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ABSTRACT 

This paper presents models of equity valuation where future dividends are assumed to follow a generalized Bernoulli 
process consistent with the actual dividend payout behavior of many firms. This uncertain dividend stream induces a 
probability distribution of present value. We show how to calculate the first moment of this distribution using functional 
equations. As well, we demonstrate how to calculate a confidence interval using Monte Carlo simulation. This first 
moment and interval allows an analyst to determine whether a stock is over- or under-valued. 
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1. Introduction 

Dividend discount models are a common feature of most 
introductory finance textbooks. Normally the Gordon 
Growth Model [1] is one of the techniques used to illus-
trate the calculation of the cost of equity capital. Gordon 
assumes that the dividend stream will increase at a con-
stant geometric growth rate in perpetuity. There have 
been variations of this model. All of them assume that 
future dividends will follow a fixed, mechanistic path. 

These deterministic dividend streams are not really 
consistent with the payout policies of most firms. Typi-
cally a firm will hold a dividend constant until such time 
as it can see itself being able to increase it and then 
maintain the increase. Such dividend streams are charac-
terized by uncertainty in that an analyst would never be 
certain when and by how much a dividend was going to 
increase. Hurley and Johnson [HJ, 2-4] have offered a 
series of dividend discount models consistent with these 
two characteristics. A good summary of these models can 
be found in Hurley and Fabozzi [5]. 

The contribution of this paper is a complete generali-
zation of these models. I model two components of divi-
dend uncertainty. First, in each period, the dividend is 
assumed to either increase or stay the same with a given 
probability. Second, if the dividend does increase, the 
increase is also modeled as a random variable. In addi-
tion, I also consider two functional forms for the divi-
dend increase: in one, the increase is multiplicative; in 

the other, it is additive. For each valuation model, I show 
how to compute a first moment and a confidence interval. 
This allows an analyst to compare the current market 
price of the stock to this moment and interval and in so 
doing determine whether or not the share is over- or un-
der-valued. 

2. Stochastic Dividend Discount Models 

Going back to J. B. Williams [6], the value,  of a 
common share can be written 
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where t  is the dividend in period t, and k is the dis-
count rate. Gordon [1] made the assumption that future 
dividends would increase at a geometric rate in perpetu-
ity, 

d
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and, under this assumption, value can be shown to be 
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There have been variations of Gordon’s assumption. 
Like Gordon’s, all of them posit a future dividend stream 
that is known and increasing. 

Table 1 shows a dividend stream for a hypothetical 
firm, ABC Corp. This dividend payout pattern has all the  
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Table 1. A sample dividend history. 

Period Dividend Period Dividend 

0 2.50 8 3.31 

1 2.69 9 3.31 

2 2.69 10 3.56 

3 2.69 11 3.80 

4 2.69 12 4.08 

5 2.69 13 4.08 

6 2.89 14 4.08 

7 3.08 15 4.08 

 
characteristics of real-world dividend streams. Note that, 
each period, the dividend either stays the same or in-
creases. I model this stochastic behavior by assuming 
that the dividend payment in period t is given by 
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where 1 g     is a random growth rate, and p is the 
probability the dividend increases.   is assumed to 
have a density  f   and first moment 

  1E    g               (5) 

where  .g E g   I term this dividend process a Geo-
metric Bernoulli Process (GeoBP) and denote its present 
value by To get its first moment, .GV   ,G GV E V  we 
need to solve the following functional equation: 
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The first term on the right-hand side is the case where 
the dividend stays the same and the value in one period’s 
time,  0 0 is discounted to the present by divid-
ing by 1  The second term is the case where the 
dividend increases by a random amount γ. Hence the 
value in one period’s time is 

,d V d
.
G

k

0 d V d  0G  and this has 
to be discounted one period and integrated over  f   
to get an expected present value. Finally these two pre-
sent values are weighted by 1 – p and p respectively.  

In addition, I model an Additive Bernoulli Process 
(AddBP) where the dividend payment in period t is given 
by 
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where  is a random additive increment in the dividend, 

and p is the probability the dividend increases. 



  is 
assumed to have a density  and first moment  h 

 .E    Again, I will compute a first moment for 
present value,   ,A AV E V  by solving the following 
equation: 

     

   

0 1
1

d .
1

A
A

d V
V d p

d
p h


 



    

0 0

0 0A

d

k

d V

k

 
 
 


  (8) 

  
 







This equation has the same structure as (6) except that 
the dividend is additive rather than geometric. Both 
Equations (6) and (8) are functional equations and their 
solution is discussed in the next section. 

Computing first moments provides a point estimate of 
value and this is certainly beneficial. But the more useful 
calculation within this modeling structure is a confidence 
interval for value. Effectively a confidence interval gives 
a band-width for value and the existing stock price (and 
indeed the recent history of the stock price movement) 
can be assessed against this interval to determine whether 
the share is over- or under-valued. If it were true that the 
distributions of present value under the assumed stochas-
tic processes were approximately normal, we could cal-
culate the second moments,  and  using 
variations of (6) and (8), then get variances and confi-
dence intervals. However these processes tend to give 
rise to distributions that are skewed and, hence, the nor-
mal distribution does not usually apply. For this reason, 
we resort to computing confidence intervals using a 
Monte Carlo procedure which we detail herein. 

