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ABSTRACT 

We study the localisation inverse problem corresponding to Laplacian transport of absorbing cell. Our main goal is to 
find sufficient Dirichelet-to-Neumann conditions insuring that this inverse problem is uniquely soluble. In this paper, 
we show that the conformal mapping technique is adopted to this type of problem in the two dimensional case. 
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1. Introduction 

The theory of Dirichlet-to-Neumann operators is the 
basis of many research domains in analysis, particularly, 
those concerning Laplacian transports. It is also very im- 
portant in mathematical-physics, geophysics, electroche- 
mistry. Moreover, it is very useful in medical diagnosis, 
such as electrical impedance tomography, as showing in 
the following example: 

Example 1. In 1989, J. Lee and G. Uhlmann have 
introduced an example on the determination of conduc-  

tivity matrix field , for     , , 1

d

i j i j
x x 


   x  in a  

bounded open domain , see e.g. [1]. This exam- 
ple is related to measuring of elliptic Dirichlet-to-Neu- 
mann map for associated conductivity equation, see e.g. 
[1]. Notice that the solution of this problem has a lot of 
practical applications in various domains overall in me- 
dicine, which is an important diagnostic tool, e.g. in the 
electrical impedance tomography; the tissue in the human 
body is an example of highly anisotropic conductor [2]. 

d 

  ,v x x
Under assumption that there are no sources or sinks of 

current the potential ,   for a given voltage 
 on the (smooth) boundary   of   , ,f     

is a solution of the Dirichlet problem: 

(P1) 
 div  


0 in ,

on .

v

v f


 

 
 

Then the corresponding to (P1) Dirichlet-to-Neumann 
map (operator)  is (formally) defined by [3] as 

follows: 

, : : .f
f

v
f v



 
 




   




, 

     (1.1) 

Here   is the unit outer-normal vector to the boun- 
dary at  : and the function  fv v  is a solution 
of the Dirichlet problem (P1). 

Dirichlet-to-Neumann operator (1.1) is also called the 
voltage-to-current map, since the function , f   gives 
the induced current flux trough the boundary 


 . The 

key (inverse) problem is whether on can determine the 
conductivity matrix   by knowing electrical boundary 
measurements, i.e. the corresponding Dirichlet-to-Neu- 
mann operator? In general this operator does not deter- 
mine the matrix   uniquely, see e.g. [4]. 

The main question in this context is to find sufficient 
conditions insuring that the inverse problem is uniquely 
soluble. 

The problem of electrical current flux in the form (P1) 
is an example of so-called diffusive Laplacian transport. 
Besides the voltage-to-current problem, the motivation to 
study this kind of transport comes for instance, from the 
transfer across biological membranes, see e.g. [5,6]: 

Example 2. Let some species of concentration  
  , dC x x , diffuse stationary in the isotropic bulk 

 I   from a (distant) source localised on the closed 
boundary 

B
 towards a semipermeable compact inter- 

face   of cell B  
0

, where they disappear at a 
given rate W . Then the steady field of concentra- 
tions (Laplacian transport with a diffusion coefficient 
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0D  ) obeys the set of equations: 

(P2) 

   

     
e source ,

,

.
B

C c

B

0 0

0, \ ,

,

the concentration at th

on the interface

B

C x B

C f

D C W

 

 







0c 







  
 



  




 

Here  is the constant concentration of the spe- 
cies inside cell B . 

Now, similar to (1.1), we can associate with the pro- 
blem (P2) a Dirihlet-to-Neumann operator 

, : :I ff u  ,fu


 

 ,dom I 



      (1.2) 

with domain  belongs to a certain Sobolev 
space, see Section 2. 

The advantage of this approach is that as soon as the 
operator (1.2) is defined, one can apply it to study the 
mixed boundary value problem (P2). This gives, in par- 
ticularly, the value of the particle flux due to Laplacian 
transport across the membrane . Moreover, the total 
current across the boundary 

,: d ,I

 can be defined (for 
given f) in term of Dirihlet-to-Neumann operator (1.2) as 
follows: 

J D f  

d




           (1.3) 

where   designed the differential element relative to 
. 

