (8.26) and Dirac equation, Equation (8.2), 
both of them respect the combined space-time inversion 
   symmetry like Equation (8.3)  

     
     

, , ,

, , ,

c

c

t t t

t t t

  

  

   


   

x x x

x x x
  (8.27) 

with 

i i

i i

c c s c

c c s c

m
t

m
t

  

  

    
    
 




        (8.28) 

Similarly, we define the WF in Weyl representation 
after   inversion as: 

       
       

, , , ,

, , , ,

c

c

t t t t

t t t t

   

   

    


    





x x x x

x x x x
 (8.29) 

Based on Equations (8.27)-(8.29), we find 

     

     

1
, , ,

2
1

, , ,
2

c c c

c c c

t t t

t t t

  

  

    

    

x x x

x x x

    (8.30) 

i i

i i

c c s c

c c s c

m
t

m
t

  

  

    
     
 




            (8.31) 

which can also be obtained via the   operation on 
Equation (8.15). Equations (8.15) and (8.31) are better to 
be compared in the following form: 

ˆ ˆ

ˆ ˆ

s

s

E m

E m

  

  

    


  

p

p




           (8.32) 

ˆ ˆ

ˆ ˆ

c c c c c s c

c c c c c s c

E m

E m

  

  

   


   

p

p




       (8.33) 

ˆ ˆi , i ,c c cE
t

        
p   . Interestingly, Equation  

(8.33) can also be reached from Equation (8.32) via a 
“mass inversion” like that in Sections III and V: 

 

 
 

       

,

ˆ ˆ i no change in

ˆ ˆ i no change in

no change in

, , , , ,

s s

c

c

c

c c

m m

E E t
t

x

t t t t   

 
    
 
     
   
  

p p

x x x x

   

  (8.34) 

Furthermore, the probability density and probability 
current density before and after the   inversion can 
be derived as: 

† † † †

† † † †
c c c c c c c c c

        

        

    

   
      (8.35) 

and 

   
   

† † † †

† † † †
c c c c c c c c c

       

       

      

     

j

j


   

   
 (8.36) 

respectively. It is the sharp contrast between Equation 
(8.35) and Equation (5.16) for Dirac equation (i.e.,  

         † †D D D D D      ), that makes Equation (8.15)  

so unique as shown below. 
Let us look at the example of WF for tachyon, Equ- 

ations (8.16)-(8.18), with 0, 0zE p   and 1h   . It 
is allowed just because >   and so 0  . Second 
choice of Equation (8.16) with 
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 0 0 , 1zp p p h       but 

 1
,

s

p E
m

              (8.37) 

should be fobidden due to its ρ < 0. Another two possible  

WFs with 
1

0
 

 
   

 
 have zp p  and zp p   re-  

spectively, only the last one with  

 0 0 , 1zp p p h       is allowed due to its  

>   and 0  . 
Let us turn to the solution of Equation (8.31) for anti- 

tachyon with 0cE   by just performing   ope- 
ration on Equation (8.16) yielding: 

  0
exp i

1
c

c c z cp z E t 
          

   (8.38) 

Now if   0c
z c cp p  p , since  

0
, 1

1
c c
z z z  

 
   

 
, so helicity 1ch  . Substitution of  

Equation (8.38) into Equation (8.33) yields:  

 1
,c c c c c c

s

p E
m

            (8.39) 

which is allowed due to 0c  . Second choice of Equ- 
ation (8.38) with  0 0 , 1c

z c cp p p h       but  

 1
,c c c c c

s

p E
m

             (8.40) 

should be forbidden due to its 0c  . In another two  

possible WFs with 
1

0c c 
 

   
 

, only that with  

0, 1c
z c cp p h      is allowed due to 0c  . 
Hence we see that: The tachyon can only exist in a 

left-handed (LH) polarized state (with helicity 1h   ) 
whereas antitachyon only in a right-handed (RH) pola- 
rized state (with 1ch  ). We tentatively link this strange 
feature with that found in neutrinos—only L  and R  
exists in nature whereas R  and L  are strictly for- 
bidden. 

