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ABSTRACT 

The objective of this paper is to find the stationary distribution of a certain class of Markov chains arising in a biologi- 
cal population involved in a specific type of evolutionary conflict, known as Parker’s model. In a population of such 
players, the result of repeated, infrequent, attempted invasions using strategies from  0,1,2, , 1m  , is a Markov 

chain. The stationary distributions of this class of chains, for  3,4, ,m   are derived in terms of previously 

known integer sequences. The asymptotic distribution (for ) is derived. m 
 
Keywords: Parker’s Model; Markov Chains; Integer Sequences 

1. Introduction 

In classical model in conflict theory [1], Parker’s model 
[2], two individuals compete for a reward V by selecting 
times from some set. Here we suppose that the available 
times are integer values in . If a player 
chooses x and his opponent y then the payoff to the 
player , is given by 

 0,1,2, , 1m 

 ,E x y

 
if

, 2 if

if

V x x y

E x y V x x y

x x y

 
  
 

 

The scenario envisaged is as follows. An individual 
choosing time x displays for that length of time, incurring 
a cost x. If x exceeds his opponents’ choice y then he col-
lects the reward. In the event of a tie the reward is shared. 
In a population in which individuals are restricted to play 
either u or v, where  then the payoff matrix P is 
simply 

u v

2

2

V u u

V v V v

  
    

P  

Thus if 2V v  u  the first row strictly dominates 
the second (that is 11 21  and 12 22 ), and if p p p p

2V v u  



 the second strictly dominates the first. We 
consider a population of individuals playing Parker’s 
model. We suppose that the population evolves as fol-

lows. Suppose at some time there is a population all of 
whom are playing a single strategy u (i.e. the population 
is monomorphic). A new strategy v arises by some ran-
dom process. If u dominates v then the strategy v will be 
eliminated under any reasonable dynamic. On the other 
hand if v dominates u, it will rapidly increase in fre-
quency and displace u. We will suppose that the intro-
duction of new strategies is infrequent compared with the 
time taken for this replacement process. For a more de-
tailed discussion of this model see [3]. 

2. The Class of Markov Chains 

We investigate here the following class of Markov chains, 
[4], motivated by the above scenario. We suppose the 
available strategy set is  and the 
reward 

 0,1,2, , 1mM 
2V  . The use of  rather than V = 2 

ensures that in every pair of strategies u and v, where 
2V 

u v , one is dominant. The case  allows par-
ticularly neat forms for the distributions, whereas other 
values of V require more complex, less elegant analysis 
and will be presented elsewhere. New strategies arise 
from the set M. If the current strategy is i and a new 
strategy j arises this latter will invade iff  

2V 

   ,1, , i1 0 2j i    . If we suppose that the strate-
gies arise with equal probabilities 1 m  then we have a 
Markov chain with transition matrix   ijm aA  given 
by  
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,

1 if

1 if

0 if

0 if

1 if

i j

j i ij

m j

m j

a j

j i

a i j

  
   
  
 

1

1

1

1

i

i

i 



 

Clearly this chain is irreducible. We investigate the 
stationary distribution of this class of Markov processess, 
for  (the cases  and 3,4, ,m  1m  2m   are 
trivial). We derive a rational expression for these station-
ary distributions working throughout primarily in inte-
gers. For this reason we give the expression for the ma-
trix  below.   m m A



mA

 

 
 

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0

1 0 2 1 0 0 0 0

1 1 0 3 0 0 0 0

1 1 1 1 4 1 0 0

1 1 1 1 0 3 1 0

1 1 1 1 1 0 2 1

1 1 1 1 1 1 0 2

m

m

m

m

m

 
  
 
 

 
 
 
 
 
 
 
 
 






        





A

0

 

3. The Stationary Distribution 

Now the dominant eigenvalue is m, and we derive a re-
currence relation for the corresponding left eigenvector 

, the stationary distribution, where we set the 
right-most element equal to 1. It is straightforward to 
demonstrate that the final three elements of the eigen-
vector  are , 

 mu

 mu  2
1m   1m   and 1. 

Observe that 

    1 1

1

1

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

1 1 1 0 2

m m

c

m
m


  



  
 
 

 
  


  


  
  

     

A I c
A

r













 

where, throughout, k  is the  identity matrix, 

k  is a k element column vector and  is a k element 
row vector. 

I k k
rc k

We then have  

         21 ,0 1 ,0 , 1,1mm m m m
   u A u r 

c

. 

