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ABSTRACT 

We consider a modified version of the classical Cramer-Lundberg risk model. In particular, we assume two classes of 
insurance business dependent through the claim number process , 1,iN i 2 : we consider that the number of claims is 

generated by a bivariate Poisson distribution . We also consider the presence of a particular kind of reinsur- 

ance contract, supposing that the first insurer concludes an Excess of Loss reinsurance limited by , with re- 

tention limits , for the respective classes of insurance business. The aim of this paper is to maximize the ex-

pected utility of the wealth of the first insurer, having the retention limits as decision variables. We assume an exponen- 
tial utility function and, fixed , we discuss optimal 

 1 2,N N 
, 1, 2iL i 

, 1, 2ib i 

, 1, 2iL i  , 1, 2ib i  . 

 
Keywords: Bivariate Poisson Distribution; Excess of Loss; Exponential Utility Function; Reinsurance; Retention 

Limits; Risk Theory 

1. Introduction 

The classical Cramer-Lundberg risk model assumes that 
the number of claims up to time t is independent of the 
claim size KX  and the claim sizes are independent and 
identically distributed. However, the independence as- 
sumption can be restrictive in practical applications. 
Several authors have therefore suggested models where 
the risks dependence is assumed. Within this models, we 
distinguish between risk models with dependence among 
claim size and among inter-occurrence time (see [1-5]) 
and risk models that consider aggregate claims amount 
processes generated by correlated classes of insurance 
business (see [6-13]). In [14] a wide set of dependent risk 
processes involving particular classes is presented with 
references therein. In some cases, the authors consider 
reinsurance contracts (see [9,10]) to improve the risk 
situation to which the company is subjected. In particular, 
[10] suggests an unlimited Excess of Loss reinsurance 
and maximizes the expected utility of the wealth of the 
insurer or the adjustment coefficient. In this paper, we 
consider a risk model involving two dependent classes of 
insurance business and a limited Excess of Loss reinsur- 
ance with the aim to maximize the expected utility of the 
first insurer wealth, having the retention limits as deci- 

sion variables. The paper is organized as follows. Section 
2 presents the risk model and the reinsurance contract. In 
Section 3 the maximization problem is proposed and in 
Section 4 the solution is discussed. 

2. The Model 

We consider a risk model involving two dependent classes 
of insurance business. Let 1, jX  be the claim size ran- 
dom variables for the first class with common distribu- 
tion function 1F  and let 2, jX  be those for the second 
class with common distribution function 2F . We assume 
that 1F  and 2F  have continuous and positive first de- 
rivative, with   0iF x   if  Their ex- 
pected values are denoted by 

0,x i 
i

1, 2.
, 1i , 2,     respec- 

tively. Then, the aggregate claims amount process gener- 
ated from the two classes of business, in a given period 
of time, is 1 2SS S   with  

1

, 1, 2
iN

i ij
j

S X i


  ,            (1) 

where , 1,2iN i ,  is the number of claims, for classes 
1, 2i  , in the given period of time. 

We assume that  1, , 1,2,jX j    and 
 2, , 1, 2,jX j    are independent, and they are inde-
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pendent of 1  and 2 . The claim number processes 
are correlated by means of the following relationships (see 
[10]): 

N N

 1 1 2 2andN K K N K K          (2) 

where 1 2,K K  and K are independent Poisson random 
variables with parameters 1 2,   and  , respectively. 

As usual, we define the surplus process in the given 
period of time: 

1 2 1 2c c S S   U u 

 u x



         (3) 

where , is the insurance premium of risk i and 
u is the value of the surplus at the beginning of the time 
period. 

, 2ic i 1,

We assume the following exponential utility function: 

e , 0x                (4) 

then, in the absence of reinsurance, the expected utility of 
wealth is 

  1 2 1 2u c c S S
E

     
e

              (5) 

We instead assume that the first insurer concludes an 
Excess of Loss (XL) reinsurance contract limited by 

, with retention limits , for the re- 
spective classes of insurance business. In [10], an unlim- 
ited XL reinsurance is considered. 

, 1,2iL i  , 1, 2ib i 

In the following, we will consider the variables 
, identically distributed to ,, 1, 2iX i  , 1, 2i jX i  . In 

practical, XL reinsurance contracts with retention limit 
 are limited by some constant , 

which leads to the following division of claim size 
0,ib  ,0i iL L  

iX . 