Furthermore, at first sight, although Equation (8.15) 
certainly has no symmetry under the space inversion 
 , t t x x , it seems to enjoy a pure “time- 
inversion”  , t t  x x  symmetry like 

     
     

, , ,

, , ,

c

c

t t t

t t t

  

  

  
   

x x x

x x x
   (8.41) 

i i

i i

c c s c

c c s c

m
t

m
t

  

  

       
      
 




      (8.42) 

We add “ ' ” in the superscript of c  to stress that 
 ,c t x  (being a time reversed WF), though looks like 

some antitachyon’s WF, is obviously different from 
 ,c t x  gained through the   inversion, Equation 

(8.31). Actually, based on Equations (8.29)-(8.31) and 
(8.41)-(8.42), we have: 

       
       

, , , , ,

, , , , ,

c c c c

c c c c

t t t t

t t t t

   

   

    
     

x x x x

x x x x
  (8.43) 

Interestingly, we cannot find from Equation (8.42) the 
“physical solution” of  ,c t x  with > cc

    (so 
0c  ) and 1ch   (for R ) simultaneously. Only 

 ,c t x  makes physical sense, but it is just  ,c t x  
like that discussed in Equation (8.39). Notice that the 
sign change x x  in the phase of WF makes a 
change in the direction of momentum c cp p . But a 
WF is always composed of two fields in confrontation, 
like c  versus c  here. And the explicit helicity ch  
is determined by which one of these two hidden fields 
being in charge. So the change of x x  in these four 
equalities of Equation (8.43) does reverse the status of 

c  versus c  (or c  vs c  ), rendering helicity re- 
versed explicitly. The subtlety of tachyon equation, un- 
like Dirac equation, lies in the fact that only L  and R  
exist whereas R  and L  are strictly forbidden, i.e., 
the parity symmetry is violated to maximum. Hence, in 
strict sense, there is also no physically meaningful WF 
after the operation of pure “time inversion” on Equation 
(8.15). We will insist on Equation (8.31) rather than 
Equation (8.42)—there is only one correct way leading 
from tachyon to antitachyon via the   inversion es- 
sentially. 

In 2000, Equation (8.25) was first proposed by Tsao 
Chang and then collaborated with Ni in Ref. [46] (see 
also [47-52] and the Appendix 9B in Ref. [25]). At first 
sight, the difference between Equations (8.25) and (8.1) 
amounts to substituting the mass term m  by s sm   

with 
0

0s

I

I


 
   

 being an antihermitian matrix.  

Usually, for an equation with nonhermitian Hamiltonian, 
there is no guarantee for the completeness of its mathe- 
matical solutions. In other words, the unitarity of its phy- 
sical states is at risk. Sometimes, however, a non- her- 
mitian Hamiltonian can be accepted in physics. For 
example, in the optical model for nuclear physics, an 
imaginary part of potential, 0 1iV V V  , is used to 
describe the absorption of incident particles successfully. 
The interesting thing for “tachyonic neutrino” is: Solu- 
tions of Equation (8.15) for 0E    0cE   are co- 

inciding with that for     c c   whereas an- 

other would-be solutions with 0E   but     
( 0cE   but c c  ) are forbidden, see Equations 



G.-J. NI  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

668 

(8.37) and (8.40). It seems like half of would-be solu- 
tions disappear automatically. Equivalently, from phy- 
sical point of view, only half of states with 0   or 

0c   are allowed in nature whereas another half with 
0   or 0c   are not. Hence one unique feature of 

“tachyon” equation, like Equation (8.15) or (8.26), lies in 
its strange realization of unitarity violation that half of 
would-be states (being tentatively identified with R  
and L ) are absolutely forbidden whereas another half 
( L  and R ) are stabilized. The permanently longitu- 
dinal polarization property of neutrino and antineutrino 
like that analysed above was first predicted by Lee and 
Yang in 1957 [3-5] and had been verified by GGS ex- 
periment in 1958 [53]. Further discussion on this topic is 
currently in preparation. 

