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ABSTRACT 

A reference point based multi-objective optimization using a combination between trust region (TR) algorithm and par- 
ticle swarm optimization (PSO) to solve the multi-objective environmental/economic dispatch (EED) problem is pre- 
sented in this paper. The EED problem is handled by Reference Point Interactive Approach. One of the main advan- 
tages of the proposed approach is integrating the merits of both TR and PSO, where TR has provided the initial set 
(close to the Pareto set as possible and the reference point of the decision maker) followed by PSO to improve the qual- 
ity of the solutions and get all the points on the Pareto frontier. The performance of the proposed algorithm is tested on 
standard IEEE 30-bus 6-genrator test system and is compared with conventional methods. The results demonstrate the 
capabilities of the proposed approach to generate true and well-distributed Pareto-optimal non-dominated solutions in 
one single run. The comparison with the classical methods demonstrates the superiority of the proposed approach and 
confirms its potential to solve the multi-objective EED problem.  
 
Keywords: Environmental/Economic Dispatch; Trust Region; Particle Swarm Optimization; Multi-Objective  

Optimization 

1. Introduction 

With the increase in the environmental awareness and the 
passage of environmental regulations, the environmental 
constraints are having a significant impact on the opera- 
tion of power systems. Traditional economic dispatch to 
minimize the fuel cost is inadequate when environmental 
emissions are also to be included in the operation of 
power plants.  

The purpose of EED problem is to figure out the opti- 
mal amount of the generated power for the fossil-based 
generating units in the system by minimizing the fuel 
cost and emission level simultaneously, subject to vari- 
ous equality and inequality constraints including the se- 
curity measures of the power transmission/distribution. 
Various optimization techniques have been proposed by 
many researchers to deal with this multi-objective pro- 
gramming problem with varying degree of success.  

Different techniques have been reported in the litera- 
ture pertaining to EED problem. In Ref. [1] the problem 
has been reduced to a single objective problem by treat- 
ing the emission as a constraint with a permissible limit. 
This formulation, however, has a severe difficulty in get- 

ting the trade off relations between cost and emission. 
Alternatively, minimizing the emission has been handled 
as another objective in addition to usual cost objective. A 
linear programming-based optimization procedure in 
which the objectives are considered one at a time was 
presented in Ref. [2]. Unfortunately, the EED problem is 
a highly non-linear and a multimodal optimization prob- 
lem. Therefore, conventional optimization methods that 
make use of derivatives and gradients, in general, not 
able to locate or identify the global optimum. On the 
other hand, many mathematical assumptions such as 
analytic and differential objective functions have to be 
given to simplify the problem. Furthermore, this ap- 
proach does not give any information regarding the 
trade-offs involved.  

In other research direction, the multi-objective EED 
problem was converted to a single objective problem by 
linear combination of different objectives as a weighted 
sum [3-5]. The important aspect of this weighted sum 
method is that a set of Pareto-optimal solutions can be 
obtained by varying the weights. Unfortunately, this re- 
quires multiple runs as many times as the number of de- 
sired Pareto-optimal solutions. Furthermore, this method 
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cannot be used to find Pareto-optimal solutions in prob- 
lems having a non-convex Pareto-optimal front. In addi- 
tion, there is no rational basis of determining adequate 
weights and the objective function so formed may lose 
significance due to combining non-commensurable ob- 
jectives. To avoid this difficulty, the ε-constraint method 
for multi-objective optimization was presented in Ref. 
[6]. This method is based on optimization of the most 
preferred objective and considering the other objectives 
as constraints bounded by some allowable levels. These 
levels are then altered to generate the entire Pareto-op- 
timal set. The most obvious weaknesses of this approach 
are that it is time-consuming and tends to find weakly 
non-dominated solutions.  

Goal programming method was also proposed for 
multi-objective EED problem [7]. In this method, a target 
or a goal to be achieved for each objective is assigned 
and the objective function will then try to minimize the 
distance from the targets to the objectives. Although the 
method is computationally efficient, it will yield an infe- 
rior solution rather than a non-inferior one if the goal 
point is chosen in the feasible domain. Hence, the main 
drawback of this method is that it requires a priori 
knowledge about the shape of the problem search space.  

