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ABSTRACT 

Spherical pressure vessels in large sizes are generally supported on legs or columns evenly spaced around the circum-
ference. The legs are attached at or near the equator of the sphere. This research work focussed on flexural-torsional 
buckling of beam-column supports of field fabricated spherical pressure vessels using finite element analysis. Flexural- 
torsional buckling is an important limit state that must be considered in structural steel design and it occurs when a 
structural member experiences significant out-of-plane bending and twisting. This research has therefore considered the 
total potential energy equation for the flexural-torsional buckling of a beam-column element. The energy equation was 
formulated by summing the strain energy and the potential energy of the external loads. The finite element method was 
applied in conjunction with the energy method to analyze the flexural-torsional buckling of beam-column supports. To 
apply the finite element method, the displacement functions are assumed to be cubic polynomials, and the shape func-
tions used to derive the element stiffness and element geometric stiffness matrices. The element stiffness and geometric 
stiffness matrices were assembled to obtain the global stiffness matrices of the structure. The final finite element equa-
tion obtained was in the form of an eigenvalue problem. The flexural-torsional buckling loads of the structure were de-
termined by solving for the eigenvalue of the equation. The resulting eigenvalue equation from the finite element analy-
sis was coded using FORTRAN 90 programming language to aid in the analysis process. To validate FORTRAN 90 
coding developed for the finite element analysis and the methodology, the results given by the software were compared 
to existing solutions and showed no significant difference P > 0.05. 
 
Keywords: Field-fabricated; Spherical Storage Pressure Tank; Beam-Column Support; FEM 

1. Introduction 

Leg supports in spherical LNG pressure storage tanks 
can be modeled as beam-column members since they are 
also subjected to bending and axial compression. Load-
ing is done such that bending occurs about the strong 
axis [1]. End moments and transverse loadings produce 
primary bending while axial forces produce secondary 
moments [1]. Out-of-plane bending and twisting occurs 
when loading reaches a limiting value. It is said that out 
of plane failures occur suddenly in members with greater 
in-plane bending stiffness than torsional or lateral bend-
ing stiffness [2]. In thin beams, elastic lateral-torsional 
buckling load is the buckling load while in beam-col- 
umns, this is referred to as the elastic flexural-torsional 
buckling load. We are interested in flexural-torsional 
buckling loads in this work. This buckling load is said to 

be influenced by several factors [3]: 
1) the cross-section of the member; 
2) the unbraced length of the member; 
3) the support conditions; 
4) the type and position of the applied loads, and the 

location of the applied loads with respect to the cen-
troidal axis of the cross section. 

The goal for field fabricated beam-column supports 
stability analysis is to determine its flexural-torsional 
buckling loads with the aim of designing against flex-
ural-torsional either by changing the first two influencing 
factors since the last two may not be changeable.  

2. Literature Review  

[4] in his paper examined buckling behaviour of an 
I-beam under combined axial and horizontal side loading. 
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Theoretical formulation was developed to determine the 
critical buckling load for such combined loading con-
figuration from the elastic static theory. Both, the beam 
deflection theoretical model and the critical load capacity 
were derived for this combined loading condition. He 
utilized finite element analysis to apply the axial load on 
the beam at various configuration locations and it was 
shown that this application location determines the buck-
ling behaviour and the critical load of the buckling of the 
I-beam. Elastic flexural buckling of doubly symmetric 
columns with oblique restraints under concentric loading 
was examined by [5]. Oblique restraints cause coupling 
between the principal axis deflections and rotations, and 
the flexural buckling mode involves simultaneous bend-
ing about both principal axes. This paper discussed the 
nature of oblique end restraints, summarised their finite 
element analysis, presented examples of their effects on 
the elastic buckling of columns, and demonstrated the 
design of columns with oblique restraints. 

Based on a non-linear stability model, analytical solu-
tions were derived for simply supported beam-column 
elements with bi-symmetric I-sections under combined 
bending and axial forces by [6]. A unique compact 
closed-form was used for some representative load cases 
needed in design. It included first-order bending distribu-
tion, load height level, pre-buckling deflection effects 
and presence of axial loads. The proposed solutions were 
validated by recourse to non-linear FEM software where 
shell elements were used in mesh process. The agreement 
of the proposed solutions with bifurcations observed on 
non-linear equilibrium paths was good. It was proved 
that classical linear stability solutions underestimate the 
real resistance of such element in lateral buckling stabil-
ity especially for I section with large flanges. First-order 
stochastic perturbation expansions and Monte Carlo 
simulation techniques were used to study the effects of 
random elastic moduli on the post-buckling response of 
simple frame structures by [7]. This analysis provided a 
deeper understanding of the variability in anticipated 
postbuckling response that could prove highly valuable 
for design considerations. The stochastic perturbation ap- 
proximation to the mean and variance of the post-buck-
ling behavior was evaluated as a potential means of cur-
tailing the need for a high number of sample simulations. 
A new formulation for lateral buckling of beams com-
prising bisymmetric sections was proposed by [8]. The 
formulation employed a coupled lateral buckling func-
tional to investigate the lateral buckling behaviour of a 
class of beams comprising bisymmetric sections. While 
retaining the coupled modes of displacements at buckling, 
the formulation focused attention on the need to reduce 
the number of degrees of freedom per element so that the 
solution process can be carried out on small microcom-
puters.  