 2
GE V  2

AE V 

3. Finding First Moments 

To solve the functional Equations in (6) and (8), we need 
the following lemmas. 

Lemma 1. The functional equation 
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has a solution 
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Proof. Substitute the solution in (11) into the right- 
hand side of (9) to get: 
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Hence (11) is solution and the proof is complete. 
Showing that a functional equation has a particular 

solution is one thing. Calculating it is a different matter. 
To get the solution in (11), we begin by evaluating 

 in (9) at  giving  G x yx
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We then substitute result into the right-hand side of (9) 
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where yE  denotes expectation over  Continuing this 
substitution and evaluation process  more times 
yields 
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Taking the limit of the right-hand side as  goes to 
infinity yields 

n

 
1

ax
G x

by



              (16) 

since  as   0nb  .n 
Lemma 2. The functional equation 
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has a solution 
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Proof. Substitute the solution in (19) into the right- 
hand side of (17): 
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Hence (19) is a solution of (17) and the proof is com-
plete.  

The solution in (19) can be obtained in the same way 

as for (11). With these lemmas, we are now in a position 
to get first moments. 

Proposition 1. Suppose the future dividend stream fol-
lows a GeoBP. Then 
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Proof. Equation (6) is equivalent to (9) when 
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Substituting for the parameters and variables in (11) 
gives the required result.  

This solution is related to the Gordon model in the 
following way. Letting 1 ,g   we have 
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But note that pg  is just the expected geometric 
growth rate. Hence this expected value, ,GV  is the same 
as the one produced by the Gordon model when the de-
terministic growth rate is replaced by an expected growth 
rate.  

Equation (21) is a generalization of a number of other 
models. For instance, HJ [4] develop a multinomial geo- 
metric model where, each period, the dividend can 
change by a geometric rate ig with probability i  for p

1,2, ,i m   where i 1.p   Under these assumptions,
HJ show that the first moment is 
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This is easily derived using the generalization above  
by noting that the expected growth rate is .i i

i

p p g  

Proposition 2. Suppose the future dividend stream fol-
lows an AddBP. Then 

0
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Proof. As in the proof for Proposition 1, we substitute 
(25) into the right-hand side of (8) and the result follows. 

This expected value is the generalization of a number 
of other models. For instance consider Yao’s model [7]. 
He posits the following dividend process: 
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and derives the value 
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Note that this is easily derived using (25). The ex-
pected increase in the dividend is 

  ,u dp p                 (28) 

and 

.                (29) u dp p p 

Substituting these two into (25) yields Yao’s result.  

4. Getting Confidence Intervals 

In the traditional dividend discount literature, a point 
estimate of value is compared to a stock price to deter-
mine whether the share is over- or under-valued. With 
stochastic dividend discount models, a share’s market 
price can be assessed against a confidence interval. If the 
present value of the dividend stream is normally distrib-
uted, it would be a simple matter to calculate the second 
moment (again using functional equations) and then get 
the desired interval. However, in practice, these distribu-
tions tend to be skewed. Hence it is best to take a Monte 
Carlo approach to determine an approximate confidence 
interval. 

By way of example, suppose we calculate a 90% con-
fidence interval for the dividend history shown in Table 
1. If one looks at first differences of these dividends, they 
are more consistent with a geometric process than an 
additive. Consequently we need to estimate a value for 

 and the distribution of p .g  Over the past 16 dividend 
payments, the dividend increased 7 times. Therefore I 
estimate 

7
ˆ .

15
p                   (30) 

I have assumed that g  is normally distributed. The 
sample mean and standard deviation serve as estimates of 
the normal distribution parameters: 

ˆ 0.0725

ˆ 0.0041.




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               (31) 

In addition I assume that 0 4.08d   and 0.15.k    
A Monte Carlo simulation is easily executed in EX-

CEL using @RISK. I calculated the present value of fu-
ture dividends using only the first 100 periods (periods 
101 and beyond are truncated). A histogram for 10,000 
iterations of present value is shown in Figure 1. First 
note that the distribution is skewed to the right. Second,  

 

Figure 1. Histogram of the distribution of present value. 
 
the simulation produces a mean of $36.32, which is very 
close to the value produced by (21): 
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1
$36.31.G
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
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The 90% confidence interval, [$31.79, $41.43], is es-
timated from the @RISK output. So if the stock were 
trading at $25.75, we might conclude it was under-valued; 
if it were trading at $40.25, we might conclude it to be 
over-valued.  

5. Summary 

In this paper, I have presented two generalized stochastic 
dividend discount models. One assumes that dividend 
growth is geometric; the other assumes it is additive. I 
derive expressions for expected present value and show 
how to use Monte Carlo simulation to produce a confi-
dence interval for this value. This confidence interval 
allows an analyst to better determine whether a share is 
over- or under-valued. 
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