The reinsurer pays       , min max ,0 ,i i i iL X b L i iY b

 i i

and the first insurer pays what is left: 
 i i i i ,, iX b L YX 

,

0,

i iY b


 



,i iX b







b L

f

f

f
ib

L X

, if

, if

if

i i

i i

X X

b b

X

 

 

, (see [15]). That is: 

 
i

, i , 1, 2

, i

i

i i

i i i i i

i i i i

L

X b

X b X b L i

b L



   

 

      (6) 

and 

 

, ,       1, 2

i

i

i i i

i i i i i

L

b

X b L

X L b L i


 

   

      (7) 

Observe that if i  the limited XL reinsurance 
becomes unlimited. We fix ,i  with , 
for the two classes of insurance business, respectively, 
and we make use of the retention limits 

L 
, 1, 2L i  0 iL  

, 1, 2ib i  , as 
decision variables. We refer to (6) and (7) and we set 

   , ,i i i i iY b L Y b i 1, 2,           (8) 

identically distributed to the j-th payment of the reinsurer 
  , 1, 2,ij iY b j    and 

   , ,i i i i iX b L X b i 1, 2,           (9) 

identically distributed to the j-th payment of the first 
insurer   , 1, 2,ij iX b j   . 

Then, the aggregate claims amount process for the in- 
surer generated from the two classes of business after 
reinsurance, in a given period of time, is    1 1 2 2S b S b  
with 

   
1

, 1, 2
iN

i i ij i
j

S b X b i


   .        (10) 

As usually, the reinsurance premiums are evaluated as 
follows: 

       1 ,i i i i i ic b E N E Y b i      1,2 , 

where 0, 1, 2i i   , is the corresponding safety loading. 
We therefore have 

 

    1 1 d
i i

i

i i

b L

i i i
b

c b

F x x i  


       , 1, 2.
   (11) 

Then, after reinsurance, the surplus process in the given 
period of time is 

 
         

1 2

1 2 1 1 2 2 1 1 2 2

,U b b

u c c c b c b S b S b      
 (12) 

and the expected utility is  

  

          

1 2

1 1 2 2 1 1 2 21 2

,e

e e e

U b b

c b c b S b S bu c c

E

E



 



   

 
 

   
 .

  (13) 

In the following Section, we will take the problem of 
the maximization of the wealth expected utility, having 
the retention limits , 1,2ib i  , as decision variables. 

3. The Problem 

As already mentioned, our problem is to find the pair 
 1 2,b b , with , that maximizes (13). We 
observe that from the moment generating function of the 
bivariate Poisson distribution (see [10,16]) it follows that 

0, 1, 2ib i 

    

              

          

1 1 2 2

1 21 1 2 2

1 1 2 2

1  1

  1   1

e

e

e

X b X b

X b X b

S b S b

M M

M M

E 

     

  



   

 

 
 






    (14) 

where we assume that the moment generating function 
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    , 1, 2
i iX bM i  , exists. In particular, we assume that 

the variables iX  have a limited distribution or that the 
following relationship is true: 

 lim e 1 0,

1,2

x
i

x
F x

i




   


          (15) 

It therefore results 

   
 

   

   

   

0

0

e

e d e Prob

e d

1 e 1 d e e 1

1, 2

i i

i i

i

i

i

i i

i

i

i i

X b

X b

b
bx

i i i i i

x L
i

b L

b
Lx x

i
b L

M

E

F x b X b L

F x

diF x x F x x

i







 















   

    



             
  







 

 

(16) 
We put: 

        

   

 
0

e 1 d e e 1 d

,

1, 2.

i

i

i i

b
Lx x

i i
b L

i i

F x x F x x

B b

i

 






        





 

  (17) 

and we straightaway observe that 

0, 1,2   (18) 

since it is  and

    e ibB b F b L F    i i i i i i ib i     

0iL     0iF x 
and (18), 

 by assumptio
 as 

n. 
Because ), (16) (13) can be written of (14

  1 2,
e

U b b
E

 

          
        

1 1 2 2 1 1 11 2

2 2 2 1 1 2 2

e e

e

c b c b B bu c c

B b B b B b

  

   

    

 

 

  



    (19) 

that is, putting 

           
     

2 1 1 1 2 2 2

1 1 2 2 1 2, ,

b B b B b

B b B b H b b

   



   

 
 

1 1 2c b c

we have 

  

   

1 2

1 2 1 2

,

,

e

e e

U b b

u c c H b b

E 

 



  

 
 

 
 

.
       (20) 

Therefore, maximizing (13) is equivalent to minimizing 
 1 2, ;H b b  it follows that, since  

     1 2 2min 1, max ,H b b H b b   , our problem con- 

sists of 

  
1 2

1 2
,

1

2

max ,

: 0

0.

b b
H b b

P b

b

 
 
 

            (21) 

We proceed in a similar way to that followed in [10]. 
The Kuhn-Tucker conditions for the P problem are 

0 , 1,2

0

0

i
i

i

i

i i

,

b

i

b

b







   
 



            (22) 

where, remembering (11) and (18): 

H

   
       1

1

1 1 1 1 1

1 1 1 2 21 e B

H

b

F b L F b

B b     




    

        

(23) 

and 

   

  
    2

2 2 2 2 2
2

2 2

2 1

1

e b

H
F b L F b

b

B b

  

   1


    

   

    

     (24) 

Let us start by proving the following theorem. 

 matrix of 
Theorem 1. 