9. Antigravity between Matter and 
Antimatter 

In hindsight, there are two Lorentz invariants in the kine- 
matics of SR: 

   
   

2 22
1 2 1 2

2 22
1 2 1 2 const

c t t

c t t

  

       

x x

x x
    (9.1) 

2 2 2 2 2 2 2 4E c E c m c    p p       (9.2) 

It seems quite clear that Equation (9.1) is invariant 
under the space-time inversion  , t t x x  and 
Equation (9.2) remains invariant under the mass inver- 
sion  m m  We believe that these two discrete 
symmetries are deeply rooted at the SR’s dynamics via 
its combination with QM and developing into RQM and 
QFT—the particle and its antiparticle are treated on 
equal footing and linked by the symmetry    es- 
sentially. Hence we can perform a mass inversion on 
Equation (9.2) in each of two inertial frames with ar- 
bitrary relative velocity v  in the sense of  

, ,c c cm m m E E      p p , yielding: 

2 2 2 2 2 2 2 4 2 4
c c c c cE c E c m c m c     p p    (9.3) 

The invariance of Equation (9.2) under mass inversion 
as a whole reflects the experimental fact that particle and 
antiparticle are equally existing in nature even at the 
level of classical physics. 

Example: The motion equation for a charged particle 
(say, electron with charge 0q e   ) in the external 
electric and magnetic fields, E  and B , is given by the 
Lorentz formula: 

1
m q

c
    
 

a E v B          (9.4) 

Then the operation of either cq q q    or  

cm m m    on Equation (9.4) will realize the 
transformation from particle into its antiparticle (say, 

positron with charge 0cq q e    ) with the acce- 
leration change from c  a a a  as 

1
cm q

c
     
 

a E v B          (9.5) 

Based on what we learn from RQM (Sections III-V) as 
well as Equations (9.1)-(9.5), we may conjecture that for 
a classical theory being capable of treating matter and 
antimatter on an equal footing, it must be invariant under 
a mass inversion cm m m   . 

Notice that, however, Equation (9.4) (Equation (9.5)) 
is only valid for particle (antiparticle) moving at low 
speed, it must be modified to adapt to high-speed cases 
through the invariance of continuous Lorentz transfor- 
mation. So we need “double checks” for testing a clas- 
sical theory being really “relativistic” or not. 

Let us restudy the theory of general relativity (GR). In 
a  , , ,     metric, the Einstein field equation (EFE) 
reads (see, e.g. , Refs. [54-56])  1c  , 

1
8π

2
G R g R GT              (9.6) 

Of course, Equation (9.6) is covariant with respect to 
the Lorentz transformation. But could it withstand the 
test of mass inversion? 

On the LHS of Equation (9.6), the Einstein tensor 
G  contains no any mass and no charge as well. But on 
the RHS, the energy-momentum current density tensor 
T  is proportional to particle’s mass m and so changes 
its sign under an operation of m m . Hence as a 
whole, Equation (9.6) cannot remain invariant under the 
mass inversion. The reason seems rather clear that anti- 
matter was not taking into account when GR was es- 
tablished in 1915. To modify EFE such that it can pre- 
serve the invariance of mass inversion, in 2004, one of us 
(Ni) proposed to add another term with cT  for anti- 
matter, yielding [27] 

 1
8π

2
cR g R G T T            (9.7) 

which remains invariant under a mass inversion since: 

 ,c cT T T T m m             (9.8) 

In a weak-field (or the post-Newtonian) approximation, 
this modified EFE, MEFE, Equation (9.7), will lead to 
modified Newton gravitational law as 

 grav 2

mm
F r G

r


             (9.9) 

where the “  ” sign means attractive force between m  
and m  being both matter or antimatter whereas the “+” 
sign means repulsive force between m  and m  (both 
positive) if one of them is antimatter. 

If we define the “gravitational mass” for matter and 
antimatter separately 
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 
 grav

0, matter

0, antimatterc

m
m

m m

 
   

 (9.10) 

Then Equation (9.9) can be recast into one equation 

  grav grav
grav 2

m m
F r G

r


          (9.11) 

which bears a close resemblance to the Coulomb law in 
classical electrodynamics (CED) 

 Coul 2

qq
F r

r


            (9.12) 

In 1986, within the framework of classical field theory 
(CFT) plus some assumptions, Jagannathan and Singh 
derived the potential energy of two static point sources as 
[57] 

     1 e
1 a positive number

r
n

U r ee
r


      (9.13) 

where n  and   are spin and mass of the mediating 
field, e  is the “charge” of the source. For CED, 1n   
whereas 2n   for gravitational field ( 0   in both 
cases). So Equation (9.13) is in conformity with Equa- 
tions (9.11) and (9.12) for the case of “like sources” 
(with 0ee  ) [57], where the case for “unlike sources” 
 0ee   hadn’t been discussed. Here Equation (9.11) 
has been generalized to the case for “unlike sources”, but 
at a price that the “equivalence principle” in GR ceases 
to be valid when matter and antimatter coexist as shown 
by Equation (9.10). 