Also 

 
  2 2 2

2

2

2 2

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 0

1 1 1 0 2 1

1 1 1 1 0 2

m m m

m

m

m

m


  






   
 

  
 
 

 
  
 
 

  
  
 

 
  

      

A I c

A r

r

 

and so  

    
    2

2 ,0,0

2 ,0,0 , 1,1 .m

m m

m m







   

u A

u r
 

Now consider 

    
    2

1 1 ,0

2 ,0,0 , 1, 1 .m

m m

m 

  

    

v u

u r
 

We have 

 
      

     
      

    
   

2

3 3

1 1 ,0 , 1,1

2 ,0,0 , 1,1,0 ,1, 2,1

1 1,0 2 ,0,0

0,0,0,0, 1 , 1

0,0,0, 1,1,0 0,0,0,1, 2,1

m

m m

m

m m m

m m

m m m m

m m

m





 

      
       
      
   

    


vA

u r

u r r

u u

v


 

so  is the required eigenvector. v
We now have a recurrence relation for the  mu  

which is  

      
    2

1 1 ,0

2 ,0,0 , 1,1 .m

m m m

m 

  

   

u u

u r
 

This is valid for  using  and  4m     2 0,1u
   3 1,1,1u . 
Suppose we write  y m  for the sum of the elements 

of  mu  so that    m y mu  is the stationary distri-
bution of the Markov chain. We have immediately that  

       1 1y m m y m y m 2      

with  2 1y  ,  3 3y  . This is sequence A001040 [5] 
specified as  a n , where our  where 
the sequence is initiated with  and 

   2y n a n 
 0 0a  a 1 1 . 

We can extract individual elements of the stationary 
distributions. Suppose that  is the i’th element  ,u m i
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2,

of . Then we have that   u m

0i 

  as one can see easily by considering the liniting case 
1  , so the above expression tends to zero as  

and so 
i 

i iy y   as . i       , 1 1,u m i m u m i u m i      

Comment Much weaker conditions are necessary than 
those stated above for i iy y   as . i 

for , , with initial values 3m   3,0 1u   and 
,  and  and for , 

we have  and 
 4,0  3u  1 1

 1
3,u

 1,u i i
 4,1 4u  2i
 2,u i i

 ,1u m
i


. The sequence 
for  is A058307, and  is A058279 in 
[5]. 

We can apply the lemma immediately to the elements 
of the stationary distribution, expressed in the integer 
form. The ratios for 0 and 1 elements for  3 1 8m 

 8

 are 
1, , 1.307692, 1.308824, 1.308789, 1308789 illus-
trating the speed with which convergence takes place. 
We have no expression for the asymptotic value but for 
m = 200 the ratio is approximately 1.3087893731. The 
ratios for 1 and 2 elements for  are 1, 0.5, 
0.529412, 0.528090, 0.528131, 0.0.528130 and for m = 
200 approximately 0.5281297672. 

1.3

3 1m 

 ,0u m

i iy y



Table 1 gives some values of .  ,u m i

4. The Asymptotic Eigenvector 

Having derived recurrence relations for the elements of 
the eigenvectors we now consider the limit as . 
We begin with a simple Lemma. 

m 

Lemma  In the absence of a simple way of evaluating the limit-
ing ratios discussed above analytically we adopt a dif-
ferent method to derive the asymptotic stationary distri-
bution, again expressed in integers. Suppose this is given 
by  0 1, ,x x x , and define ,i j i

Suppose we have a recurrence relation of the form 

1i iy 2    where the 1i   is not dependent 
on the i , and y 0  . Suppose we have two sequences, 

 and  satisfying the recurrence relationship 
but initiated by different values i.e. by   and 

 respectively. Then 

z  izi

 0 1,z z 

ix    . We have 
that 1i iix x0 1,z z

i iz z c   as i  where 
 is a constant, which depends on the initial values. 


c

2i   . Thus 0x 2 , and 

1 0 3 0 2 2 0 2 2 02 2 1x x x x x x x x x           . 

Proof In a similar way we can obtain 3 0 15 4x x x   , and 

4 0 121 16x xSince 

 
  
 

1 1

1 2 1 1 1 2

2 1 1 2 1

i i i i i

i i i i i i i i

i i i i i

Z z z z z

z z z z z z

z z z z Z

   

 

 
 

 
     

 
    

 

   

   

  

x  , and so on. It is clear that the signs al-
ternate. For ease we introduce the
write 

 we following notation; 
 ,i i iX c d  when 0 1i    1

1 1
i i

i i x c x
  d x   

so that the sequences  ic  and   for  consist 
of positive integers. Similarly we write 

id 2i 
 ,i ii g h    

when     1i

01 1i i

i

We have 

 
   

 
 
 

1 1

1 1

1 1

1

11

1 1

i i i i i
i i i i

i i i i

i

i

i i i i

z z z z Z
z z z z

z z z z

ZZ

z z z z



 
  

     
 




   
 


  


 

 

Now the denominator increases at a rate greater than  

1ig x h     
x  so the sequences  

 ig  and  ih  consist of positive integers. Thus we 
have  1,00X ,  1 0,1X  , ,  2 2,1X   3 5, 4X  , 

 64X  21,1  and so on, while ,  2 1,0   3 1,1  , 
 4,34   and so on. 