 The Hessian 1 2,H b b  
is null. 

is negative defi- 
ni

t results 
te, whenever the gradient 
Proof. Considering (23) and (24), i

     

  
     

  
     

     

1

1

2

2

1 2

1 2

2 H 
1 1 1 1 12

1 0

1 2 2

2

2 2 2 2 22
2 0

2 1 1

2

1 1 1 1 1
1 2 0

2 2 2 2 2

e

1 0

e

1 0

e

b

H

b

b

H

b

H H

b b

b b

F b L F b
b

B b

H
F b L F b

b

B b

H
F b L F b

b b

F b L F b









  



  













 
 

 



     

     

 
     

     

 
      

    

 

and 
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e e

0,
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here 

e Kuhn- 

w
1 2 2 1andθ a a              (31) 

and it is 

1

     
0

e d e d ,

1, 2.

i

i i

b
x x

i i i i
b L

Q b F x F x

i

 




 



   
1 2 2andθ A A              (32) 

or 

11 2 2andθ A A   4. The Khun-Tucker Conditions 

We look for the points  ,b b  that fulfill th

          (32') 

then it exists the point  1 2
ˆ ˆ,b b1 2

purposTucker conditions. To this e, we put 

   1 2
1 2

2 1

anda a
   

 
 

      (25) 
0 0B B 

1 2
1 2

2

1 11 1
ln and ln

1 1
b b

a

 
 

 
 

 
 

1a
     (26) 

   1 1 2 2

1 2
2 1

and
B b B b

A A
 

   
 

 
      (27) 

and we prove the following theorem where ,i ia b  and 
, re

rem 2.  
 satisfies the system (22) if and 

on

, 1, 2iA i  , are defined by (25), (26) and (27) spec- 

Theo
tively. 

1) The point  0,0
ly if it is 

1 2 2 1and .θ a a              (28) 

2) The point  1,0b , with 1 0b  , satisfies the system  

(2 f it is 2) if and only i  

1 2 2 1and .a A             (29) 

3) The point  20,b , with 2 0b  , satisfies the system 

(2 f it is 2) if and only i  

1 2θ 2 1and .A a             (30) 

4) If it is 

, with 1 1
ˆ0 b b   and 

2 2
ˆ0 b b  , satisfying the syste (22), andm  it is 

 

 

1
1

11ˆ lnb


2 2

1

2
2

1 1

2

ˆ
1

11ˆ ln .
ˆ

1

B b

b
B b

 

 


 

 


 

  

  

            (33) 

Proof. 
1) It results 

 

      
1 2

1 0

1 1 1 1 2 0 0

b b

H
b

F L B   
 



     

 

the first of (28) holds and 

      
1 2

2 0

2 2 2 2 1 0 0

b b

H
b

F L B   
 



     

 

the second of (28) holds. 
2) We recall that 1b  i

follows that 
s defined by (26). From (29) it 

1 e first of (29) holds. 
Furthermore, remembering (25) and (26), 

0b    th
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and, remembering (27) 
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H
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the second of (29) holds. 
3) We recall that 2b  is defined by (26). From (29) it 

follows that 2 0b    the second of (30) holds. 
Furthermore, remembering (25) and (26), 

   
     
   

    

1 2 2

2
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H
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1 2 2
1 0,
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the first of (30) holds. 
4) Because of (31) it results 

1

 

20 and 0b               (34) 

We put

11

b

 
     1

1 2

1 2 2 1

,
b

g b b

B b

1

e            
 



 
     2

2 1 2

2 1 1 2

,

e 1b

g b b

B b 2            
 

and we note that it results 

 
 

1 1 21

2 1 2

2

0
, 0

, 0.

H
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       (35) 

We solve the system (35). We have: 

0
H

b

 


   

  
1

, 0.g b b b

 

1
1 1 2

2 2

2 1 2 2

11
ln

1

b b b
B b



 

  
  



       (36) 

To solve the equation   2 1 2 2, 0g b b b 
 that in [10]. We no

2b  and that, by (34), i

, we make use 
of a similar procedure to
continuous function of t results 

te that g2 is a 

 

   
 
 

1 1

1
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0 if 32 holds11
ln
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1
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1

0 0 andb b



 

 



If (32) holds, remembering (27) and (25), and being 
an increasing function, it results 1B  
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2 2
ˆ ˆ,0b b b2  , it therefore exists satisfying the second 

of (36). Substituting in (36), it results 2b̂  

   

and 

  

1
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2
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1 1 2

11ˆ ˆ ln
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11ˆ ln
ˆ1
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b
B b b


  2 2

ˆB b
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        (37) 

with, by (31) and (32), since is an increasing function: 



1B  
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1b  (38)

therefore,  satisfying (33) fulfills the system
(22). 

Similarly, if (32’) holds, remembering (27) and
n
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