In 2011, the antigravity between matter and antimatter 
was also claimed by Villata in Ref.[58], where the ar- 
gument seems different from that explained above. But 
theory is theory, only fact will have the final say. So we 
are anxiously waiting for the outcome from the AEGIS 
experiment [59] (at CERN), which is designed to com- 
pare the Earth gravitational acceleration on hydrogen and 
antihydrogen atoms. 

10. Summary 

1) Being the combination of SR and QM, RQM is 
capable of dealing with particle and antiparticle on an 
equal footing. As long as we admit that the antiparticle’s 
momentum and energy operators should be ˆ ic  p    

and ˆ icE
t


 


  versus ˆ i  p   and ˆ iE

t





  for  

particle, it can be proved that the “negative-energy” WF 
  of particle corresponds to a “positive-energy” WF 

c  of antiparticle precisely. 
2) In general, an equation in RQM always has a dis- 

crete symmetry    which shows up as a trans- 
formation between a particle’s WF   and its anti- 
particle’s WF c :    , ,ct t x x . For a free par- 

ticle, it simply means    , ,ct t   x x . This is in 
conformity with the “strong reflection” in QFT invented 
by Pauli and Lüders, showing that the intrinsic property 
of a particle cannot be detached from the space-time. 

3) Following Feshbach-Villars’ deep insight, we are 
able to divide each and every WF   in RQM into two 
parts,     . Then the above symmetry is further 
rigorously expressed by an invariance of motion equation 
in RQM through the transformations c   and 

c   under either the space-time inversion  
 , t t  x x  or a mass inversion  m m . 
Since    in   whereas c c   in c , we 
may name   as the (dominant) hidden particle field in 
  while   the (subordinate) hidden antiparticle field 
in  . In this way, both the “probability density”   for 
a particle and c  for an antiparticle can be proved to be 
positive definite. Now we may say that the RQM is 
ensured to be self-consistent and can be regarded as a 
sound basis for QFT. 

4) All kinematical effects in SR can be ascribed to the 
enhancement of the magnitude of   field in a particle’s 
WF accompanying with the increase of particle’s ve- 
locity. 

5) As proved for Dirac particle with spin, the helicity 
of a particle is just opposite to that of its antiparticle 
under a space-time (or mass) inversion. Therefore, the 
experimental tests for the CPT invariance should include 
not only the equal mass and lifetime of particle versus 
antiparticle, but also the following fact: A particle and its 
antiparticle with opposite helicities must coexist in nature 
with no exception. A prominent example is the neutrino 
—A neutrino L  (antineutrino R ) is permanently left- 
handed (right-handed) polarized whereas the fact that no 

R  exists in nature must means no L  as well (as 
verified by the GGS experiment [53]). See also Section 
VII. 

6. Based on the invariance of space-time inversion or 
mass inversion (at the level of RQM) and the latter’s 
generalization to the classical physics, we tentatively dis- 
cuss some interesting problems in today’s physics, in- 
cluding the prediction of antigravity between matter and 
antimatter, as well as the reason why we believe neu- 
trinos are likely the tachyons. 
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Appendix: Klein Paradox for Klein-Gordon 
Equation and Dirac Equation 

We will discuss the Klein paradox [60] for both KG 
equation and Dirac equation based on Sections III and V, 
without resorting to the “hole” theory. 

AI: Klein Paradox for KG Equation 

Consider that a KG particle moves along z  axis in one- 
dimensional space and hits a step potential 

 
0

0, 0;

, 0.

z
V z

V z


  

              (A.1) 

Its incident WF with momentum  0p   and energy 
 0E   reads 

   exp i , 0i a pz Et z          (A.2) 

If 2 2
0E p m V   , we expect that the particle  

wave will be partly reflected at 0z   with WF r  and 
another transmitted wave t  emerged at 0z  : 

   exp i , 0r b pz Et z             (A.3) 

   exp i , 0t b p z Et z              (A.4) 

with  22 2
0p E V m    . See Figure 1(a).  

