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ABSTRACT 

The investment portfolio with stochastic returns can be represented as a maximum flow generalized network with sto- 
chastic multipliers. Modern portfolio theory (MPT) [1] provides a myopic short horizon solution to this network by 
adding a parametric variance constraint to the maximize flow objective function. MPT does not allow the number of 
securities in solution portfolios to be specified. Integer constraints to control portfolio size in MPT results in a nonlinear 
mixed integer problem and is not practical for large universes. Digital portfolio theory (DPT) [2] finds a non-myopic 
long-term solution to the nonparametric variance constrained portfolio network. This paper discusses the long horizon 
nature of DPT and adds zero-one (0-1) variables to control portfolio size. We find optimal size constrained allocations 
from a universe of US sector indexes. The feasible size of optimal portfolios depends on risk. Large optimal portfolios 
are infeasible for low risk investors. High risk investors can increase portfolio size and diversification with little effect 
on return.  
 
Keywords: Finance; Portfolio Optimization; Portfolio Networks; Asset Allocation; Investment Diversification; Digital 

Signal Processing; Mixed Integer Programming 

1. Introduction 

The need for a practical long-term portfolio management 
decision model is increasing. In addition, the need for 
more diversification than is recommended by portfolio 
optimization models has become apparent. Considerable 
research focuses on short-term conditional volatility 
models, or suggests using a string of short-term volatility 
models in multiple periods. Digital portfolio theory (DPT) 
[2] is a long-term portfolio selection model since it in- 
cludes non-overlapping mean-reversion variances for 
different horizons. DPT is a normative model for portfo- 
lio optimization that includes the importance of holding 
period and horizon risk in single period solutions. This 
paper extends the research of Jones by clarifying the ho- 
rizon structure of DPT and examines portfolio size con- 
straints to control diversification. 

Solutions to the maximum flow, risk constrained port- 
folio network have focused on using Modern portfolio 
theory (MPT) [1] to construct mean-variance efficient 
portfolios. The nonlinear MPT model provides a solution 
to the generalized portfolio network by adding a para- 
metric quadratic variance side-constraint to the maximize 

flow objective function. In practice, MPT solutions are 
myopic, ill-conditioned, unstable, and are sometimes in- 
appropriate and not intuitive. MPT solutions do not per- 
mit the user to specify the number of securities in solu- 
tion portfolios. Adding integer constraints to quadratic 
MPT is NP-hard with computational effort that grows 
exponentially with universe size. Conventional portfolio 
optimization models do not have the capability to apply 
integer constraints. This is primarily because portfolio 
theory models are risk constrained optimization models 
and therefore nonlinear. Controlling portfolio size is not 
practical since solutions are NP-hard.  

Digital portfolio theory (DPT) gives a solution to the 
risk constrained stochastic portfolio network by repre- 
senting variance non-parametrically with orthogonal 
mean-reversion components. The DPT methodology 
solves mean-variance optimization using multiple linear 
constraints that constrain multiple long-term mean-re- 
version risks. The linear DPT solution can be solved 
quickly for large universes. DPT is non-myopic since it 
uses information about the risk of mean-reversions in 
return processes. It is a long-term investment model since 
it finds horizon dependent solutions. Long and short ho- 
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rizon mean-reversions contribute to single period risk. 
DPT finds single period mean-variance solutions to the 
long horizon problem. DPT only considers long horizon 
variance, volatility is not included. DPT represents return 
stochastic processes as digital signals and the power 
spectral density (PSD) describes the risk characteristics 
of the multipliers in the portfolio network. Solutions are 
more appropriate because they control exposure to long 
and short horizon variances of calendar and non-calendar 
length expected returns. The independent control of ho- 
rizon based variances allow investors to find portfolios 
that satisfy long and short horizon risk requirements 
based on their holding periods. For a given holding pe- 
riod investors will have hedging demand for shorter ho- 
rizon risk and speculative demand for longer horizon risk. 
Because DPT offers a time dimension to risk assessment, 
the holding period of the investor plays a significant role 
in the optimal decision. As holding periods shorten and 
as markets change, optimal portfolios must be rebalanced 
to adjust horizon risk levels, to satisfy hedging and 
speculative demands for mean-reversion risk. 

Recent research suggests that the relatively small 
portfolios found using MPT, or DPT should be larger do 
the higher volatility in the markets today. In the 1970s 20 
randomly selected stocks could eliminate unsystematic 
risk while in the 1990s it required 50 stocks to eliminated 
unsystematic risk. An investor’s subjective estimate of 
the number of securities that should be held in a portfolio 
may differ markedly from the number recommended by 
an optimization model. Small portfolios may be subject 
to individual idiosyncratic (active) risk while very large 
portfolios may approach an indexing strategy with high 
passive risk. The larger the portfolio, the larger the bro- 
kerage fees required to keep it rebalanced. The holding 
period risk tolerance will have a bearing on the number 
of assets to be held by a particular investor. Active port- 
folio managers may prefer concentrated portfolios with 
fewer securities to capitalize on forecasts. Alternatively 
passive investors may have longer holding periods, trade 
less frequently, and prefer larger portfolio sizes.  