3. Finite Element Methodology  

3.1. Model Assumptions  

Modeling assumptions are: 
1) The entire structure remains elastic prior to buck-

ling i.e. members are long and slender. 
2) The members have symmetric cross sections. 
3) The cross sections of the members do not distort in 

their own plane after buckling. 
4) The members are perfectly straight.  
5) Local buckling does not occur.  

3.2. Finite Element Procedure  

This segment focuses on the governing equations for 
solving flexural-torsional-buckling load of a beam 
structure and the finite element equations. The method 
used by Erin [1] is adopted in the present work. Thus, 
element stiffness matrices and element geometric 
stiffness matrices from the energy equation are assem-
bled to form global stiffness matrix. Boundary condi-
tions are applied to the matrix and the partitioned 
global stiffness and geometric stiffness matrices used 
to solve for the buckling loads. For this research, the 
structure under analysis is beam-column of supports of 
field fabricated spherical storage pressure vessel. Ad-
vantage is taken of the symmetrical nature of the sys-
tem. The beam-column element has six nodal degrees 
of freedom making a total of twelve degrees of freedom 
for each element. 

3.2.1. Beam Representation  
The coordinate system is as shown in Figure 1 with the 
axes orthogonal. The z-axis runs along the length of the 
beam through the centroid of the cross section of the 
structure. The x-axis is taken as the major axis and 
y-axis the minor axis prior to buckling. 

Figure 2 shows the element degrees of freedom. 
Figure 2(a) shows the element with the lateral bending 
displacement  u z  at a distance z along the element 
and the four out-of-plane nodal displacements 1 2 3 , 
and 4 . 1  and 3u  are the out-of-plane lateral nodal 
displacements at nodes whilst  and  are out-of- 
plane nodal rotations. 

, ,u u u
u u

2u 4u

Figure 2(b) shows the element with in-plane bending 
 

 

Figure 1. System coordinate system. 
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displacement  v z

v

2v

 at a distance z along the element 
and four in-plane nodal displacements 1 , 2 , 3 , 
and 4 . 1  and 3  are the in-plane nodal displace- 
ments whilst  and  are the in-plane nodal rota- 
tions. 

v v v
v v

4v
 

 

The beam showing torsional rotational displacement 
 z  at a distance z along the element and four nodal 

displacements, 1,  2,  3  and  4 , is presented in 
Figure 2(c). Φ1 and 3  are the torsional rotations at 
nodes while, 2  and  4  are the torsional curva- 
tures.  

(a) 

 
3.2.2. Displacement Function (b) 

The displacement functions for the displacements, 
   ,u z v z  and  z , are taken to be cubic to satisfy 

continuity conditions after [1].  
 

    u z H u              (1) (c) 

where Figure 2. Element degrees of freedom. 
 

        3 2 3 3 2 2 3 3 2 3 2 2
3 3 3 3

1 1 1 1
2 3 2 2 3 H z z L L z L z L zL z z L z L z L

L L L L
          

    (2) 

 
and expressed as [1]: 

        T T1 1

2 2e e e e e ed k d d g d      T

1 2 3 4u u u u u         (3)
      (9) 

Evidently the first variationals can be expressed as 
which re-cast is: 

    u z H u            (4) 
      T1

2 e e ed k g d  e       (10) 
    v z H v             (5)  

where  
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 local nodal displacement vector 

    z H             (6)  

The element stiffness matrix is derived using the energy 
methods discussed by [1]. The total potential energy eq-
uation for the complete structure is in the form of  

 2 2 21 2 1 2 0U            (7) 

which re-cast into an applicable equation for finite ele-
ment analysis is [1]: 

 2 21 2 0e eU             (8)    buckling factor 
 ek   the element local stiffness matrix 
 

where 21 2 eU   second variation of the element strain  
energy 21 2 e    second variation of the work done 
on an element.   is the buckling factor by which the 
initial load set is multiplied to obtain the buckling load set. 
The beam-element strain energy and the work done can be 

eg   the element local geometric matrix associated 
with the initial load set. 