The recent direction is to handle both objectives si- 
multaneously as competing objectives instead of simpli- 
fying the multi-objective problem to a single objective 
problem [8-10]. The use and development of heuristics- 
based multi-objective optimization techniques have sig- 
nificantly grown. Since they use a population of solu- 
tions in their search, multiple Pareto-optimal solutions 
can, in principle, be found in one single run. These mod- 
els can be efficiently used to eliminate most of the diffi- 
culties of classical methods [11,12].  

In this paper we present a reference point based multi- 
objective optimization using a combination between TR 
algorithm and PSO to solve the multi-objective EED 
problem. It is a new algorithm that performs TR as de- 
terministic search and PSO as random search. TR method 
generate steps with the help of a quadratic model of the 
objective function, define a region around the current 
iterate within which they trust the model to be an ade- 
quate representation of the objective function, and then 
choose the step to be approximate minimizer of the model 
in this region. If a step is not acceptable, they reduce the 
size of the region and find a new minimize. In general, 
the direction of the step changes whenever the size of the 
TR is altered [13]. To see the idea of TR, consider the 
unconstrained optimization problem  

 minimize  
nx

f x


               (1) 

where  f x


 is a nonlinear continuous differentiable 
function in . For a known iterate n

kx  the TR method 
determines subsequent iterate using  

1 ,k k kx x d                    (2) 

where k  is trial step determined by minimizing a local 
quadratic (approximating) model of f at 

d

kx  (TR sub- 
problem) given by 

  T T1
minimize

2
subject to ,

k k k

k

q d f f d d H d

d

  

 

k     (3) 

where kH  is Hessian of  f x  or approximate to it, 
and 0k   is the TR radius. Using the ratio  

   
   

,
0

k k
k

k k k

kf x f x d
r

q q d

 



           (4) 

traditional TR methods evaluate an agreement between 
the model and the objective function. The trial step k  
is accepted whenever k  is greater than a positive con- 
stant. This leads us to the new point 1k k k

d
r

x x d   , and 
the TR radius is updated. Otherwise, the TR radius must 
be diminished and the sub-problem (3) must be solved 
again [14]. Figure 1 shows the mechanism of TR algo- 
rithm. 

Because of the boundedness of the TR, TR algorithms 
can use non-convex approximate models. This is one of 
the advantages of TR algorithms comparing with line 
search algorithms. TR algorithms are reliable and robust, 
they can be applied to ill-conditioned problems, they 
have very strong convergence properties, and have been 
proven to be theoretically and practically effective and 
efficient for unconstrained and equality constrained op- 
timization problems [15-17]. Also, the TR algorithm has 
proven to be a very successful globalization technique 
for nonlinear programming problems with equality and 
inequality constraints [18,19].  

For multi-objective optimization problems, Kim and 
Ryu [20] developed an iterative algorithm for bi-objec- 
tive stochastic optimization problems based on the TR 
method and investigated different sampling schemes. 
Their algorithm does not require any strong modeling  
 

 
New Solution 1k k kx x d    

Figure 1. The mechanism of TR algorithm. 
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assumptions, and has great potential to work well in 
various real-world settings. El-Sobky [21] used the TR 
algorithm in solving an interactive approach for multi- 
objective optimization problems; where an active set 
strategy is used together with a reduced Hessian tech- 
nique to convert the single objective optimization prob- 
lem with quality and inequality constraints to equality 
constrained optimization problem and the computation of 
the trial step to two easy TR sub-problems similar to 
those for the unconstrained case.  

1t
i
x  

iP

PSO is an evolutionary computational (EC) model 
which is based on swarm intelligence. PSO is developed 
by Kennedy and Elberhart [22] who have been inspired 
by the research of the artificial livings. Similar to EC 
techniques, PSO is also an optimizer based on population. 
The system is initialized firstly in a set of randomly gen- 
erated potential solutions, and then performs the search 
for the optimum one iteratively. Whereas the PSO does 
not possess the crossover and mutation processes used in 
EC, it finds the optimum solution by swarms following 
the best particle. Compared to EC, the PSO has much 
more profound intelligent background and could be per- 
formed more easily. Based on its advantages, the PSO is 
not only suitable for science research, but also engineer- 
ing applications, in the fields of EC, optimization and 
many others.  