Two continuity conditions for WFs and their space 
derivatives at the boundary 0z   give two simple equa- 
tions  

 
a b b

a b p b p

 
   

           (A.5) 

The Klein paradox happens when 0V E m   be-  

cause the momentum  2 2
0p V E m      is real  

again and the reflectivity R  of incident wave reads 

22 1, if 0
,

1, if 0

R pb p p
R

R pa p p

  
      

   (A.6) 

(See Ref. [18] or § 9.4 in Ref. [25], where discussions 
are not complete and need to be complemented and 
corrected here). Because the kinetic energy E  at 0z   
is negative: 0 0E E V    , what does it mean? Does 
the particle still remain as a particle? 

As discussed in Section III, for a KG particle (or its 
antiparticle), two criterions must be held: its probability 
density ρ (or c ) must be positive and its probability 
current density j  (or cj ) must be in the same direction 
of its momentum p  (or cp ). 

See Figure 1(b), after making a shift in the energy 
scale, i.e., basing on the new vacuum at 0z   region, 
we redefine a WF t  (which is actually the WF in the 
“interaction picture”,  0ie 0V t

t t z   ) 

   exp i , 0t t b p z E t z             (A.7) 

 0 0E E V    . From now on we will replace KG WF 

t  by t  and t  according to Equation (3.26), if t  
still describes a “particle”, whose probability density t  
should be evaluated by Equation (27) with 

   0 0V V z z    yielding: 

 
2 2 2

0, 0t t t

E
b z

m
  


        (A.8) 

And its probability current density tj  should be 
given by Equation (3.12), yielding: 

 2
, 0t

p
j b z

m


             (A.9) 

Equation (A.8) is certainly not allowed. So to consider 
a “particle” with momentum 0p   moving to the right 
makes no sense. Instead, we should consider 0p   
(which also makes no sense for a particle due to the 
boundary condition) and regard t  as an antiparticle’s 
WF by rewriting it as: 

   exp i , 0t c c cb p z E t z            (A.10) 

Now using Equation (2.18) we see that Equation (A.10) 
does describe an antiparticle with momentum  

2 2 0c cp p p E m        and energy  

0 0cE E V E    . In the mean time, from the anti- 
particle’s point of view (i.e., with cE m ), the potential 
becomes    cV z V z    (comparing Equation (2.21) 
with Equation (A.10) as shown by Figure 1(c). 

It is easy to see from Equations (3.30), (3.31) and 
(A.10) that 

 

22 2

2

0,
0

c c c c
t t t

c c
t

E
b

m z
p

j b
m

       
 



  (A.11) 

So the reflectivity, Equation (A.6), should be fixed as: 
2 22

1
,

1

0

c
KG

c

c

p pb
R

a p p

p

p






  
      

  

    (A.12) 

And the transmission coefficient can also be predicted 
as: 

9We had discarded the solution of 0p   in Equations (A.7)-(A.9) as 

a particle. However, if we consider 0cp p     for an antiparticle, 

then similar to Equations (A.10) and (A.11), we would get 0c

t  but 

both c

tj  and cp  are negative, meaning that the antiparticle is coming 

from z   , not in accordance with our boundary condition. So the 
case of 0p   should be abandoned either as a particle or as an anti-

particle. 
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(a)                        (b)                           (c) 

Figure 1. Klein paradox: (a) If 0V E m  , there will be a wave t  at 0z  ; (b) Just look at 0z   region, making a shift 

      , 
0 0

V z V z V z V E E E V m        ; (c) An antiparticle (at 0z  ) appears with its energy 
cE E m   and 

the potential is    
cV z V z  . 
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   (A.13) 

KG KG 1R T                    (A.14) 

The variation of KGT  seems very interesting: 

 
 
 
 

0

KG

0

0, 0 0,

, 1 , 2

0, ,

0, 0,

c c

c c
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p p E E V
T

p E V E

p E m









   


    
 

      
     

 (A.15) 

Above equations show us that the incident KG particle 
triggers a process of “pair creation” occurring at 0z  , 
creating new particles moving to the left side (to join the 
reflected incident particle) so enhancing the reflectivity 

1KGR   and new antiparticles (with equal number of 
new particles) moving to the right. 