The energy Equation [7] in terms of initial buckling 
load set is written as [1]
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The first three terms of the equation contribute to the 

element elastic stiffness matrix,  ek , and the last four 
terms of the equation contribute to the geometric stiff-
ness matrix,  eg . 

3.3. Element Elastic Stiffness Matrix  

The contribution to the element elastic stiffness matrix 
 ek ,  

     
2 222 2

2
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can be re-cast as; 
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Substituting Equations (4)-(6) into Equation (14) gives 
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  (16) 

Substituting Equation (16) into Equation (13) gives the 
stiffness matrix,  ek  in terms of the shape function. 

3.4. Geometric Stiffness Matrix  

The contribution to the element geometric stiffness ma-
trix from Equation (11): 
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can re-cast as 
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0 0 initial stress matrix
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Substituting Equations (4)-(6) into Equation (25) gives  
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Substituting Equation (21.0) into Equation (18.0) gives 
the geometric stiffness matrix,  eg  in terms of the 
shape function,  H .  

4. Stability Analysis  

CASE 1: A simply supported beam subjected to equal 
end moments is shown in Figure 3. The beam is of hol-
low circular section and the properties for the beam are 
listed in Table 1. The simply supported beams consid-
ered in this case is single span beam which is simply sup-
ported both in-plane and out-of-plane. An in-plane sim-
ply supported beam is fixed against in-plane transverse 
deflections, but it is unrestrained against in-plane rota-
tions. An out-of-plane simply supported beam is fixed 
against out-of-plane deflections and twist rotations, but is 
unrestrained against minor axis rotations and against 
warping displacements. 

The closed form solution of the critical moment for a 
beam of length L with simply supported ends is given by 
[9] is written below. 

2

2

ππ
1 w

ocr y

EI
M EI GJ

L L GJ

 
 

 
     (30) 

Beam properties for case 1 are: 
Young’s Modulus of Elasticity (ksi) = 3000  
Shear Modulus of rigidity (ksi) = 12,000 
Second Moment of Inertial about Y-axis (in4) = 345 
Second Moment of Inertial about Y-axis (in4) = 1070 

 

 

Figure 3. Simple beam with equal end moment. 
 
Table 1. FEA and closed form solutions for buckling for 
case 1. 

Beam
Theoretical Buckling 

Moment Values 
(Kip.in) 

FEA Buckling 
Moment Value 

(Kip.in) 

Percentage Error 
(%) 

A 14899.68 14756.32 0.971 

B 14899.68 14868.23 0.212 

Note: Beam A is by considering the entire beam of Figure 3 while beam B 
is considering half of the beam in Figure 3 due to the line of symmetry. 
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Moment warping (in6) = 124,000 
Polar Moment of Inertia (in4) = 12.9 
Cross Sectional Area (in2) = 12 
Beam Length (in) = 300  
The results of a buckling analysis of the structure con-

ducted with the program along with the closed form so-
lution of the critical moment are presented in Table 2. 

CASE 2: A continuous beam (Figure 4) is considered 
in this case but it is assumed that the beam has the same 
properties as the beam considered in Case 1. [10] gives 
the closed form solution of the critical moment for a con-
tinuous beam of length L with simply supported ends as: 

 

2

2

ππ
1

2 2

y
ocr y

EI
M EI GJ

L L GJ

 
  
 
 

    (31) 

CASE 3: A field fabricated spherical pressure vessel 
with leg supports is considered in this case. Each of the 
leg support is simply supported beam-column with one 
fixed end and the other end is simply supported. The 
beam-column properties of case 1 are assumed for this 
case. The vertical load carried by each leg is eccentri-
cally from the beam centroid, thereby causing an applied 
moment on the leg. Represented below in Figure 5 is the 
typical representative of vertical beam column support. 
Point one is the end of the beam that is attached to the 
spherical shell while point 2 is the end of the beam sup- 
port that bolted to the foundation. In this case, point one 
 

 

Figure 4. Plan view of a beam with intermediate restraints. 
 

1 

 
2 

Figure 5. Typical beam-column. 

has all has rotation free and translation fixed degrees of 
freedom. End 2 has both rotation and translation degrees 
of freedom fixed. The dotted line represents the buck-
ling/deformation shape of the column.  