The basic PSO algorithm is constructed as follows: 
consider a swarm of N particles or birds. For particle i, it 
is originally proposed that the position ix  is updated in 
the following manner:  

1t t t
i i i

1x x v   

t
i

                (7) 

with the velocity  calculated as follows:  1t
iv 

  1
1 1 2 2 .t t t

i i i i gv wv c r p x c r p x           (8) 

Here, subscript t indicates a pseudo-time increment. 

i  represents the best ever position of particle i at time t, 
with 
p

gp  representing the global best ever position in 
the swarm at time t. 1  and 2  represent uniform ran- 
dom numbers between 0 and 1. Figure 2 shows the de- 
scription of velocity and position updates of a particle for 
a two-dimensional parameter space. 

r r

Multi-objective optimization has been one of the most 
studied application areas of PSO algorithms. Number of 
approaches have been utilized and/or designed to tackle 
multi-objective optimization problems using PSO. A 
comprehensive survey of the state-of-the-art in Multi- 
objective (MO) particle swarm optimizers can be found 
in [23] where different techniques reported in Multi-ob- 
jective PSO development have been categorized and 
discussed. 

From previous review, we want to integrate the merits 
of both TR and PSO in a new algorithm for solving EED 
problem; where TR has provided the initial set (close to  

t
iv

Memory

Inertia 

Cooperation

t
ix

gP
1t

iv 

 

Figure 2. Description of velocity and position updates in 
particle swarm optimization for a two dimensional pa- 
rameter space. 
 
the Pareto set as possible and the reference point of the 
decision maker) followed by PSO to improve the quality 
of the solutions and get all the points on the Pareto fron- 
tier. Simulation results are presented for the standard 
IEEE 30-bus system. The effectiveness and potential of 
the proposed approach to solve the multi-objective EED 
problem are demonstrated. 

2. Environmental/Economic Dispatch (EED) 

The EED involves the simultaneous optimization of fuel 
cost and emission objectives which are conflicting ones. 
The deterministic problem is formulated as described 
below.  

2.1. Objective Functions 

2.1.1. Fuel Cost Objective 
The classical EED problem of finding the optimal com- 
bination of power generation, which minimizes the total 
fuel cost while satisfying the total required demand can 
be mathematically stated as follows [5]:  

     2
1

1 1

$ h
n n

Gi i Gi i i Gi i Gi
i i

f P C P a b P c P
 

        (9) 

where t : total fuel cost C  $ h , i : is fuel cost of 
generator i, : fuel cost coefficients of gen- 
erator i, Gi : power generated (p.u.) by generator i, and 
n: number of generators. 

C
, , ,i i Gi ia b P c

P

2.1.2. Emission Objective  
The emission function can be presented as the sum of all 
types of emission considered, such as NOx, SO2, thermal 
emission, etc., with suitable pricing or weighting on each 
pollutant emitted. In the present study, only one type of 
emission NOx is taken into account without loss of gen- 
erality. The amount of NOx emission is given as a func- 
tion of generator output, that is, the sum of a quadratic 
and exponential function: 

Copyright © 2013 SciRes.                                                                                  AM 



A. A. EL-SAWY  ET  AL. 806 

 

 

2 NO

2

1

exp ton h

xGi

n

i i Gi i Gi i i Gi
i

f P E

P P P    




    
   (10) 

where , , , ,i i i i i     : coefficients of the ith generator’s 
NOx emission characteristic. 

2.2. Constraints 

The optimization problem is bounded by the following 
constraints.  

2.2.1. Power Balance Constraint 
The total power generated must supply the total load de- 
mand and the transmission losses:  

1

0
n

Gi D loss
i

P P P


              (11) 

where 

DP
P

: total load demand (p.u.), and  

loss

The transmission losses are given by [24]: 
: transmission losses (p.u.).  