The aim of the present paper is to show how can apply 
the theory of Dirichlet-to-Neumann operators on the lo- 
calisation inverse problem in the framework of applica- 
tion outlined in problem (P2), which consists in finding 
the sufficient (Dirihlet-to-Neumann) conditions to local- 
ise the position of cell B

2

 from the experimentally mea- 
surable macroscopic response parameters. 

In Section 2, we introduce the existence and unique- 
ness for the solution of problem (P2). In Section 3, we 
present our main results which consist in showing that 
total current (1.3), involving Dirihlet-to-Neumann opera- 
tor (1.2), can resolve the localisation inverse problem in 
the two-dimensional case, when the compact   

\ B

B  
 2

. 
We allow an explicit calculations for the solution of pro- 
blem (P2) from Dirichlet-Neumann boundary conditions. 
Whereas for this solution, we use a method of conformal 
mapping for harmonic functions in doubly connected 
domains . 

2. Uniqueness of the Problem (P2) 

We suppose that  and  be open bounded do- 
mains in  with C -smooth disjoint boundaries 


d   

and , that is B  B B  
 

\   and  
. B 

Then the unit outer-normal to the boundary \ B   
vector-field   , \x x B    is well-defined, and we 
consider the normal derivative in (P2) as the interior 
limit:  

        : lim , \ .
B x

u u x x B 
  

 
       (2.1) 

The existence of the limit (2.1) as well as the re-  

striction   : limxB
u u x 

 u
2C

 is insured since  has  

to be harmonic solution of problem (P2) for -smooth 
boundaries  \ B 



 [7]. 
Now, we introduce some indispensable standard nota- 

tions and definitions, see [8]. Let  be Hilbert space 
  2L M d on domain    and M 2: L M    de- 

note the corresponding boundary space. We denote by 
 sW M 2  the Sobolev space of -functions, whose 

s -derivatives are also in , and similar,  2
sW M  is 

the Sobolev space of  2C-functions on the -smooth 
boundary M . 

Proposition 2.1 Let  1 2f W 2  2C for -smooth 
boundaries  \ B  . Then the Dirichlet-Neumann pro- 
blem (P2) has a unique (harmonic) solution in domain 

\ B

0f

. 
Proof. For existence we refer to [7]. To prove the uni- 

queness, we consider the problem (P2) for   and 
0c  . Then by Gauss-Ostrogradsky theorem, one gets 

that the corresponding solution  yields: u

   

    
      

   

\

\

21

d

d div

d

d 0.

B

B

B

B

x u x u x

x u x u x

u u

WD u

   

  











 

 

 

  









       (2.2) 

The estimate (2.2) implies that  \ Constu x B  . 
Hence by the boundary condition one gets  

   1 0
B

WD u 


, and from      0u x f x


  

1 0 

,  

we obtain that for WD , the harmonic function 
  0u x x  for \ B

2 

. □ 
The next statement is a key for analysis of inverse 

localisation problems: 
Proposition 2.2 Consider two problems (P2) corre- 

sponding to a bounded domain  with C2-smooth 
boundary  1B B

2,B B 
   1 2,

 and to two subsets  and 2  with the 
same smoothness of the boundaries 1 . If for so- 
lutions f fu u

 

of these problems one has 

 1 2 ,f fu u 
 

  

1 2B B

           (2.3) 

  . then 
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Proof. By virtue of    1 2
f fu u f


 

B

 and by con-  

dition (2.3), the problem (P2) has two solutions for 
identical external (on  ) and internal (on 1  and 

2 ) Robin boundary conditions. Then by the standard 
arguments based on the Holmgren uniqueness theorem [9] 
for harmonic functions on , one obtains that  

. □ 

B

2
1 2B  

B  
2 2



B

3. Inverse Problem: Conformal Mapping 

Let  and  be respectively open bounded do- 
mains in  with C -smooth disjoint boundaries  




 0 0,C O R  and  0,O rB C  , where  0 0,C O R

 ,C O r

0R r

0d

T

u u T



  

and 0  are two circles respectively with radius 
 and . 0

In the sequel, we denote by  the distance between 
the two centers . 