This paper presents a mean-variance-autocovariance 
portfolio selection decision support application that al- 
lows the number of securities in the optimal portfolio to 
be pre-specified by the investor. Zero-one variables are 
used to control portfolio size in the stochastic portfolio 
network. Size constrained optimal portfolios can be used 
to meet investors’ diversification objectives. Portfolio 
managers may have strong convictions regarding the size 
of their portfolios. Integer constraints can be used to find 
larger optimal portfolio solutions resulting in more di- 
versification. Alternatively smaller portfolios can be 
found to benefit from special situations and still achieve 
optimal diversification. Zero-one integer side-constraints 
and DPT allow control of optimal portfolio size, turnover, 

and diversification. Integer constraints can also be used 
to include fixed trading costs in optimal portfolio solu- 
tions [3]. 

The paper defines and tests portfolio optimization so- 
lutions assuming the stochastic portfolio network model 
is the appropriate representation of the problem and DPT 
gives the best solution when expected returns are time- 
varying. In the DPT problem non-integer variables are 
used to solve for maximum portfolio return while con- 
straining calendar and non-calendar length mean-rever- 
sion risk. Integer variables are used to control portfolio 
size. The optimal solution will depend on risk profile and 
portfolio size preference. The risk profile will depend on 
the investors holding period and hedging and speculative 
demands for mean-reversion risk. The mixed integer 
DPT solution finds optimal portfolios based on the in- 
vestors preferences with respect to portfolio size, horizon 
risk, systematic risk, and unsystematic risk. We test the 
DPT model with zero-one constraints and find it effec- 
tive in identifying size constrained optimal asset alloca- 
tions. Low risk investors are constrained to small portfo- 
lios while high risk investors can hold large portfolios 
with small reduction in return. 

2. Stochastic Generalized Portfolio Networks 

Figure 1 shows the one-period generalized portfolio 
network [4,5]. The multipliers represent return and are 
uncertain or stochastic. When the input to the portfolio at 
node 0 is constrained to be one the output of the portfolio 
network from node 1 is the stochastic portfolio return. In 
this portfolio network we are assuming no negative flows 
(short sales) and no arcs from right to left representing 
borrowing or leverage. Jones [6] has examined these 
cases in the stochastic portfolio network framework. The 
maximum flow network is the natural structure for the 
return maximization portfolio selection problem. The arc 
flows, wj, are constrained to represent percentages of the 
initial investment.  

3. Modern Portfolio Theory 

Mean-variance optimization to find optimal allocation of 
assets or to find optimal selection of securities in a port- 
folio is widely used to find optimal risk constrained solu- 
tion portfolios for the network in Figure 1. MPT finds 
the highest expected return for a given portfolio variance 
and therefore is consistent with the maximum flow gen- 
eralized network. MPT assumes that return stochastic 
processes generating the multipliers shown as triangles in 
Figure 1 are independent and identically distributed 
overtime (iid) with no autocorrelation and can be repre- 
sented by normal distributions. Expected returns are as- 
sumed constant in time, or time-invariant and the ex- 
pected flow out of node 1 can be estimated as the weighted  
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Figure 1. The single period stochastic generalized portfolio 
network. 
 
mean flow. The MPT maximum flow problem is,  

     
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p j j j j
j j
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In order to control portfolio risk MPT adds a quadratic 
parametric portfolio variance side-constraint to the 
maximum flow portfolio network in Figure 1, subject to 
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where wj is the fraction invested in security j,  pr t  is 
the stochastic return on the portfolio in period t, N is the 
number of securities in the potential universe, and B is a 
right-hand side (RHS) constant. The quadratic constraint 
(2) controls the portfolio risk or variance of expected 
returns at node 1. As the value of B, the right-hand-side, 
is changed the optimal solution to the nonlinear-pro- 
gramming problem will trace out the mean-variance effi- 
cient set. The problem is convex and the solution consid-
ers all portfolio combinations until a global mean-vari- 
ance efficient portfolio is found. This is defined as the 
portfolio of securities with the highest level of expected 
return at a specified portfolio variance level. The optimal 
portfolio for a particular investor depends on the inves- 
tor’s desired exposure to portfolio variance. Constraint (3) 
is the flow conservation equation at node 0 called the 
budget constraint. The last constraint (4) restricts short 
selling, or negative arc flows in the portfolio network.  

Adding multiple zero-one variables to the MPT model 
to control optimal portfolio size results in a mixed integer 
quadratic programming problem and therefore is rarely 
implemented. The use of zero-one variables considerably 
increase the time required to find the optimal solution. 
When zero-one variable constraints are added to MPT it 
is difficult to reach a solution in a reasonable amount of 
time unless the universe size is small. In addition, MPT 

finds inappropriate solutions or “unnatural portfolios” 
primarily because stock prices do not follow a random 
walk. Expected returns have been found to be mean-re-
verting, not normally distributed, and subject to high 
estimation error. The covariance matrix is unstable in 
time and the assumptions of constant expected return and 
zero autocorrelation are not realistic. Fortunately DPT is 
a more robust model that is not only linear but allows 
control over the long-term variance of the stochastic 
portfolio return process. 