  
1 1

n n

loss ij i j i j ij i j i j
i i

P A PP Q Q B Q P P
 

      Q   (12) 

where  

   
,  ,  

cos , sin ;

i Gi Di i Gi Di

ij ij
ij i j ij i j

i j i j

P P P Q Q Q

R R
A B

VV VV
  

   

   
 

where  
n: number of buses; 
Rij: series resistance connecting buses i and j; 
Vi: voltage magnitude at bus i; 

i : voltage angle at bus i; 
Pi: real power injection at bus i, and  
Qi: reactive power injection bus i. 

2.2.2. Maximum and Minimum Limits of Power 
Generation 

The power generated PGi by each generator is constrained 
between its minimum and maximum limits, i.e.: 

min max min max

min max

,

,  1, , .
Gi Gi Gi Gi Gi Gi

i i i

P P P Q Q Q

V V V i n

   

   
,
 

where  
PGi min: minimum power generated, and  
PGi max: maximum power generated. 

2.2.3. Security Constraints 
A mathematical formulation of the security constrained 
EELD problem would require a very large number of 
constraints to be considered. However, for typical sys- 
tems the large proportion of lines has a rather small pos- 

sibility of becoming overloaded. The EED problem 
should consider only the small proportion of lines in vio- 
lation, or near violation of their respective security limits 
which are identified as the critical lines. We consider 
only the critical lines that are binding in the optimal solu- 
tion. The detection of the critical lines is assumed done 
by the experiences of the decision maker. An improve- 
ment in the security can be obtained by minimizing the 
following objective function. 

 
 
max

1

k
j G

Gi
j j

T P
S f P

T

             (13) 

where 
Ti(PG): the real power flow; 

max
iT : the maximum limit of the real power flow of the 

jth line; and 
k: the number of monitored lines.  
The line flow of the jth line is expressed in terms of 

the control variables PGs, by utilizing the generalized 
generation distribution factors (GGDF) [25] and is given 
below:  

  
1

n

j G ij
i

T P D P


  Gi           (14) 

where Dij is the generalized GGDF for line j, due to gen- 
erator i. For secure operation, the transmission line load-
ing Sl is restricted by its upper limit as: 

max ,  1, , ;l l lS S l n    

where nl is the number of transmission line. 

3. Multi-Objective Optimization  

Multi-objective optimization (also called multicriteria 
optimization, multiperformance or vector optimization) 
can be defined as the problem of finding a vector of de- 
cision variables which satisfies constraints and optimizes 
a vector function whose elements represent the objective 
functions. These functions form a mathematical descrip- 
tion of performance criteria which are usually in conflict 
with each other. Hence, the term “optimize” means find- 
ing such a solution which would give the values of all the 
objective functions acceptable to the designer [26]. The 
general minimization problem of  objectives can be 
mathematically stated as:  

q

   
 
 

minimize :  ,  1,2, ,

subject to: 0,     1,2, , ,

                 0,      1,2, , ,

j

i

e

f x f x j q

C x i p

C x e m

     
  







    (15) 

where fi(x) is the j-th objective function, Ci(x) is the i-th 
inequality constraint, Ce(x) is the e-th equality constraint 
and  1 2, , , nx x x x   is the vector of optimization or 
decision variables; where n is the dimension of the deci- 
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sion variable space. The multi-objective optimization pro- 
blem then reduces to finding an x such that fi(x) is opti- 
mized. Since the notion of an optimum solution in 
multi-objective optimization problem is different com- 
pared to the single objective optimization problem, the 
concept of Pareto dominance is used for the evaluation of 
the solutions. This concept formulated by Vilfredo Pareto 
is defined as [27]: 

Definition 1. (Dominance Criteria [28]). For a prob- 
lem having more than one objective function (say, jf , 

, ), any two solution xa and xb can have 
one of two possibilities, one dominates the other or none 
dominates the other. A solution xa is said to dominate the 
other solution xb, if both the following condition are true 

1, ,j q  1q 

 The solution xa is no worse (say the operator   de- 
notes worse and   denotes better) than xb in all ob- 
jectives, or   j a j bf x f x  for all 1, ,j q   ob- 
jectives. 