00 O O

The solution of the inverse localisation problem is 
decomposed into two steps: 

d d

In the first step, we introduce the necessary conformal 
mapping, see [10]. There are two reasons that make 
interest for using this technique, indeed the convenable 
conformal mapping : 

(a) Transforms two non-concentric circles into two 
concentric circles. 

(b) For any harmonic function ,  still harmo- 
nic, see Proposition 3.1. 

With this technique, we transform problem (P2) to an- 
other problem (P2)*, whose (P2)* has as solution an har- 
monic function also, and as domains  and T   

d


:T N M

T B  
which are concentric. 

Therefore, we can find easily the general form for the 
solution of (P2)*, and consequently, we conclude the ne- 
cessary coefficients for the general solution of problem 
(P2), with which we will be able to resolve its inverse 
problem. 

In the next step, we are interested by resolving the 
localisation inverse problem using the explicit formula of 

0 , which will be calculated in terms of (measurable) 
Dirichlet-Neumann boundary hypothesis on .  

Proposition 3.1 Let  be a conformal 
mapping defined by: 

       2 1 2, i , .x x x 

 ,u x y

1 2 1 1 2, :z x x T z x x x    

If  is an harmonic function in M , then the 
composition  

      1 2 1 2 1 1 2, : , ,u x x u T x x u x x x       2 1 2, , ,x x x   

N

1 2

2 2:

 

is an harmonic function in .  
In particular, by distinguishing explicitly the Laplacian 

in different coordinates, z x x    
2:T x  

       2

1 2 1 2 1 2, , , , .T z zu x x x y x x T z u x x


       

:T 

    
 

1

1 2 1 2

: i i i

that is : , i ,

T z z d ez

T z x x x x

  

      

   

 and 

1 2

2
x   , one obtains: 

 

3.1. Necessary Conformal Mapping 

Let  be the conformal mapping defined by:1 

       (3.1) 

where: 
22 2 2 2 2 4 2 2 2

0 0 0 0 0 0 0 0 0

0

2
0

2

2

and .

d r R d r R R d r
d

d

d
e

r

      




T
O

,Y Y

 

(3.2) 

Remark 1 We define the conformal mapping  rela- 
tively to the orthonormal reference with origin  and 
axis   which is keen on the line  in the sense 
of the vector . 

0OO
OO

 ,C O R
0

Corollary 3.2 T transforms  and  0 0

 0,C O r  from non-concentric circles to concentric  

 0,C O R  and  0, r 0R

 
 

C O , where  is defined  circles 

by:  
22

0 0
0 2 2 2

0 0 0

.
1 2

R d d
R

R d e d e

 


  


0d  T

F

        (3.3) 

Remark 2 Notice that when 0 , the mapping  
converges to the identity function. 

3.2. Problem (P2)* 

fLet  and   be respectively the values of the normal 
derivative f  with the new variables C  and 

B
 1 2,x x 

   
, i.e: 

   
1 2 1 2

1 2 1 2

, : , ,

, : , .

B
x x C x x

f x x f x x

 
  




 
  

F

 

 

Then, if we make the substitution , ,C x x C x x   

 
     
   

 
     

1 2

1 2 0 0

1 2 1 2

0

1 2 1 2 0

,   0,

, , \ , ,

, ,

on ,

, , on ,

C x x

x x D O R D O r

C x x f x x

C O R

D x x W C x x c C O r

 

 
 




     

  
 

    


   F

1 2 1 2 , 
then by using the conformal mapping given in (3.1), we 
show from proposition 3.1 that the problem (P2) can be 
transformed to problem (P2)*, which obeys the set of 
equations: 

(P2)*  

1i is the complex number. 
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   1 2 1 1 2 2

1 2

1
0 1 1 2 1 1 2 2 2

,

x x x x x x

x x

r x x x x C x x x x C

In the sequel, we denote by   and 
 ,

 the polar 
coordinates associated to the variables 1 2x x 

 

 

cos

sin .

k k

k

. 
Corollary 3.3 The solution of the problem (P2)* gets 

the form: 

 

   

   

1 2
1

3 4

, ln

k

k

k k

C

c k c k

c k c k

    

  

 







 

 

 



    

  

   

  

  





C

F

F

   (3.4) 

Proof. As  is harmonic, then the proof follows, see 
[10]. □ 

Hereinafter, we need to make explicit  in order to 
calculate the coefficients of the development (3.4). 