4. Digital Signal Processing 

Digital portfolio theory (DPT) uses the mean-variance 
framework to find risk constrained optimal portfolios in 
the portfolio network. DPT uses low frequency digital 
signal processing (DSP) to describe the stochastic return 
processes of the portfolio network multipliers in Figure 
1. It does not require returns to be iid but instead it as- 
sumes that stock return processes are stationary. To apply 
DSP, finite sequences of returns or signals describe re- 
turn processes rather than single period returns. The 
digital return signal,  r n  consists of a sequence of 
returns of length T, 

  1,2,3, .ir n n T               (5) 

The square brackets indicate a digital process. The in- 
teger n indicating the place in the sequence and  jr n  is 
the stochastic return at time nδt for asset j. The equal 
time interval between returns is δt. T gives the finite sig- 
nal length of the return signal. Digital return signals are 
constructed from discontinuous prices and dividends. 
Every vector of returns of length T is assumed to be a 
realization of a stationary random process, 

  iE r n i                 (6) 

The DSP model utilizes the finite Fourier series to de- 
scribe the second moments, or variance of the random 
signals. The Fourier Theorem states that the variance of 
any finite discrete wide sense stationary (WSS) stochas- 
tic process can be described non-parametrically by a fi- 
nite sum [7]. All return signals have the following char- 
acteristics, 
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In the discrete Fourier transform (7),  jR k , or Rkj is 
the mean-reversion standard deviation (amplitude) of the 
kth periodic return component contained in security j’s 
return signal. The angular frequency, ω = 2π/T depends 
on the signal length, T. The number of harmonic mean- 
reversion lengths, K = T/2δt, depends on δt, the sampling 
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interval. Each signal has K mean-reversion variance 
components that are uncorrelated and form a complete 
orthogonal set. The total single period variance of a re- 
turn signal in Equation (8) is the sum of K longer-term 
variance components, . The K mean-reversion vari- 
ance components, , describe the power spectral den- 
sity of the finite return signal’s process. The kth compo- 
nent gives the variance of short or long horizon expected 
returns and describes the presence of autocorrelation in 
the return process. Note that the K variance components 
in Equation (8) are time-invariant. The phase information 
or timing characteristics are not contained in the variance. 
The expression for the variance (8) is nonparametric. 
There is no assumption about the distribution of returns 
they may be skewed, fat tailed, etc. 

2
kiR

2
kiR

sion lengths cannot be measured directly with monthly 
data using DSP, monthly mean-reversion risk is reflected 
in periods related to; 2-month, 2.4-month and 4-month 
periods. The variance of longer horizon returns such as 
8-year and 16-year risk is reflected in shorter harmonics. 
Using monthly sampling shorter horizon length volatil- 
ities such as weekly, daily, second, microsecond, or con- 
tinuous are not measured. 

Table 2 shows how calendar length mean-reversions 
can be related to the colors of visual light. Signal proc- 
essing refers to a stochastic process that is not white 
noise as colored noise. Samuelson [8] suggested the pos- 
sibility of red versus blue noise. Stock price changes may 
have short-term mean-reversion (red noise) or much 
longer-term mean-reversion (blue noise). Table 2 gives a 
color-coding for mean-reversion risk corresponding to 
the visual light spectrum. 

The horizon length of the kth mean-reversion variance 
component, pk is a function of the signal length and the 
index k, Each mean-reversion variance component,  in (8) 

relates to the risk of all returns computed over the corre- 
sponding period length. Using DSP the fundamental pe- 
riod, or signal length must be chosen to match the un- 
derlying process generation. For this reason signal 
lengths must be one year, two years, four years, or eight 
years using monthly returns. For a 48-month signal the 
variance component for k = 4, with period p4 = 12- 
months, will be larger when returns measured over one- 
year holding periods have a larger variance. The 12- 
month variance measures the variance contributed by one 
year mean-reversions contained in the signal. The 48- 
month variance is the risk in the process contributed by 
four-year holding period returns. The three-month vari- 
ance is the risk related to three month mean-reverting  

2
kiR

1, 2, , 2kp T t k k K T t   .      (9) 

The period lengths decrease harmonically. Calendar 
based mean-reversion risk can be defined as the variance 
of expected returns having a period with length related to 
a calendar time interval. We use a sampling interval of 
one month because it is generally the shortest company 
reporting interval. Using monthly returns with a T = 48 
month (four-year) signal length, Table 1 shows 24 inde- 
pendent calendar and non-calendar mean-reversion risk 
periods and their economic effect. Calendar mean-rever- 
sion risks have lengths of monthly, quarterly, 6-month, 
annual, 2-year and 4-year return horizons. Because the 
contribution to one month risk of monthly mean-rever-  
 

Table 1. Calendar and non-calendar holding period return horizons. 

k Period pk (Months) Calendar Based Risk Calendar Effect k Period pk (Months) Calendar Based Risk Calendar Effect

1 48.0 4-yr Presidential 13 3.7   

2 24.0 2-yr Election 14 3.4 8-yr Business Cycle

3 16.0   15 3.2 16-yr  

4 12.0 1-yr Annual/Summer 16 3.0 1/4-yr Quarterly 

5 9.6   17 2.8   

6 8.0 8-yr Business Cycle 18 2.7   

7 6.9   19 2.5   

8 6.0 1/2-yr Six Months 20 2.4 1-mo Jan/Nov Effect

9 5.3   21 2.3   

10 4.8 8-yr Business Cycle 22 2.2 8-yr Business Cycle

11 4.4   23 2.1   

12 4.0 1-mo Jan/Nov Effect 24 2.0 1-mo Jan/Nov Effect

aThere are calendar and non-calendar mean-reversion lengths contributing to monthly variance. Using a 48-month signal length and monthly returns there are 
calendar periods corresponding to long, intermediate, and short-term economic and institutional event intervals. The remaining periods are non-calendar. 
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Table 2. Risk based on mean-reversion horizon. 