5. Results and Discussions  

An idealized simply supported beam is a fundamental 
case of restrained beams. The closed form solution for 
beams subjected to uniform bending moment is based on 
the constraint conditions of idealized simply supported 
beams [2] and is defined as: 
 Both ends fixed against vertical in-plane deflection but 

unrestrained against in-plane rotation, and one end 
fixed against longitudinal horizontal displacement 

 Both ends fixed against out-of-plane horizontal de-
flection and twist rotation but unrestrained against 
minor axis rotation and warping displacement. 

[10] further stated that if boundary conditions of a 
member are different from those of the idealized simply 
supported beam and the beam segment is subjected to a 
uniform bending moment, the elastic beam capacity can 
be expressed as: 

 

2

2

ππ
1 w

ocr y
b t

EI
M EI GJ

K L K L GJ

 
  
 
 

    (32) 

The effect length factor Kb corresponds to the lateral 
effect while Kt corresponds to the twisting restraint. For 
design purpose, [10] stated that “it is often difficult to 
judge the exact restraint conditions for a beam segment” 
and therefore recommended that the effective factor to be 
taken as: 

1.0 if both ends are simply supported 
0.7 if one end is simply supported and the other end is 

fixed 
0.5 if both ends are fixed 
A conservative condition is taken if restraint conditions 

are doubtful and in which case the effective length factor 
is taken as one. 

In case 1 considered above, both ends are simply sup-
ported and therefore, effective length factor used is 1.0. 
Beam A of case 1 is analysed using FEM on the entire 
beam while for beam B; line of symmetry of the beam was 
put into consideration. Comparing FEA buckling moment 
values with the values given by closed form equation, 
percentage errors given for both options are acceptable 
(Table 1). 

A continuous beam refers to member with lateral re-
straint(s) between its end supports as shown in Figure 4. 
These lateral bracings can significantly increase the 
buckling moment of the beams and they change the 
beam’s buckle shape. The simplest case is a simply sup-
ported beam with additional lateral bracing at mid-span. 
When this beam is subjected to a uniform bending mo-
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ment, the lateral buckling mode will be a complete sin 
wave as shown in Figure 4. Therefore, the effective 
length equals to the half of the length of the beam, and the 
corresponding critical can be calculated accordingly. 

When a continuous beam has more than two lateral 
bracings, partial end restraints will develop between ad-
jacent spans. Theoretically, lateral buckling load depend 
on the relative stiffness of the segments, the type of 
bracing or constraint used for the intermediate support, 
and the type and the relative magnitude of the loads on the 
beam. In practice, most of these parameters are impossible 
to quantify [9]. Commonly, the critical load for each 
segment of a continuous beam is evaluated separately. 
The selection of a K value for each of beam segment is 
often based on engineering intuition with the assumption 
that each segment is simply supported. The lowest value 
of the critical loads is taken as the buckling of the con-
tinuous beam [10]. The method neglects the interactions 
between each beam segments but the results are generally 
conservative [10].  

In Case 2, two options are considered. For beam A, 
FEA was used for the entire beam with three nodal points. 
For beam B, one segment of the beam was considered. 
The closed form and FEA values for buckling moments 
are tabulated. The percentage errors for the two beams 
under this case give 4.41 and 4.02 respectively (Table 2). 
The buckling moment values given by closed form equa-
tions is lower than buckling values given by FEA for 
both options. This can be deduced that the closed form 
equation gives conservative values for buckling moment 
for both beams. This is in agreement with [9]. 

The theoretical buckling moment of case 3 was deter-
mined using 0.7 as the effective factor in equation-(32). 
The percentage deviation when comparing with the FEA 
value is 0.16164 (Table 3). 
 
Table 2. FEA and closed form solutions for buckling for 
Case 2. 

Beam 
Theoretical Buckling 

Moment Values 
(Kip.in) 

FEA Buckling 
Moment Value 

(Kip.in) 

Percentage Error 
(%) 

A 37995.04 39729.24 4.41 

B 37995.04 39586.69 4.02 

 
Table 3. FEA and closed form solutions for buckling for 
Case 3. 

Beam 

Theoretical 
Buckling  

Moment Values 
(Kip.in) 

FEA Buckling 
Moment Value 

(Kip.in) 

Percentage 
error (%) 

A 23482.17 23444.28 0.16164 

6. Conclusion 

FE model developed in this work showed the relevance 
of FE in the buckling limit loads for field fabricated 
spherical pressure vessels beam-column supports. It gives 
a design engineer an insight into proper selection of 
beam-column supports for spherical pressure vessels. 
Once the number of leg support requirement is met and 
load per leg is known; optimum leg can be designed and 
sized using the software developed in this research work. 
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