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ABSTRACT 

In X-Ray Fluorescence (XRF) studies of samples, the relative absorption terms for an analyte in a sample with respect 
to its standard (the analyte itself or its compound) have been empirically related to analyte amount as well as to next 
enhanced element amount in the sample. The terms along with these empirical relations have been used to cross check 
the XRF observations for the analysis work. One such an attempt has been made in the present work for bulk measure- 
ments on rice saplings and a disparity in observations has been caught. 
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1. Introduction 

X-ray fluorescence has been a powerful analytical tool 
since the beginning of its application to elemental analy- 
sis. The working principle of XRF analysis is the meas- 
urement of energy and intensity of the X-rays emitted 
from the sample. The energies of the emitted X-rays are 
the characteristic of elements present in the sample and 
thus provide the knowledge about the composition of 
sample, hence form the basis of qualitative analysis. 
Whereas the measurement of the intensities of the X-rays 
provides information about the concentration of the ele- 
ments present, thereby forms the basis of quantitative 
analysis. In XRF analysis of samples, the presence of 
substrate matrix effects (absorption and enhancement) 
disturbs the proportionality between the elemental char- 
acteristic X-ray intensity and its amount [1-4]. For the 
correction and compensation of these effects, different 
analytical methods [5-10] exist in literature. While 
evaluating the absorption and enhancement terms, Bansal 
[11] established that the relative absorption and enhance- 
ment terms for an analyte in a sample with respect to its 
standard (the analyte itself or its compound) are related 
to analyte amount in the sample and its characteristic 
X-ray counts under the photo peak in each sample and 
standard spectra respectively. The absorption terms were 
empirically related to the determined analyte amounts 
irrespective of its X-ray counts. Similarly, the enhance- 
ment terms for the analyte were empirically related, in  

turn, with the analyte amount and with enhancer amount 
[12]. For a specific category of substrate, these relations 
give absorption and enhancement terms direct from the 
known amounts of analyte and enhancer elements or vice 
versa i.e. with known absorption and enhancement terms 
and the amount of enhancer element, the analyte amount 
can be predicted. Moreover, these empirical relations 
along with the terms can cross check the XRF observa-
tions of the analysis. In the present work, the bulk meas-
urements on rice saplings have been checked following 
the said procedure for absorption terms. 

2. Methodology 

In a sample S, if X-rays of an analyte a excite the X-rays 
of other element c, it causes the absorption of a X-rays 
and enhancement of c X-rays called matrix effects that 
disturb the linearity between the analyte X-ray intensity 
and analyte amount. When S is irradiated with photons ia 
from a source for selective excitation of a and the result- 
ing a X-rays are counted in a detector (Figure 1), the  
 

 

Figure 1. Arrangement of source, sample S and detector. 
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counts “ ” under the X-ray photo peak of analyte 
a from the sample can be expressed in terms of basic and 
the experimental set up parameters as [11]: 
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where, the number of incident photons at the sample sur-  

face Io, solid angle of target with detector 2
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sorption correction  air aa e  at emitted (ea) X-ray ener- 
gies and detector efficiency  ae  of detector at emit- 
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in terms of absorption coefficients, ’s (cm2/g), of sam- 
ple S at incident (ia) and emitted (ea) photon energies and 
sample thickness t (g/cm2) are basic parameters.  is the 
fractional analyte amount in target material. 

In case of symmetrical geometry (θ1 = θ2 = θ) and for 
thick samples , the Equation (1) reduces to t 
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Similarly, if the S is replaced by standard A, a com- 
pound of analyte a with its molecular weight MA that 
comprises n atoms of a and the relation (2) reduces to 
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Absorption Effects 

Under selective excitation of analyte, a, absorption term 
of sample, S, relative to that of first standard, A, i.e.  
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 in terms of analyte amount  and X-ray counts  

under the analyte photo peak in S and A comes as 
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3. Empirical Relations 

For empirical relations of matrix terms in rice saplings, 
rements [13] for Ca were 
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where Acofj’s are coefficients of fit for abs
For the fit, care was taken that the number 
fitted must be greater than the number of Acof ’s that 
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j

ensured optimization of the coefficients. Moreover, the 
uniqueness of the relations [14] was checked with dif- 
ferent permutations and combinations of a data set so that 
the same closeness of fitted values with the actual ones 
was there for each combination. 

For the derived relation, the mean absolute percent de- 
viation Dp is measure of the analysis error. It was calcu- 
lated according to the relation 
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where Ci and iC   
C

are the evaluated and act
fractions and im is the mean of Ci’s. 
values for the relation is also listed in Table 1. 

4 fertilizers  

ual weight 
The calculated Dp 

4. Results and Discussion 

From the studies of effect of KCl and CaSO
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Table 1. Listing of relative absorption terms in selective 
excitation of Ca, its empirical relation with analyte amounts 
and mean absolute percent deviation Dp in rice saplings. 
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treated with CaSO4 solutions; 50, 100, 150 and 200 
mg/200 ml of water. The remaining four pots (numbered 
6 - 9) were treated with KCl solutions; 50, 100, 150 and 
200 mg of KCl per 200 ml of water. 

In the processing for absorption terms for rice saplings, 
a polynomial in analyte Ca amount with its power vary- 
ing for p = 1 and q = 2 was found appropriate for the nine 
sample data. The percentage deviation of fitted values 
from the actual ones is shown in the Table 2(a). Here the 
deviation is <10% for most of the samples except for one 
with fractional analyte amount 0.041, it is 19%. To re- 
duce the overall error, that particular sample was ex- 
cluded for the polynomial fitting. It was observed (in 
Table 2(b)) that by excluding the sample, the deviation 
reduced to a remarkable extent. 

To certify these findings, the data on evaluated 
amounts of potassium in 9 samples [13] were tried for 
empirical relations of Ca absorption terms with potas- 
sium amounts as potassium in rice plants leads to strong 
absorption of Ca K X-rays. The absorption term  
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Table 2. Comparison of empirically generated relative ab- 

pot 6 in the fitting data
fitting data; (c) Fit with into account 
generated pot 6 values). 

(a) 
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α 
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Ca Ca
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with p = 1 and 
q = 2 

Percentage error 

1 0.014 0.42 0.404 3.791 

2 0.016 0.466 0.479 

3 0.019 −

−2.835 

5.964 0.539 0.571 

4 0.024 0.654 0.682 −4.328 

5 0.026 0.793 0.717 9.571 

6 0.033 0.884 0.821 7.147 

7 0.041 0.791 0.946 −19.533 

8 0.046 1.166 1.047 10.223 

9 0.047 1.055 1.07 −1.462 
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1 0.014 0.42 0.418 0.41 

2 0.016 0.466 0.467 

3 0.019 −

−  

−0.147 

0.942 0.539 0.544 

4 0.024 0.654 0.681 4.101

5 0.026 0.793 0.736 7.168 

6 0.033 0.884 0.917 −3.774 

7 0.046 1.166 1.103 5.431 

8 0.047 1.055 1.105 −4.722 
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Ca Ca
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q = 2 

tage e
h p = 1 an

1 0.014 0.42 0.473 0.473 

2 0.016 0.466 −0.195 

3 0.019

−0.195 

−1.032 0.539 −1.032 

4 0.024 0.654 −4.105 −4.105 

5 0.026 0.793 7.213 7.213 

6 0.033 0.884 −3.564 −3.564 

7 0.041 1.058 −0.327 −0.327 

8 0.046 1.166 5.521 5.521 

9 0.047 1.055 −4.662 −4.662 
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Figure 2. Plot of relative absorption terms versus concen- 
tration  and  in rice saplings. 
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