Period Horizon Frequency Effect 

1-month InfraRed January 

1-quarter Red Quarterly 

6-month Orange Six Month 

1-year Yellow Annual/Summer 

2-year Light Green Election 

4-year Dark Green Presidential 

8-year Blue Business Cycle 

16-year Violet Long Term 

Noise/Random Walk Grey Non-Calendar 

aShort, intermediate, and long-term mean-reversion calendar lengths can be 
described by a 4-year signal with a monthly observation horizon. The visual 
color spectrum can be used to represent economically meaningful mean- 
reversion horizon lengths. Multiple seasonal and cyclical effects as well as 
non-calendar effects such as white noise generate one-month variance. 

 
returns. If the stock price process is a random walk the 
returns will be white noise, all variance components will 
be equal or insignificantly different, the process will have 
no mean-reversion, and is memoryless. The calendar 
components of risk have been found to be statistically 
significant for individual stock return total variance and 
idiosyncratic variance [9]. These longer periodic risk 
components in Table 1 do not describe volatility. Vola- 
tility is a small component of total risk. It is relevant to 
the high frequency trader with a short holding period.  

Unlike MPT or intertemporal portfolio theory, DPT is 
not a volatility model useful for the short-term trader. By 
measuring the variance of long and short horizon returns 
in Equation (8) and Table 1, DPT allows the portfolio 
risk characteristics to be adjusted to suit the long-term 
investor’s holding period and time dependent expecta- 
tions. 

5. Digital Portfolio Theory 

Digital portfolio theory (DPT) uses a relaxation of the 
portfolio variance constraint represented in the frequency 
domain to find efficient portfolios with an LP solution. 
The derivation of DPT can be found in [2,6], and [4]. 
The objective of DPT is to maximize the expected port- 
folio return flow from node 1 in Figure 1 for the one 
period portfolio network subject to constraints on various 
mean-reversion variance contributions to the portfolio. 
The inclusion of mean-reversion risks means that the 
optimal single period portfolio for a particular investor 
will depend on holding period. The DPT formulation is:  

  
1

max

,
N

p j j
j

E r t w 


            (10) 
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1
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N

j
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w

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0 1,2,3, ,jw j   N .         (16) 

where 
µj = expected return for security j, 
wj = solution weight of security j, 
N = number of securities in the asset universe, 
Rkj  = standard deviation (amplitude) of the kth peri- 

odic returns in return signal j, 
θkmj = kth phase-shift (correlation) between index m 

and security j’s return signals, 
K = 1/2 the signal length T (K = 24, T = 48 months), 
cβk = constant that limits the systematic risk of period 

k portfolio returns, 
cαk = constant that limits unsystematic risk of period k 

portfolio returns. 
Equations (10) to (16) describe the DPT model formu- 

lation. It is a completely linear model and allows much 
greater control over the components of portfolio variance. 
In the case of a 48-month signal length, there are 24 
mean-reversion risk components as shown in Table 1 
resulting in 96 constraints. These risk constraints do not 
change with time because all return processes are as-
sumed to have stationary second moments. Portfolio risk 
is time invariant while returns and risk premiums are 
time-varying. The constraints do not depend on the dis-
tribution of returns since return signals are described 
non-parametrically. This description of portfolio variance 
includes information about multiple mean-reversions or 
autocorrelations of all securities in the universe. 

There are K sets of four risk constraints in (11) to (14). 
Each of the K mean-reversion risk components is statis-
tically independent. Four-year mean-reversion variance 
is independent of 2-year return variance, or 1-year return 
variance, etc. LP DPT independently controls K mean- 
reversion length risk components. The advantage of 
framing the long-term investment model in the frequency 
domain is that the mean-reverting components are non- 
overlapping. It is difficult if not impossible to describe 
non-overlapping autocorrelations in the time domain. In 
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recent years the markets have demonstrated that a mean- 
reversion risk hypothesis is more appropriate than the 
random walk hypothesis.  

DPT uses four constraints for each holding period risk 
component. The first two constraints (11) and (12) con- 
trol the upper and lower bounds on systematic risk (co- 
sine terms), and the second two risk constraints (13) and 
(14) control upper and lower bounds on unsystematic 
risk (sine terms). Constraint (15) is the flow conservation 
condition at node 0 in Figure 1. Constraint (16) prohibits 
negative arc flows. The DPT model incorporates the cor- 
relation structure in K = 24 calendar and non-calendar 
independent dimensions rather than in one dimension. 
The covariance structure is measured relative to an index 
process and is therefore more stable and significant than 
the MPT covariance matrix. By choosing appropriate 
values of the right-hand-side (RHS) constants cβk and cαk, 
DPT allows diversification to be applied independently 
to the different mean-reverting, systematic and unsys- 
tematic risk factors that make up the optimal portfolio 
variance.  