Proposition 3.4 The function  is given by: 

   
   
      

    





       

   

 

0

1
0 0

0 1 0 2
1

0 3 0 4

1 1
0 1 0 2

1

1 1
0 3 0 4

1
,

1

1 sin

1

sin

sin 1
2

2

cos 1 cos

k k

k

k k

k k

k

k k

r ed

ed er dr

ed k r c k r c k k

k r c k r c k k

k
r c k r c k k

k
r c k r c k

k k

 

  





cos

sin 1k   













  



  




   

    

   

      

 

 

   

   





 

  

 

 

 

 



F

  1   

 

(3.5) 

Proof. Since  1 2, : 1 2,
B

x x   F C x x 

 
, we deduce  

from the definition of 1 2,
B

C x x 

 
 1 2

1 2

2

,

: .x x

x

C x C 

2x C

  that: 

 1 2

1
0 1

, :x x C x

r x





 

 

 F
     (3.6) 

We need firstly to calculate 
1x

 and C   in 
terms of  1 2,x x 
   1 2, C x x   

 1 2 2, d .C x x x    

 
 

1

2 2

1 2 2

1 2 2

, , ,

, , .

x

x

x x x

x x x





   

   

. By virtue of the substitution  

,1 2xC x , we obtain the following differen-  

tial relation:  

   
 

1 2

1 2 1 2

1 2 1

d , d ,

, dx x

C x x C x x

C x x x



    

  

  
 

Then by comparison, we conclude that:  

 
 

1 1 2

2 1 2

1 2 11

1 2 1

x x x x

x x x x

C C x x x C

C C x x x C

     

     



 

   

   
   (3.7) 

Substitute Equation (3.7) in Equation (3.6), one ob- 
tains: 

            

 

    

F
 

(3.8) 

Recall that Equation (3.1) gives us a relation between 
the variables  1 2, x  1 2, and x x x  . Then, the quantities  

 1 21 1 2 1x x  1 21 2 2 2x xx x x x    x x x x   

1 2,

 in Equation   and 

(3.8) can be calculated in terms of  x x 

   

. Therefore 
we have: 

 
    

1

2

1 2
0

1 2

2 2
1 2 2

1
,

1

1 2

1

x

x

x x
r ed

x ed ex C

e x x ed x d C




   

       





 

 

  

F

 

Finally, if we replace 1x  and 2x  by their associated 
polar coordinates  ,  ,1 2x   , then we can rewrite x F  
in terms of   and 

   

 (due to the relation between po- 
lar derivatives and cartesian derivatives) as follows: 

       
0

2
0 0

1
,

1

1 , sin , .

r ed

ed r C er d C 

 

    




        

 

     

F

 ,C

 (3.9) 

Therefore, it is enough to replace      by its 
value given in Equation (3.4). □ 

In order to resolve problem (P2)*, we need to make 
explicit f . So, the change of variables given in Equa- 
tion (3.1), allows us to express f

 

       

1 2

1 2
1

,

cos sin ,

f

f f

k

f x x

c k k c k k



 with the following 
Fourier series: 

 






 



 

  

 
 (3.10) 

where: 

     

     

     

     

     

2π 2π

1 2 1 2 1 2
0 0

2π

1 1 2
0

2π

1 2 1 2 1 2
0

2π

2 1 2
0

2π

1 2 1 2 1 2
0

1 1
d , d , , ,

2π 2π

1
d , cos

π

1
d , , cos , ,

π

1
d , sin

π

1
d , , sin , .