To our understanding, this is not a stationary state pro- 
blem for a single particle, but a nonstationary creation 
process of many particle-antiparticle system. It is ama- 
zing to see the Klein paradox in KG equation being ca- 
pable of giving some prediction for such kind of process 
at the level of RQM. Further investigations are needed 
both theoretically and experimentally.10 

AII: Klein Paradox for Dirac Equation 

Beginning from Klein [60], many authors e.g. Greiner et 
al. [61,62], have studied this topic. We will join them by 
using the similar approach like that for KG equation 
discussed above. 

Based on similar picture shown in Figure 1, now we 
have three Dirac WFs under the condition 0V E m  : 

 

   
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0
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   (A.16) 
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(A.17) 

where  2 2
0p V E m     . Unlike Equation (A.8)  

for KG equation, the probability density for Dirac WF 

t  is positive definite (see Equation (5.16))  
† † †

t t t t t t t                (A.18) 

Hence we will rely on two criterions: First, the pro- 
bability current density and momentum must be in the 
same direction for either a particle or antiparticle. For 

i  and r , their probability current density are  1c   

 
2† † †

2†

2
0

0
2

0

i i z i i z i i z i

r r z r

p
j a

E m z
p

j b
E m

        

  

           
 

 

(A.19) 
as expected. However, for t , we meet difficulty si- 
milar to that in Equation (A.9) 

10We find from the Google search that R. G. Winter in 1958 had written 
a paper titled “Klein paradox for the Klein-Gordon equation” and 
reached basically the same result as ours. So he was the first author 
dealing with this problem. Regrettably, it seems that his paper had 
never been published on some journal. 
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 2†
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2
0t t z t

p
j b z

V E m
  

   
 

  (A.20) 

the direction of tj  is always opposite to that of p ! 
The second criterion is: while >   for particle, we  
must have c c   for antiparticle. Now in i  (or  

r ), i i   (or r r  ), but the situation in t   

is dramatically changed, the existence of 0V  renders 

t t  ! 
The above two criterions, together with the experience 

in KG equation, prompt us to choose 0p   and regard 

t  as an antiparticle’s WF. So we rewrite: 
0ie V tc

t t                            (A.21a) 

 

   

i

i

1

0

e ,

0

1

0

e 0

0

c c

c c

c
p z E tc t

t c c
t

c

c
p z E tc t

t c c c
t

c

b p

E m

b zp

E m











 

 

 
 
   
    
    
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 (A.21b) 

where  5c c
t t     (with new normalization constant  

cb  replacing b ) describes an antiparticle with momen-  

tum 2 2 0c cp p p E m       , energy  

0 0cE V E    and >c c
t t  . Using Equation (5.17) 

we find 

 22
0, 0c c

t c
c

p
j b z

E m
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
     (A.22) 

as expected. Now it is easy to match Dirac WFs at the  

boundary 0z  , (  
0 0

c
i r tz z

  
 

   , yielding11 
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(A.23) 

where    0, 0c cp E m p E m       . The re- 
flectivity DR  and transmission coefficient DT  follow 
from Equations (A.19) and (A.22) as: 
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          (A.24) 
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1D DR T                         (A.26) 

where 
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    (A.27) 

and 

 
 

 

 

 

0

0

0, 0 0,

1, 1 , 2

resonant transmission

2
,

0, 0,

c c

c c

D

c

p E m

p p E E V

T
p E m

E V E
E p E m

p E m









   


   

 
 

   
 

   

 (A.28) 

The variation of DT  bears some resemblance to Equ- 
ation (A.15) for KG equation but shows striking dif- 
ference due to sharp contrast between Equations (A.24)- 
(A.28) and Equations (A.12)-(A.15). 

To our understanding, in the above Klein paradox for 
Dirac equation, there is no “pair creation” process oc- 
curring at the boundary 0z  . The paradox just amounts 
to a steady transmission of particle’s wave i  into a 
high potential barrier 0V E m   at 0z   region 
where t  shows up as an antiparticle’s WF propagating 
to the right. In some sense, the existence of a potential 
barrier 0V  plays a “magic” role of transforming the 
particle into its antiparticle. Because the probability den- 
sities of both particle and antiparticle are positive definite, 
the total probability can be normalized over the entire 
space like that for one particle case: 

        d 1cz z z z z 




          (A.29) 

(  z  is the Heaviside function) and the probability 
current density remains continuous at the boundary 

0z  . In other words, the continuity equation holds in 
the whole space just like what happens in a one-particle 
stationary state. 