DPT incorporates the risk that long-term mean-rever- 
sion contributes to single period risk. DPT gives a hori- 
zon based non-myopic solution. For a multiperiod inves- 
tor the optimal risk return trade off depends on holding 
period when returns are mean-reverting. To reduce the 
variance of terminal wealth and to hedge against the pos- 
sibility that unexpected patterns will benefit returns, in- 
vestor will have hedging demands for mean-reversion 
variances with periods shorter than, or equal to their 
holding period. In addition, investors may have specula- 
tive demand for mean-reversion variances longer than 
their holding period. There are separate risk return utility 
functions for each mean-reversion risk component. The 
concept of time diversification suggests that we should 
hold higher risk portfolios the longer the holding period. 
Investors will have intertemporal hedging demand for 
risk when their holding period is greater than or equal to 
the mean-reversion length. We can hedge against being 
caught holding cash in unexpected market movements by 
increasing mean-reversion risk for periods shorter or 
equal to our holding period. An asset with mean-rever- 
sion length less than, or equal to the holding period will 
reduce the variance of terminal wealth. 

If the mean-reversion length is greater than the holding 
period we may have intertemporal speculative demand 
for this long horizon risk. With no short selling we can 
speculate by increasing long-term mean-reversion risk in 
a rising market (momentum strategy) or we can speculate 
by deceasing long-term mean-reversion risk in falling 
market (hold cash and try to buy at a lower price). Indi- 
vidual utility functions for hedging risks will not neces- 
sarily be the same as utility functions for speculative 
risks. DPT is a non-myopic strategic asset allocation 

model because it takes into account information beyond 
the current period. It assumes that mean-reversion risks 
can be forecast. 

Optimal risk depends on holding period. For example, 
suppose we have a one-year holding period. Our risk 
return utility function for 3-month risk will be influenced 
by hedging demand while our risk return utility function 
for 16-year risk will depend on speculative demand. In- 
vestors’ utility functions for horizon dependent risk com- 
ponents will depend on holding period. Hedging de- 
mands will apply to more mean-reversion components 
the longer the holding period (time diversification). As 
time passes our holding period will become shorter and 
our hedging demand will be for shorter and shorter 
mean-reversion lengths. In the last period the hedging 
demand will be small while speculative demand for 
longer mean-reversion risks will dominate our decision. 
Non-calendar length risks, since they are not signifi- 
cantly different from those generated by a random walk 
[9], will not be subject to hedging demands and therefore 
a myopic low risk strategy can be applied to these risk 
components. 

The digital formulation uses 96 constraints to control 
the 24 independent periodic components of risk. The 
phase-shift, θkmj is estimated using the cross spectral den- 
sity between the security’s return signal and the index 
return signal. The cosine and sine terms in Equations (11) 
to (14) are related to the time domain. The cosine of the 
phase shift, θkmj is equal to the correlation between the 
kth independent mean-reverting return components of 
both processes, 

1 coskmj kmj 1     ,          (17) 

ρkmj = correlation of security j with the index portfolio 
m’s k-period returns. 

In the MPT paradigm, stock price processes follow a 
random walk; in the DPT paradigm [2] stock return 
processes may be mean-reverting. The sum of multiple 
stationary waves of risk produces changing returns in 
calendar or non-calendar patterns. DPT only quantifies 
the risk that patterns occur but makes no attempt to de- 
termine what patterns other than their mean-reversion 
length. The inclusion of mean-reversion lengths and their 
risk make DPT a truly long-term portfolio selection 
model. The risk in the current period is a result of multi- 
ple length mean-reversions.  

The DPT efficient portfolio weights are more reliable 
and stable because the solution does not use squared de- 
cision variables or cross product terms and because the 
covariance terms are measured relative to a reference 
index. The solutions are more stable because covariances 
and autocovariances are measured relative to a strong 
signal. The level of confidence is higher because signal 
processing provides non-overlapping estimates of auto- 
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correlations. In addition, the total number of terms used 
in DPT grows linearly with universe size while it grows 
exponentially for MPT. Because the DPT objective func- 
tion is not quadratic it can be modified or weighted to 
adjust for compounding, or to allow geometric mean, 
growth optimal, or momentum objective functions.  

Portfolio size constraints can be combined with other 
portfolio constraints. Additional upper and lower bounds 
on individual securities or asset classes can be included. 
Integer constraints can explicitly limit turnover and re- 
balancing. The DPT formulation is used to derive posi- 
tive long-term equilibrium theories, or horizon based 
asset pricing models (see [6,10]). A DPT software pro- 
gram was published by Jones [11]. This paper adds inte- 
ger constraints to control portfolio size and diversifica- 
tion. 