π

f

f

f

f x x x x f x x

c k f x x k

x x f x x k x x

c k f x x k

x x f x x k f x x

  

 

 

 

 


 



 


     


 


    

 















  

  

 

  

 

 

Remark 3 Notice that the coefficients of (16) depend 
only of: 
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 1 2, Proposition 3.5 The coefficients of Equation (3.4) are 
given by: 

x1. x  given from the change of variables due 
to (3.1). 

2. f which is the external condition boundary of 
problem (P2). 

1
0

2

ln and , whose :f Q
R

Q
     

  

   
  

    (3.11) 

 

   
      

 

          

1 1 2 2
0 0 0 21 2

0 0 2 12 1 1 2 1 1
0 0 0 0 0 0 0 0 0 2

11 2 2
0 0 0 01 1

1 1 1 1
1 ,

1 1 1

1 1

f

f f

f

ed ed D R W R r c
c R r c

r R r D Wr ed ed r R r R r c

er dr ed R r
Q ed D r ed W r R

  
  

   

 
 

  
  

     

  
    


 



 


  






1 02 1Q WD r ed   

 2 0 0 0 2 1 1
0 0 0 0

2 1 2 1 ln
1 1r R r D Wr ed e         1 2 1

0 0 0d r R r
    1

0 0 2

.
1fR r c  

 

 
Proof. First boundary condition of problem (P2)* im-  

plies: 
     

0
1 2 1 2,
, ,

C O R
C x x f x x

    

 ,C x x    ,f x x  

   
 

 

2
2 1 0 1 0

    

tween the constants,

1 1 1

identification between the coefficients of cos ,

ts of sin .

fR c R

. Then, by replacing  

1 2  and 1 2  by their values given respec- 
tively in (3.4) and (3.10), we obtain after identification 
that: 

 c c

     2
4 3 0 2 01 1 1

identification between the coefficien

fc c R c R

0ln

identification be

fR  





  




 

 





 







 

  



  

 

 

Afterwards, from the second boundary condition in 
problem (P2)*, we have  

 
 

0,
, ,

C O r
D W C c      

   F 


 

. Then, by the simi-  

lar manner, we deduce from (3.5) and (3.4) that: 

   

   
  

 
   

 

2
3 0 4

0 0

1
1 0 0 2

1
0 0 2

3 4

3 4

1
1 1 1

2

1 ln ,

1

1 ,

1 1 1

1 .

ed c r c

ed W r c

r r c

r r c

c

c



 



 





      

 

   
  

  

1

1 1

D r

ed c


  



   

   
   

1
0 1

2 2
0 0

1 2
0 0

1 1

1 1

D r ed W c

er d ed r c

D r ed W r c







  

      

  

  



 

 

 

 

 



   

 

Finally, one has a system of six equations with six 
unknowns  1 2 3, , 1 , 1 , 1c c c      and c . The solu- 
tion of this system ends the proof. □ 

 4 1

Remark 4 Notice that the proof of Proposition 3.5 
show us the advantage of conformal mapping technique. 
Indeed, the identification between Fourier series on the 
boundary conditions of problem (P2)* is easily cal- 
culated because its boundaries are two concentric circles, 
and consequently its radius are constant. But, it is not the 
case in problem (P2), because here its boundaries are 

non-concentric, whose its radius depend of polar angle. 
Remark 5 For the inverse problem, we will just need 

the explicit value of   and 

C

, that why we didn’t 
make explicit the other coefficients values for the Fourier 
series of . 

3.3. Localisation Inverse Problem 

For resolving the inverse problem, we need the fol- 
lowing: 

(i) First, we aim to calculate the total flux J  across 
the external boundary 

C

d

. For that, we need to express 
the solution  of problem (P2) in terms of Fourier 
series. 

(ii) Second, we aim to find an equation for . 0

In the sequel, we denote by   and   the polar co- 
ordinates associated to the initial variables  1 2x x . ,

(i) The solution of problem (P2) gets the following 
form:  

 

     

     

1 2
1

3 4

, ln

cos

sin

k k

k

k k

C

c k c k k

c k c k k

    

  

  








 

   

   

     (3.12) 

     , , , ,c k c k c k  1 2 3  and where 4c k
k

 for all  
 C, are the Fourier coefficients of . 