 The solution xa is strictly better than xb in at least one 
objective, or    j a j bf x f x

 
for at least one  

 1, , .  j q 
If any of the above condition is violated, the solution 

xa dose not dominates the solution xb. 
Definition 2. (Pareto optimal solution). x* is said to be 

a Pareto optimal solution of multi-objective optimization 
problem if there exists no other feasible x such that, fi(x) 
≤ fi(x

*) for all  and fi(x) < fi(x
*) for at least 

one objective function 
1, ,j   q

jf . 

4. Reference Point Based TR/PSO Approach 

In this section, the proposed algorithm is presented. The 
proposed algorithm contains three stages initialization 
stage, TR stage (used to obtain a point on the Pareto 
frontier), and PSO stage (is applied to get all the points 
on the Pareto frontier). The mechanism of the proposed 
algorithm in the objective space is shown in Figure 3. 

4.1. Initialization Stage 

4.1.1. Initialization 
Initialize N reference points in the search space, TR pa- 
rameters, and PSO parameters. 

4.1.2. Reference Point Method 
The reference point interactive approach of Wierzbickiis 
[28] is very simple and practical for multi-objective op- 
timization problems. Before the solution process starts, 
some information is given to the decision maker about 
the problem. The goal is to achieve Pareto-optimal solu- 
tion closest to a supplied reference point. Moreover, the 
reference point approach works with only one reference 
point at a time [29]. However, the decision maker may be 
interested in exploring the preferred regions of Pareto- 
optimality for multiple reference points simultaneously.  

 

f1 

f 2
 

 

Figure 3. The mechanism of the proposed algorithm in the 
objective space. 
 
With the above principles of reference point approaches 
and difficulties with the classical methods, we use a 
methodology by which a set of Pareto-optimal solutions 
near a supplied set of reference points will be found, 
thereby eliminating the need of any weight vector and the 
need of applying the methodologies again and again.  

Given a reference point for a q-objective optimization 
problem of minimizing     1 , , qf x f x  with x be- 
longs to the search space, the following optimization 
model is solved [28]: 

   

 
 

1

1

minimize :   

subject to:   0,        1, 2, , ,

                 0,      1, 2, , ,

p
q p

j j
j

i

e

f x f x z

C x i l

C x e m



 
  
 


  
  









     (16) 

where the parameter p can take any value between 1 and 
∞. When p = 2 is used, a Euclidean distance of any point 
in the objective space from the reference point z  is 
minimized. 

4.2. TR Stage 

This section is devoted to presenting the detailed descrip- 
tion of TR algorithm for solving problem (16). The pro- 
posed TR algorithm combines ideas from Byrd [30], 
Omojokun [31], and El Alem [32]. Following Dennis et 
al. [33], we define the indicator matrix   p pW x  , 
whose diagonal entries are 

 
 
 

1     if   0,

0     if   0.

i

i

i

C x
w x

C x

 


          (17) 

Using this matrix, the Problem defined in Equation (16) 
can be transformed to the following equality constrained 
optimization problem: 

 
     

 

T

minimize        

subject to       1 2 0,

                      0.

i i

e

f x

C x W x C x

C x





   (18) 
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The above problem can be rewritten as: 

 
 

minimize       

subject to       0,

f x

h x 
          (19) 

The Lagrangian function associated with problem de- 
fined in (19) is given by 

    T,k k k k kL x f x h x   ;       (20) 

where k   is the Lagrange multiplier vector associ- 
ated with equality constraint  kh x  . 

The reduced Hessian approach is used to compute a 
trial step k . In this approach, the trial step k  is de- 
composed into two orthogonal components; the normal 
component  and the tangential component . The 
trial step kd  has the form 

d

d

d

t
kdn

k
n t

k k k k , where kd d Z d  Z  
is a matrix whose columns form an orthonormal basis for 
the null space of .   T

kh x
We obtain the normal component  by solving the 

following TR sub-problem: 

n
kd

   
2T1

minimize     
2

subject to    ,

n
k k

n
k

h x h x d

d 



 
    (21) 

for some .   0,1 
The tangential component is computed by solving the 

following TR sub-problem:  

   TT
T

22

1
min : ,

2

subject to: ,

n t t
k x k k k k k k k

t n
k k k

T tZ L x H d d d Z H Z d

Z d d

    

  

(22) 

To test the step, we compare the actual reduction in 
moving from kx  to k kx d  versus the predicted re- 
duction. The actual reduction is defined as: 

       2 2

1 1 1, ,

k

k k k k k k k

Ared

L x L x r h x h x   
     

.