6. Specifying Portfolio Size 

This section derives the portfolio selection decision that 
allows the number of securities in the optimal portfolio to 
be specified by the investor. This allows control of the 
size, turnover, and diversification of the optimal portfolio. 
Zero-one variables are practical in the portfolio network 
model using DPT since it is linear and allows large uni- 
verse optimally diversified solutions. In order to apply a 
zero-one constraint we first define zero-one variables for 
each security in the security universe, 

1 2 3, , , , where 0 or 1.N jz z z z z          (18) 

These zero-one variables are linked to the percent 
weights flowing on the investment arcs in the portfolio 
network in Figure 1. When a weight is zero the corre- 
sponding zero-one variable is zero, when a weight is 
greater than zero the zero-one variable will be one (as- 
suming no short selling). In order to ensure that these 
conditions are met, the following side-constraints must 
be added to the portfolio network and the DPT model in 
Equations (10) to (16):  
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2 2
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w z
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 


               (19) 

The constraints in (19) insure that when security j is 
included in the portfolio and the percent flow on the in- 
vestment arc wj is greater than zero, the zero-one variable 
zj will be 1. Since 0 ≤ wj ≤ 1 from constraints Equations 
(15) and (16) the above constraints ensure that wj > 0 
only if zj = 1. If zj = 0, then wj must equal zero since wj ≥ 
0.  

The following additional constraints must be added to 
insure that when security j is not included in the portfolio 
and percent flow wj is zero on investment arc j, the cor- 

responding zero-one variable, zj will be zero: 
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              (20) 

In addition to forcing zj to be zero when wj is zero, 
these constraints allow a minimum investment condition 
or percentage, L to be imposed on the solutions weights. 
One problem with both DPT and MPT is that optimal 
solution weights often include very small allocations to 
some security or securities. It may not be practical to 
hold less than one half percent in any particular security 
in order to justify monitoring costs, etc. The constraints 
in (20) allow the user to set a minimum investment or 
lower bound, L on the solution weights. For example, in 
a one million dollar portfolio one might not want to hold 
a position smaller than five thousand dollars. To ensure 
this is true L can be set by the user to 0.005 in constraints 
(20).  

In conjunction with constraints (19) and (20) the zero- 
one variables can be used in a zero-one constraint to con- 
trol portfolio size. The following constraint can be added 
to DPT to adjust the number of securities (S) the user 
wants in the portfolio, 

1

N

j
j

z S


 .               (21) 

The investor may wish to retain some of their holdings 
and would like to find the optimal way of creating diver- 
sification and maximize expected return. In order to re- 
duce the number of new securities added to a portfolio a 
turnover constraint in conjunction with lower and upper 
bound constraints can be added. To retain existing hold- 
ings zero-one variables corresponding to these invest- 
ments can be excluded. Lower and upper bounds on the 
non-integer variable weights can be preset at the desired 
allocations. For example, suppose we would like to retain 
five investments that we currently own. The following 
constraint can be used, where O is the maximum number 
of new securities or asset classes to be bought to rebal- 
ance the portfolio, 

6

N

j
j

z O


 .              (22) 

In some cases the portfolio manager will want to force 
a minimum number of securities into the portfolio in or- 
der to achieve diversification in today’s volatile markets. 
A diversification constraint can be used to force the 
minimum number of securities to be greater than or equal 
to a user specified constant, D, 

1
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j
j

z


 D .             (23) 
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The diversification constraint in conjunction with 
lower and upper bounds on non-integer variables (wj) can 
be used to satisfy policy or regulatory restrictions placed 
on the portfolio manager to avoid excessive exposure to 
idiosyncratic risk.  

7. Testing DPT with Portfolio Size  
Constraints  

The returns from 73 indexes and the S&P 500 index 
compiled by Standard and Poor’s and available in the 
Compustat database were used for the test universe (see 
the Table 3). These index portfolios represent the stock 
returns of all large and medium sized US firms associ- 
ated by industry sector. This test universe consisted of 65 
industry indexes and 8 broader indexes including; the 
S&P and DJ Industrial indexes, the S&P and DJ Utilities 
indexes, S&P and DJ Transportation indexes, the S&P 
Midcap index, and the S&P Financial index. Four Indus- 
try indexes had missing returns and are excluded; Capital 
Goods 500, Office Equipment&Supplies 500, Commer- 
cial and Consumer Service 500, and Food& Health Dis- 
tributors 500. Portfolio optimization research rarely re- 
ports actual portfolios, frequently because MPT solutions 
are difficult to reproduce. In order to make our result 
comparable we report efficient portfolio for a small 
number of cases. The DPT parameters were estimated 
using 16 years of monthly returns for each index from 
July 1982 to June 1998. Four-year signal lengths and the 
Welch method were used with a temporal rectangular 
window to find power spectral density and cross spectral 
density estimates. The minimum investment, L was con- 
strained in all cases to be a two percent of the initial in- 
vestment. For these tests all right-hand-side constants, 
cβk and cαk were set equal for all k in constraints (11) to 
(14). 

Table 4 gives the optimal portfolios for low, medium, 
and high risk levels before portfolio size constraints are 
applied. Note that these are horizon neutral, active port- 
folios since horizon, passive and active risks are con- 
strained equally. They are horizon neutral (not short-term, 
or long-term) since no holding period is specified. 
Hedging risks and speculative risks are treated the same. 
For a given holding period the kth RHSs in DPT will in 
general be larger for shorter mean-reversion lengths. In- 
vestors will normally have more demand for hedging risk 
than for speculative risk. Much of the time, hedging de- 
mand for risk will be larger than speculative demand for 
risk. For most securities systematic risk is much larger 
than unsystematic risk so equally constraining active and 
passive risks results in small active portfolios. When ac- 
tive risk is more tightly constrained larger passive portfo- 
lios will result with larger allocations to broad market 
indexes. The optimal minimum-variance portfolio (col-  

Table 3. Compustat index database with no missing returns. 