Corollary 3.6 The total flux   and J J B

2πB

 satisfy the 
following: 

J J D   

dl
B

         (3.13) 

Proof. Since the differential element  at boundary 

0dr  are respectively equal to  , then by inserting 
(3.12) in (1.2), we deduce that: 

: d 2π ,B M M
M B

J l D


    j n  

where : D C M j M  and M r  designed re- 
spectively local current and outer-normal vector at ar- 
bitrary point 

n e

M . 
On the other hand, by Gauss-Ostrogradsky theorem, 

one gets: 
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\ \

d d 0,
B B

D S C



  

j n

dS

: dB M
M B

J J l

D S C

 
 

 

 

    




 
 

where  is the areal differential element. Therefore, 
(19) is deduced. □ 

(ii) We now state the following corollary and propo- 
sition which will be important to find a relation between 
the coefficients   and   involving . 0d

 0ln .r c  

 ,C

Corollary 3.7 

0D r W        (3.14) 

Proof. Substitute  
B

 in the second boundary 
condition of problem (P2) (at the interface  of cell 
B

0 0ln ln .r r      

) by its value given in Equation (3.12), therefore the 

proof follows by identification (between two Fourier 
series). □ 

Proposition 3.8 

         (3.15) 

   1 2 1 2, ,C x x C x x    , one gets also  Proof. Since 

   , ,C C       . But, we have 

   0 0, ,T B C O r C O r        0 0, ,C r C r    . , then 

On the other hand,  ,   varies in    0, 2π 0, 2π . 
So, by applying the double integral on the domain  

   0, 2π 0, 2π    0 0, ,C r C r    , and   for the equality 
by replacing  ,0C r   and 0 ,C r  

           

           

2π 2π

0 0 1 0 2 0 3 0 4
10 0

0 0 1 0 2 0 3 0 4
1

ln cos sin d d

ln cos sin d d .

k k k k

k

k k k k

k

r r c k r c k k r c k r c k k

r r c k r c k k r c k r c k k

 by their values 
given respectively in Equations (3.4) and (3.12), we 
deduce that: 

 

     

2π 2π

0 0

     


 




 



          

         

 





      

d

1 1
0 0ln .r W r   

  
 

 
Then Equation (3.15) follows from Fubini’s theorem. 

□ 
Finally, we aim to find the equation satisfied by . 0

In fact, by inserting (3.13) and (3.14) in Equation 
(3.15), we obtain: 

2π 2πc     J     (3.16) 

4. Conclusions 

From Proposition 3.5, we remark that   and   are 
calculated in terms of  and 0 , which their for- 
mulae given in (3.2) and (3.3) depend of  and the 
coefficients of (3.10). 

,e d R

0d

d
Then, Equation (3.16) becomes an equation of the only 

unknown 0  involving the parameters J  (1.3) and 
:f C


 (see Remark 3), which are the Dirichlet-to- 

Neumann hypothesis of problem (P2) on the external 
boundary, and we can found them from an experimental 
measures. 



0d
O

To summarize, we have found an equation for , 
which is the distance between the center  of cell B

O 
O

j

O

 
and the center 0  of , so it remains to find the po- 
sition of the center . In fact: 

Let ma  and min  be two points at the external 
boundary  whose the norm of the local current  
reaches respectively its maximum and minimum values, 
see Figure 1. Then, from the symmetry of the shape, we 
deduce that the center  of cell 

xM M


B  is localized at the 
line passed by the points max , min  and 0O , exactly 
between  and  where the distance  be-  

M M

0d

O

maxM 0O

tween  and O  is given by Equation (3.16). 0

By conclusion, we can now answer the question posed 
in the introduction about the uniqueness of the inverse 
localisation problem associated to (P2), and we can con- 
clude that the total flux (1.3) is sufficient to resolve the 
localisation inverse problem, in two-dimensional case, if 
the shape is regular. But, it is not enough in other type of 
inverse problem like geometrical inverse problem, see 
[11]. 
 

 

Figure 1. Position of cell B . 
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