It is interesting to compare our result with that in Refs. 
[61] and [62]. In Ref. [61], Equations (13.24)-(13.28) are 
essentially the same as ours. But the argument there for 

11Equation (A.23) means that the large (small) component of spinor is 
connected with large (small) component at both sides of 0z  . How-

ever, if instead of c

t , the c

t  is used directly with its first (small) 

component being connected with the first (large) components of i

and r , it would lead to a different expression of Equation (A.27): 

  
  

c

c

E m E m

E m E m
 

 
 

 
 , which is just the 1   (   and 1 

make no difference in the result of, say, Equations (A.24) and (A.25)) 
defined by Equation (8) on page 266 of Ref. [61] (see Equation (A31) 
below) or that by Equation (5.36) in Ref. [62] 
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choosing 0p   in Equation (13.23) is based on the 
criterion of the group velocity grv  being positive (for 
the transmitted wave packet moving toward z   ). 
And the grv  is stemming from Equation (13.16) which 
is essentially the probability current density in our 
Equations (A.21)-(A.22). 

However, the author in Ref. [61] also considered the 
other choice 0p   in an example (pp. 265-267 in [61]) 
based on the hole theory, ending up with the prediction 
as: 
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2

1 4
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1 1
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 (A.30) 

where 
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        (A.31) 

The argument for the validity of his Equations (A.30)- 
(A.31) is based on the hole theory (see also section 5.2 in 
Ref. [62]), saying that once 0V E m  , there would be 
an overlap between the occupied negative continuum for 

0z   and the empty positive continuum for 0z  , pro- 
viding a mechanism for electron-positron pair creation if 
the “hole” at 0z   can be identified with a positron. 
We doubt the “hole” theory seriously because there are 
only two electrons (with opposite spin orientations) stay- 
ing at each energy level in the negative continuum. So it 
seems that there is no abundant source for electrons and 
“holes” to account for the huge value of 1T   in Equ- 
ation (A.30). 

Fortunately, we learn from section 10.7 in Ref. [62] 
that if the Klein paradox in Dirac equation is treated at 
the level of QFT, their result turns out to be the same 
form as our Equations (A.24)-(A.28), rather than Equ- 
ations (A.30) and (A.31). 

 
Errata

A. There is a mistake contained in the paragraph following Equation (8.43) on

page 667, which needs to be corrected and modified as follows:

Note that 
Êcξ

′
c = σc · p̂cξ

′
c +msη

′
c

Êcη
′
c = −σc · p̂cη

′
c −msξ

′
c

(8.44)

ρ′c = ξ′c
†
ξ′c − η′c

†
η′c, j′c = −(η′c

†
ση′c + ξ′c

†
σξ′c) (8.45)

Here ξ′c (η′c) is the hidden RH (LH) spinning field in an antitachyon after the ”pure

time inversion”. Notice that the sign change x→ −x in the phase of WF makes a

change in the direction of momentum pc → −pc. But a WF is always composed

of two fields in confrontation, like ηc versus ξc (or η′c vs. ξ′c) here. And the ex-

plicit helicity hc is determined by which one of those two hidden fields being in

charge. So the change of x→ −x in Equation (8.43) does reverse the status of ηc

versus ξc (or η′c vs. ξ′c), rendering the helicity reversed explicitly. Hence, besides

the space-time inversion symmetry in Dirac representation as shown by Equations

(8.26)-(8.28), the tachyon equation does have its unique ”pure time inversion”

symmetry in Weyl representation as shown by Equations (8.42) [i.e., (8.44)] and

(8.15). Among antitachyon WFs gained after the ”pure time inversion”, only those

for ν̄R with ρ′c > 0 are allowed, whereas those for ν̄L with ρ′c < 0 are forbidden.

B. After Equation (A.14) on page 673, a ”Note” should be added as follows:

Note: Once when E′ = E − V0 < 0, we may regard ψt directly as a WF ψ′
c of

antiparticle and use Equations (3.31)-(3.32) to get the same results, Equations

(A.12)-(A.14). Actually, the continuity conditions at the space boundary z = 0,

Equation (A.5), hold at all times (not just at time t = 0).