Index Index 

S&P 500 Comp-LTD Footwear-500 

S&P Industrials-LTD Beverages (Alcoholic)-500 

Dow Jones Industrials-30 Beverages (Non-Alcohlc)-500 

Dow Jones Transportation-20 Brdcast (TV, Radio, Cable)-500

Dow Jones Utilities-15 Entertainment-500 

S&P Midcap 400 Index Foods-500 

S&P Financial Index Househould Pds(Non-Dura)-500

S&P Transportation Personal Care-500 

S&P Utilities Restaurants-500 

Aluminum-500 Retail (Drug Stores)-500 

Chemicals-500 Retail (Food Chains)-500 

Chemicals (Diversified)-500 Tobacco-500 

Containers&Package (PPR)-500 Oil&Gas (Drilling&Equip)-500

Gold&Prec Metal Mining-500 Oil (Domestic Integrtd)-500 

Iron&Steel-500 Oil (Intl Integrated)-500 

Metals Mining-500 Banks (Major Regional)-500 

Paper&Forest Products-500 Banks (Money Center)-500 

Aerospace/Defense-500 Consumer Finance-500 

Containers(Metal&Glass)-500 Insurance (Life/Health)-500 

Electrical Equipment-500 Insurance (Multi-Line)-500 

Machinery (Diversified)-500 Insurance (Ppty-Cas)-500 

Trucks&Parts-500 Savings&Loan Companies-500

Waste Management-500 Hlth Care (Drugs-Mjr Ph)-500

Auto Parts&Equipment-500 Health Care(Hsptl Mgmt)-500 

Automobiles-500 Hlth Care (Med Pds&Supp)-500

Building Materials-500 Communication Equipment-500

Hardware&Tools-500 Computers (Hardware)-500 

Homebuilding-500 Computer (Software&Svc)-500

Household Furn&Applnce-500 Electronics (Instrumntn)-500 

Leisure Time (Products)-500 Electronics (Semicndctr)-500 

Lodging-Hotels-500 Airlines-500 

Publishing-500 Railroads-500 

Publishing (Newspaper)-500 Truckers-500 

Rtl (Building Supplies)-500 Electric Companies-500 

Retail (Dept Stores)-500 Natural Gas-500 

Retail (General Mdse)-500 Oil Composite 

Textiles (Apparel)-500 Retail Composite 

aA universe of 73 indexes and the S&P-500 market index was used with 
statistics estimated over the 16-year period 1982 to 1998. The test universe 
consisted of 65 industry indexes and 8 broad indexes including; the S&P and 
DJ Industrial indexes, the S&P and DJ Utilities indexes, S&P and DJ 
Transportation indexes, the S&P Midcap index, and the S&P Financial 
ndex. i   
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Table 4. Horizon neutral active optimal portfolios. 

 Optional Solutions 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Risk level Low Low Low Low Med Med Med High High High High 

Max E(rp) (% per month) µp  1.43 1.57 1.65 1.88 1.93 2.12 2.21 2.28 2.32 2.33 

Portfolio standard deviation σp  3.26 3.41 3.56 4.08 4.26 4.39 4.67 4.95 5.98 7.19 

Portfolio Beta βp  0.64 0.69 0.71 0.80 0.76 0.81 0.87 0.85 0.82 0.81 

Portfolio size  7 9 9 8 10 9 6 3 2 1 

Solution tries NF* 265 271 253 287 319 295 298 227 168 104 

Sector     wj  Weight     

Dow Jones Utilities-15 Stk  36.3%          

Gold&Prec Metal Mining-500  4.9% 2.2%         

Containers (Metal&Glass)-500     7.4% 2.6% 5.4%     

Automobiles-500        6.6%    

Rtl (Building Supplies)-500       12.3% 14.8% 11.1%   

Textiles (Apparel)-500  9.6% 15.5% 11.1%        

Footwear-500    5.5% 8.0% 2.0%      

Beverages (Non-Alcohlc)-500      3.4% 51.5% 65.4% 75.9% 26.2%  

Brdcast (TV, Radio, Cable)-500    4.0% 2.2% 16.0% 12.3%     

Hourshold Pds (Non-Dura)-500   2.0%         

Retail (Food Chains)-500  15.8% 17.6% 19.1% 10.0% 3.5%      

Tobacco-500   7.0% 9.3% 8.4% 5.6% 3.8% 5.2%    

Oil (Intl Integrated)-500  16.5% 16.5% 19.0%        

Insurance (Ppty-Cas)-500      3.3% 6.0% 2.2%    

Hlth Care (Drugs-Mjr Ph)-500     43.6% 46.6% 2.0%     

Computers (Hardware)-500  11.3% 10.6% 9.3% 8.7% 5.9%      

Computer (Software&Svc)-500       2.3% 5.8% 12.9% 73.8% 100%

Electric Companies-500  5.8% 21.4% 13.0%        

Natural Gas-500   7.1% 9.7% 11.8% 11.1% 4.5%     

Total portfolio weight 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Risk constraint settings            