 (23) 

The predicted reduction is defined as: 

 

    
     

T T

TT

22 T

1
,

2

+

k x k k k k k k

k k k k

k k k k k

Pred L x d d H d

h x h x d

r h x h x h x d





  

 

  
;

  (24) 

where  is a parameter usually called the penalty 
parameter, and 

0r 
 1 .k k k      

If Ared  ,Pred 0k k   where  is a small 
fixed constant, then the step is rejected. In this case, the 
radius of the TR is decreased by setting 

 0 0,1 

3k kd  , 

where  3 0,1  , and another trial step is computed.  
If   2k kAred Pred  ; where 2 , then the step 0 

1k k kx x d    is accepted and set the TR as  

  1 max min 1min ,max ,k k     ; 

where  1 0,1   and another trial step is computed. 
If  Pred0 2 ,k kAred    then the step 1k k kx x d  

 1 min,k 
 

is accepted and set the TR as , and 
another trial step is computed. 

maxk 

Finally, the algorithm is terminated when either 

1kd   or T
2 ,k x k kZ L h     for some 1 2, 0   . 

4.3. PSO Stage 

In this stage a homogeneous PSO for multi-objective 
optimization problem (see [34]) is proposed with a de- 
creasing constriction factor to restrict velocity of the par- 
ticles and control it [35-37]. In homogeneous PSO one 
global repository concept is proposed for choosing pbest 
and gbest, this means that each particle has lost its own 
identity and treated simply as a member of social group. 
The procedure of the PSO stage is as follows. 

Step 1: Initialization 
All non-dominated points (which obtained by applying 

TR stage) chosen as particles position t
ix .  

PSO parameters such as velocity i , inertia weight w 
and learning rates c1 and c2 are set up.  

tv

Store non-dominated particles in Pareto repository. If 
the specific constraint doesn’t exist for a repository, the 
size of the repository is unlimited.  

Step 2: Evaluation 
Evaluate the multi-objective fitness value of each par- 

ticle and save it in a vector form. 
Step 3: Floating 
Two optimal solutions are chosen randomly for pbest 

and gbest from the repository.  
Determine the new position of each particle with 

Equations (7) and (8).  
Step 4: Repairing of particles 
Where the particle i starts at position t

ix  with velocity 
 in the feasible space, the new position t

iv 1t
ix   depends 

on velocity 1t
iv  , so we introduce a modified constriction 

factor (i.e., decreasing constriction factor) 

2

2
;

2


  

   

           (25) 

where,   is the age of the infeasible particle (i.e., how 
long it is still infeasible) and it is increased with the 
number of failed trials to keep the feasibility of the parti- 
cle. The relation between the modified constriction factor 
and the age of the infeasible particle is shown in Figure 
4. 

The new modified positions of the particles are com- 
puted as:  
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Figure 4. Relation between the modified constriction factor 
and the age of the infeasible particle. 
 

1 .t t t
i i i

1x x v                 (26) 

Step 5: Selection and update the repository 
Check the Pareto optimality of each particle. If the fit-

ness value of the particle is non-dominated when it com-
pared to the Pareto optimal set in a repository, save it 
into the Pareto repository. 

In the Pareto repository, if a particle is dominated from 
new one, then discard it. 

Step 6: Repeat 
Repeat again step 2 to step 5 until the number of gen- 

eration reaches to given t. The pseudo code of the pro- 
posed algorithm showing in Figure 5. 

5. Implementation of the Proposed  
Approach  

Simulations were performed on the standard IEEE 30- 
bus 6-generator test system. The single-line diagram of 
this system is shown in Figure 6. The proposed algo- 
rithm have been implemented in MATLAB environment. 
We have kept the proposed approach parameters same in 
all problems as is shown in Table 1 (see [35,38]).  