The theorem below gives recurrence relations for i , 
, 

c

id ig  and , in terms of A058279 and A058307 [5]. ih
Theorem 
For  we have 2k  1k k kc e e 2   where  
 1 1n ne n e e 2n   with  ([5] A058279)  0 1 1e e  

 
Table 1. Eigenvectors for m = 3(1)8. 

m i   0 1 2 3 4 5 6 7 Total 

3 1 1 1      3 

4 3 4 2 1     10 

5 13 17 9 3 1    43 

6 68 89 47 16 4 1   225 

7 421 551 291 99 25 5 1  1393 

8 3015 3946 2084 709 179 36 6 1 9976 
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and  where 1k k kd f f  2   11n n 2nf n f f   

2k k

 with 

0  and 1  ([5] A058307). Further 0 1f f  g e   
and . 2k kh f 

Proof 
We have that  and  

, and we have already shown that 
, , , 

   1,1,4,17,89,ne  
,68,

 1 0,1X  2 2,1X 
  0,1,3,13nf 

 0 1,0X    3 5,4X  , 
 which satisfy the formula given in the 

statement of the theorem. 
 4 21,16X 

We prove that if the formula holds for kX  for 
 then it holds for k  for , and thence 

for 
k K  2k K 

kX  for . Thence by induction. 1k K 
Note first that 

 
 

1 2 1 1

1 2 3

1

1

k k k k k

k k k

c k c c kc c c

kc k c c

   

  

     

   
2k

 

Suppose then that the formula for kX  holds for 
. Then since 1 2k k kk K kx x     we have  

2 1k k kx kx      and substituting for the expressions 
given in the statement of the theorem we have 



 
   

 
  

 

1

2 2 3 1 2

2 3 1 2

3 2

3 2

( ,

1 ,

1

,

k k k k k

k k k k

k k k

k k k

k k

c c k c c

d d k d d

c k c kc

d k d kd

c d

    

   

 

  

    

  

   

  






1

1

1 .

 

Now clearly we also have  so we 
have  

1 1,k k kc d   

       
1 1 2

1

11 , 1

k k k

k k

k k k k

x

c c d d

   




 

    

Table 2 gives the first 15 elements for the eigenvector 
for 200m  . Some idea of the speed of convergence can 
be gained by observing that these values agree with the 
elements of the eigenvector for  except in the 
final 2 decimal places. 

15m 

5. Conclusion 

We have derived the stationary distribution of the fre-
quencies of the available strategies in a population in 
which mutations occur infrequently, for Parke’s model 
when the reward is 2+ and for integer valued strategies. 
These relate to certain known integer sequences. This 
work provides a base for further investigations for other 
values of the reward, and more complex invasion proc-
esses. 

6. Discussion 

Parker’s model, which is also known as the Scotch Auc-
tion, is often used in the conflict theory literature as an 
example of a simple model in which there is no ESS 
(evolutionarily stable strategy). The implication of this is 
that there is no population assembly which is resistant to 
invasion. Of course if such a contests actually occurs it is 
important to ask what will happen in the population. This 
is the question which is addressed in [3], and which gen-
erates the class of matrices considered here. The station-
ary distribution then corresponds to the frequency with 
which one would observe a population to be playing a 
specific strategy, except if one happened on a population 
in transition. 



 

The class of cases discusses above arises from Parker’s 
model when we consider a fixed reward value 2V  , 
and when the value of m, the range of possible strategies, 
is allowed to vary. It would be of interest to examine  

 
Table 2. First 15 eigenvector elements for m = 200. 

i  0 1 2 

ix  0.302225342036022 0.395549315928047 0.208901368143935 

i   3 4 5 

ix  0.071070553532083 0.017943127907571 0.003608334354138 

i  6 7 8 

ix  0.000603414235085 0.000086392806747 0.000010815644225 

i   9 10 11 

ix  0.000001203065098 0.000000120405393 0.00000001095282 

i  12 13 14 

ix  0.000000000913183 0.000000000070272 0.000000000005021 
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other possible values of V as m varies. For example, for 

, the “Markov matrices” have 1’s for  
, 0’s for  and 

diagonal elements to make the row sums m. It is hoped to 
treat these models in a subsequent paper. 

4V 
1,j i  2, 2i i   1, 2, 2j i i i    

We observe from the numerical values that the most 
frequent strategy value played is 1, that the distribution is 
uni-modal and that the strategies   are played 
over 90% of the time; asymptotically approximately 
0.90667 which agrees to five decimal places to the value 
for , while the mean value is asymptotically ap-
proximately 1.1207 which agrees to five decimal places 
to the value for . These latter figures confirm the 
rapidity of the convergence. 
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