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ABSTRACT 

In this paper, we consider the Black-Scholes (BS) equation for option pricing with constant volatility. Here, we con- 
struct the first-order Darboux transformation and the real valued condition of transformed potential for BS correspond- 
ing equation. In that case we also obtain the transformed of potential and wave function. Finally, we discuss the factori- 
zation method and investigate the supersymmetry aspect of such corresponding equation. Also we show that the first 
order equation is satisfied by commutative algebra. 
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1. Introduction 

As we know, there are several methods to study for the 
integrability model. One of the method, we focus here, is 
Darboux transformation. It is well known that the Dar- 
boux transformation [1] is one of the major tools for the 
analysis of physical systems and for finding new solvable 
systems. Using a linear differential operator, Darboux 
construct solutions of one ordinary differential equation 
in terms of another ordinary differential equation. It has 
been shown that the transformation method is useful in 
finding soliton solutions of the integrable systems [2-4] 
and constructing supersymmetric quantum mechanical 
systems [5-7]. Also, more general solvable cases were 
obtained by means of factorization methods [8] and via 
lie algebraic approaches [9-13]. Darboux transformation 
is known as one of the most powerful methods for find- 
ing solvable Schrodinger equations with constant mass, 
in the context of which it is also called supersymmetric 
factorization method [14]. On the other hand, during the 
past few years there has been great interest in studying 
problems of fiance using various tools of physics [15]. In 
that case also quantum mechanics has been used to ana- 
lyze option pricing, stock market returns [16,17] and the 
Black-Scholes (BS) equation [18-21]. The BS equation 
plays an important role in option pricing. The solution of 
such equation may be found by mapping it into a Sch- 
rodinger-like equation. So, we take advantage from Dar- 

boux transformation to this equation and obtain the gen-
eralized form of BS equation. 

The Darboux transformation has been extensively used 
in quantum mechanics in the search of isospectral poten- 
tial for exactly Schrodinger equations of constant mass 
and position-dependent mass [22-27]. So, we take ad- 
vantage from such transformation and obtain the effect- 
tive potential, modified wave function and shape invari- 
ance condition and generators of supersymmetry algebra. 
For the BS Hamiltonian help us to transform of the cor- 
responding potential.  

This paper is organized as follows. We first introduce 
Quantum BS Hamiltonian and apply the Darboux trans- 
formation to such equation. In that case we show that the 
corresponding Hamiltonian changes to new form of po- 
tential. Finally, we study the supersymmetry version and 
shape invariance condition for transformed BS Hamilto- 
nian. 

2. Darboux Transformation and BS  
Hamiltonian 

As we know the BS equation for option pricing with 
constant volatility is given by, 
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where , , C S   and r  denote the price of the option, 
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the stock price, the volatility of the stock price and the 
risk-free spot interest rate respectively. Now we consider 
the following generalized BS equation in (1 + 
1)-dimension by using the Darboux transformation op-
erator technique [26,27], 
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Now, we take 1H S , 21
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potential 
r

V
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  . Here we can rewrite the above equa- 
tion as, 

0t ss s

F G V
C C C C

H H H
              (3) 

and 
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In order to have same Equation as (2) with different of 
potential, 

ˆ
ˆ ˆ ˆ0,t ss s
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Here, we have , this lead us to imply ˆV V ˆC C . In 
order to obtain the modified potential  and corre- 
sponding wave function for Equation (5), we introduce 
operator  which are called Darboux transformation. 
The general form of such translation Durboux transfor- 
mation will be as 

V̂



sA B                     (6) 

and we take special case as A B . Also we note here 
there are some following properties for this Darboux 
transformation, 

   ˆt t                     (7) 

and 

   ˆ ,C S t C S t  ,               (8) 

In order to obtain the parameter A  we need to use 
the Equations (2) and (7), so we have, 
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Making linear independence of  and its partial de- 
rivatives, we collect their respective coefficients and 
equal them to zero, from which we can obtain the fol- 
lowing system about the functions 

C

A  and , V̂

1F
A

H Sr
                 (10) 

as we know the usual   , e tC S t C S   , so the  will 
be as, 

V̂

2
V̂ V

S
  


               (11) 

which is modified potential and obtained by the Darboux 
transformation. By using the Equation (8) one can calcu- 
lated the corresponding wave function  as,  ,C S t 

     1ˆ , 1 sC S t C S
Sr

             (12) 

3. Supersymmetry and Darboux  
Transformation 

In what follows we will prove that the formalism of su- 
persymmetry for our generalized BS equation is equiva- 
lent to the Darboux transformation. Here we suppose the 
BS operator    is self adjoint, 

 t t                     (13) 

Taking the operation of conjugation on Darboux 
transformation (7), we obtain 

   ˆt t                    (14) 

where the operator   adjoint to  1
1 sSr

     is 
given by, 

1
1 sSr

                  (15) 

Equations (4) and (5) can then be rewritten as one sin- 
gle matrix equation of the form, 
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Assuming that  ˆdiag ,H    and , the 
above equation can be written as, 

 Tˆ,C c c

  0t H C                  (17) 

Two supercharge operators  and  are defined 
as follows, 

Q Q

0 0 0
,

0 0 0
Q Q


   

      
          (18) 

where   and   are the operator given by Equations 
(6) and (15), respectively. One can show that the Hamil- 
tonian H satisfies the following expressions, 

   , ,Q Q Q Q  0 
 

   , ,t tQ H H Q      

, t tQ H H Q,                    (19) 

Considering the complementing relations of the su- 
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persymmetry algebra; the anti commutators  ,Q Q   

and  ,Q Q



, we obtain the operators  and  R Q Q

R̂ QQ  and consider the relations of them with our 
Hamiltonian   and ̂ . So, one obtain the R  and  
as follow, 
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and 
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(21) 

where the indices s  will be derivative with respect to 
. In order to have shape invariance and supersymmet- 

ric algebra we need to obtain the . If such value be 
constant and zero there is some supersymmetry partner 
for the such system. Otherwise we need to apply some 
condition in  to have constant value. So, one can 
obtain the following equation for the , 

S
R̂ R

R̂ 
R̂ R

R

 2 2R̂ R i S                (22) 

We mention here that if we want to supersymmetry 
algebra we need to have also the following commutation 
relation, and also anti-commutation relation between  
and , 

Q
Q

     , , 0, ,Q Q Q Q Q Q H          (23) 

Finally we can say that the Equations (18), (19) and 
(23) lead us to apply the condition on the Equation (22) 
such that the expression  be constant. So, in that  R̂ R

case,   must be function of  such as S
1

2S


 . 

4. Conclusion 

In this paper we studied the Black-Scholes (BS) equation. 
We used the first-order Darboux transformation and ap- 
plied to the BS equation. In order to relate between su- 
persymmetry and Darboux transformation we discussed 
the supersymmetry algebra and its commutation and 
anti-commutation super algebra. We have shown that for 
the satisfying such anticommutation supercharges the 

 must be constant. Also, we applied the condition 
on the  and shown that 
R̂ R

R̂ R   will be function of S  

as 
1

2S


 . This condition completely guarantees rela-  
tion between supersymmetry and Darboux transforma-  
tion. 
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