The power system is interconnected by 41 transmis- 
sion lines and the total system demand for the 21 load 
buses is 2.834 p.u. Fuel cost and NOx emission coeffi- 
cients for this system are given in Tables 2 and 3 respec- 
tively. 

6. Results and Discussions  

Figure 7 present the graphical results of our approach 
and ε-dominance based multi-objective genetic algorithm 
(MOGA) [39] for the EED problem after 200 genera- 
tions. 

From the figure, it can be deduced that the algorithm is 
capable of obtaining the Pareto front for the EED prob-  

Initialize parameters for TR and PSO 

TR parameters  1 2 0 1 2 3 0 max min,  ,  ,  ,  ,  , , ,        
 

PSO parameters  1 2,  ,  ,  iv w c c  

Construct the reference point model of EED problem 

TR algorithm 

While the stopping criterion is not met 

Compute the normal component of the trial step 

The tangential component of the trial step is calculated 

Compute the trial step (the sum of normal and tangential  

component) 

Test the new trial step 

End while 

PSO algorithm. 

While number of iterations not met 

Set the solution (non-dominated solution) obtained by TR in a 

repository (particles positions) 

Chosen randomly pbest and gbest from the repository. 

Update particles velocity and position 

Repair the unfeasible particle 

Evaluate fitness of particle swarm 

Selection and update the repository 

End while 

Figure 5. The pseudo code of the proposed algorithm. 
 

 

Figure 6. Single line diagram of IEEE 30-bus 6-generator 
test system. 
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Table 1. The parameter adopted in the implementation of 
the proposed algorithm. 

Parameter Value Parameter Value 

N 50 max  105 0  

1 , 2  10−4 min  10−3 

0  0 PSO iteration 200 

1  2 w 0.6 

2  0.25 c1 2.8 

3  0.25 c2 1.3 

0    min1,1.5C     10 

 
Table 2. Fuel cost coefficients. 

Unit i ai bi ci PGi min PGi max 

1 10 200 100 0.05 0.50 

2 10 150 120 0.05 0.60 

3 20 180 40 0.05 1.00 

4 10 100 60 0.05 1.20 

5 20 180 40 0.05 1.00 

6 10 150 100 0.05 0.60 

 
Table 3. NOx Emission coefficients. 

Unit i α β γ ξ λ 

1 4.091e−2 −5.554e−2 6.490e−2 2.0e−4 2.857

2 2.543e−2 −6.047e−2 5.638e−2 5.0e−4 3.333

3 4.258e−2 −5.094e−2 4.586e−2 1.0e−6 8.000

4 5.326e−2 −3.550e−2 3.380e−2 2.0e−3 2.000

5 4.258e−2 −5.094e−2 4.586e−2 1.0e−6 8.000

6 6.131e−2 −5.555e−2 5.151e−2 1.0e−5 6.667

 
lem as verified by the minimum of each objective and 
points obtained by ε-dominance based MOGA. In ε- 
dominance based MOGA. There are gaps between the 
nondominated solutions which make the curve non- 
smooth. In other words, we can say that the proposed 
algorithm outperformed ε-dominance based MOGA in 
both distribution and spread. 

The best fuel cost and best NOx emission obtained by 
the proposed approach as compared to non-dominated 
sorting genetic algorithm (NSGA) [8], niched Pareto- 
genetic algorithm (NPGA) [9], strength Pareto-evolu- 
tionary algorithm (SPEA) [10], NSGA-II [40] and ε- 
dominance-based MOGA [39] are given in Tables 4 and 
5. It is observed that the proposed approach finds better 
minimum fuel cost and emission level than the other  

ε-dominance based MOGA 

 
The proposed algorithm 

 

Figure 7. Pareto-optimal front for the EED problem. 
 
evolutionary algorithms.  

Table 6 reports the computational results, which de- 
clare that this work may be very valuable for on-line op- 
eration of power systems when environmental constraints 
are also need to be considered. 