Systematic risk RHS (Cβk) 1.25 1.26 1.27 1.30 1.42 1.45 1.60 1.70 1.90 2.50 3.00 

Unsystematic risk RHS (Cαk) 1.25 1.26 1.27 1.30 1.42 1.45 1.60 1.70 1.90 2.50 3.00 

*NF-No feasible solution. aThe table shows DPT solution portfolios at 10 risk levels. The first column gives the constraint level at which the solution becomes 
infeasible. Column 2 gives the minimum variance portfolio. Rows 2, 3, 4, and 5 give the maximum return objective function value, portfolio total risk, beta and 
size. Row 6 gives the number of tries to reach the solution using a MIP solver with 2% minimum investment constraint. The bottom 2 rows give the user de-
fined constraint RHS constants (cβk = cαk). Since all RHSs are equal there is no distinction between horizon, active, or passive risk. DPT parameters are esti-

ated using a universe of 73 indexes plus the benchmark S&P 500 index with monthly returns from 1982 to 1998. m   
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umn 2, σp = 3.26) contained utilities, gold, apparel, food 
chains, oil, computer hardware, and electric companies. 
The DJ Utilities, the lowest risk index (σj = 3.77), makes 
up 36.3% of the optimal minimum-variance portfolio. 
Gold which has the highest individual risk (σj = 10.56) 
and the lowest market correlation (ρmj = 0.25) is included 
only in the lowest risk portfolios. This minimum variance 
portfolio is a low risk portfolio not a short horizon port- 
folio. Utilities, for example, have more long-term mean- 
reversion risk than short-term mean-reversion risk. 

Figure 2 shows feasible portfolio size regions and op- 
timal returns at six risk levels. As portfolio size is 
changed the optimal portfolio’s expected return falls be- 
low the unconstrained optimum holding risk constant. 
Decreasing portfolio size below optimal reduces return 
faster than increasing portfolio size. In this US equity 
sector universe, low total risk optimal allocations are 
smaller with fewer feasible size possibilities. The lower 
the risk the fewer portfolio size possibilities were feasi- 
ble. The minimum-variance optimal portfolio has only 
one feasible size with seven sector indexes. Feasible so- 
lutions at a low risk levels; σp = 3.41 have between 5 and 
15 assets. While we might assume that increasing diver- 
sification by increasing portfolio size would reduce risk 
instead we find that large low risk optimal portfolios are 
not feasible. At lower risk levels increasing diversifica- 
tion by increasing portfolio size is not feasible. In a US 
sector universe the low risk optimizing investor must 
hold a small portfolio. An asset allocation with a large 
number of sectors cannot be an optimal low risk portfolio.  

The higher the risk the more portfolio size possibilities 
are feasible. At medium risks; σp = 4.08 portfolio sizes 
are feasible for between 2 and 37 indexes. For the 
high-risk portfolios, σp = 4.67 the upper bound on feasi- 
ble portfolio size (50) is a function of the minimum in- 
vestment restriction, L.  

8. Conclusions 

Virtually every quantitative portfolio manager uses, or is 
aware of some type of optimization program to provide 
portfolio recommendations. The majority of these pro- 
grams cannot find optimal portfolios with portfolio size 
specified in advance, nor do they incorporate mean-re- 
version risks and holding period. The majority of indi- 
viduals and institutions are long-term investors and DPT 
provides a long-term portfolio optimization framework. 
Long horizon DPT gives the long-term investor the abil- 
ity to quantify and control mean-reversion risk levels to 
satisfy hedging and speculative demands. DPT gives a 
better understanding of long-term portfolio optimization 
when returns are mean-reverting. Its application may 
reduce the focus on short-term volatility. DPT adds a 
time dimension to portfolio theory and differentiates 
hedging and speculative risks based on holding period. 
We examine DPT solutions to the stochastic portfolio 
network with zero-one constraints to control portfolio 
size. At a given risk level changing portfolio size from 
the unconstrained solution size is accomplished at the 
expense of the portfolio expected return. The ability to 
find optimal size constrained portfolios depends on the  
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Figure 2. Feasible portfolio size regions, total risk, and optimal return. aThis figure shows the minimum-variance portfolio 
(front) and 5 increasing risk level optimal portfolio feasible regions. The portfolio size constraint is changed to find the feasi-
ble regions at each risk level. The minimum-variance portfolio has only one feasible size (7 securities). The low risk portfolio 
s feasible for between 5 and 15 assets with a larger range of feasible portfolio sizes at higher risk levels. i   

Copyright © 2013 SciRes.                                                                                 JMF 



C. K. JONES 290 

 
level of risk exposure required by the investor. In a uni- 
verse of US sector and broad market equity indexes, 
portfolio optimization is more important for the low risk 
investor than the high risk investor. Low risk optimal 
asset allocations cannot contain a large number of sectors. 
High risk optimal portfolios are feasible for large portfo- 
lio sizes so that high risk investors can increase the size 
and diversification with small loss in return.  
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