It has been shown that the proposed algorithm can ob- 
tain the Pareto front of the problem and it is therefore 
ideal for solving the multi-objective EED optimization 
problem which has conflicting objectives from the fact 
that the multi-objective approach yields multiple Pareto- 
optimal solutions in a single simulation run whereas mul- 
tiple runs are required for the single objective approach 
with weighted objectives. Another advantage is that the 
simulation results prove superiority of the proposed ap- 
proach to those reported in the literature, where it com- 
pletely covers and dominates all Pareto-set found by the 
other approaches. Finally, the reality of using the pro- 
posed approach to handle on-line problems of realistic 
dimensions has been approved due to small computa- 
ional time. t  
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Table 4. Best total $/h fuel cost. 

 NSGA NPGA SPEA NSGA-II 
ε-dominance 
based MOGA 

Proposed approach

PG1 0.1168 0.1245 0.1086 0.1182 0.1739 0.11852 

PG2 0.3165 0.2792 0.3056 0.3148 0.3578 0.31212 

PG3 0.5441 0.6284 0.5818 0.5910 0.5311 0.51886 

PG4 0.9447 1.0264 0.9846 0.9710 0.9790 1.011 

PG5 0.5498 0.4693 0.5288 0.5172 0.4429 0.50446 

PG6 0.3964 0.39993 0.3584 0.3548 0.3725 0.36902 

Best cost 608.245 608.147 607.807 607.801 606.4533 600.1647 

Emission 0.21664 0.22364 0.22015 0.21891 0.2028 0.2042 

 
Table 5. Best total ton/h NOx emission. 

 NSGA NPGA SPEA NSGA-II 
ε-dominance 
based MOGA 

Proposed approach

PG1 0.4113 0.3923 0.4043 0.4141 0.3885 0.37495 

PG2 0.4591 0.4700 0.4525 0.4602 0.4984 0.58224 

PG3 0.5117 0.5565 0.5525 0.5429 0.5167 0.47498 

PG4 0.3724 0.3695 0.4079 0.4011 0.4502 0.43399 

PG5 0.5810 0.5599 0.5468 0.5422 0.5205 0.49171 

PG6 0.5304 0.5163 0.5005 0.5045 0.5005 0.47613 

Best emission 0.19432 0.19424 0.19422 0.19419 0.1882 0.1843 

Cost 647.251 645.984 642.603 644.133 642.8976 638.5540 

 
Table 6. Computation results for the proposed approach. 

System Total iteration CPU time (s) 

30-Bus system 200 22.5 

7. Conclusions 

In this paper, the multi-objective EED problem has been 
solved using Reference Point Based TR/PSO approach. 
In this approach, we introduced an integration between 
TR and PSO to improve the quality of the founded solu- 
tions, and also to ensure faster convergence to the Pareto 
optimal solution. TR has provided the initial set (close to 
the Pareto set as possible and the reference point of the 
decision maker) followed by PSO to improve the quality 
of the solutions and get all the points on the Pareto fron- 
tier. The algorithm has been run on the standard IEEE 
30-bus system. 

The following are the significant contributions of this 
paper: 

The proposed technique has been effectively applied to 
solve the EED considering two objectives simultane- 

ously.  
 Simulation results prove superiority of the proposed 

approach to those reported in the literature.  
 The non-dominated solutions in the obtained Pareto- 

optimal set are well distributed and have satisfactory 
diversity characteristics. 

 The proposed algorithm does not have any restric- 
tions on the number of the Pareto optimal solutions 
found; where it keeps track of all the feasible solu- 
tions found during the optimization. 

 Also, the present work addresses an important task of 
combining TR methodology with PSO to not find a 
single optimal solution, but to find a set of solutions 
near the desired region of DM’s interest.  

 The proposed approach is efficient for solving multi- 
objective optimization where multiple Pareto-optimal 
solutions can be found in one simulation run.  

 The most important aspect of the proposed approach 
is that any number of objectives can be considered.  

 The proposed approach is a new algorithm that per- 
forms TR as deterministic search and PSO as random 
search, where using the randomicity PSO and the 
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high efficiency of TR method, can overcome the li- 
mitation of trust region method and solve efficiently a 
class of multi-objective applications.  
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