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ABSTRACT

We consider a modified version of the classical Cramer-Lundberg risk model. In particular, we assume two classes of
insurance business dependent through the claim number process N,,i=1,2: we consider that the number of claims is
generated by a bivariate Poisson distribution (N, N, ). We also consider the presence of a particular kind of reinsur-
ance contract, supposing that the first insurer concludes an Excess of Loss reinsurance limited by L ,i=1,2, with re-
tention limits b,,i =1,2, for the respective classes of insurance business. The aim of this paper is to maximize the ex-
pected utility of the wealth of the first insurer, having the retention limits as decision variables. We assume an exponen-

tial utility function and, fixed L,,i =12, we discuss optimal b,,i=12.

Keywords: Bivariate Poisson Distribution; Excess of Loss; Exponential Utility Function; Reinsurance; Retention

Limits; Risk Theory

1. Introduction

The classical Cramer-Lundberg risk model assumes that
the number of claims up to time ¢ is independent of the
claim size X, and the claim sizes are independent and
identically distributed. However, the independence as-
sumption can be restrictive in practical applications.
Several authors have therefore suggested models where
the risks dependence is assumed. Within this models, we
distinguish between risk models with dependence among
claim size and among inter-occurrence time (see [1-5])
and risk models that consider aggregate claims amount
processes generated by correlated classes of insurance
business (see [6-13]). In [14] a wide set of dependent risk
processes involving particular classes is presented with
references therein. In some cases, the authors consider
reinsurance contracts (see [9,10]) to improve the risk
situation to which the company is subjected. In particular,
[10] suggests an unlimited Excess of Loss reinsurance
and maximizes the expected utility of the wealth of the
insurer or the adjustment coefficient. In this paper, we
consider a risk model involving two dependent classes of
insurance business and a limited Excess of Loss reinsur-
ance with the aim to maximize the expected utility of the
first insurer wealth, having the retention limits as deci-
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sion variables. The paper is organized as follows. Section
2 presents the risk model and the reinsurance contract. In
Section 3 the maximization problem is proposed and in
Section 4 the solution is discussed.

2. The Model

We consider a risk model involving two dependent classes
of insurance business. Let X, be the claim size ran-
dom variables for the first class with common distribu-
tion function F, and let X, . be those for the second
class with common distribution function F, . We assume
that £ and F, have continuous and positive first de-
rivative, with F (x)=0 if x<0,i=12. Their ex-
pected values are denoted by g, <+0,i=1,2, respec-
tively. Then, the aggregate claims amount process gener-
ated from the two classes of business, in a given period
of time,is S=S,+S, with

N;
S, =X, =12, (1)
Jj=1
where N,,i=1,2, is the number of claims, for classes
i=1,2, inthe given period of time.
We assume that {X, ,j=1,2,-- and
{Xz,j,j=1, 2} are independent, and they are inde-

TEL



C.GOSIO ET AL. 91

pendent of N, and N,. The claim number processes
are correlated by means of the following relationships (see
[10]):

N, =K, +Kand N, =K, +K 2

where K,,K, and K are independent Poisson random
variables with parameters «,,«, and o, respectively.

As usual, we define the surplus process in the given
period of time:

U=u+c+c,—(S,+5,) (3)

where ¢;,i =12, is the insurance premium of risk i and
u is the value of the surplus at the beginning of the time
period.

We assume the following exponential utility function:

u(x):—e'ﬁx,ﬂ>0 (4)

then, in the absence of reinsurance, the expected utility of
wealth is

£ |:_e{—ﬂ[u+c’1+cz ~(51+5,)]} } (5)

We instead assume that the first insurer concludes an
Excess of Loss (XL) reinsurance contract limited by
L,i=12, with retention limits b,,i=12, for the re-
spective classes of insurance business. In [10], an unlim-
ited XL reinsurance is considered.

In the following, we will consider the variables
X,,i=12, identically distributed to X, ,i=12. In
practical, XL reinsurance contracts with retention limit
b, >0, are limited by some constant L,0< L, <+,
which leads to the following division of claim size X,.

i

The reinsurer pays Y, (b,,L,) = min{max {X, 5,0}, L}

and the first insurer pays what is left:
X,(b,L)=X,-Y,(b,L), (see [15]). That is:

Y, (b1,
0, if X, <b,
. . ©
=4X,-b,if b <X, <b+L ,i=12
L, if X,>b +L,
and
X, (b, L,)
X, if X, <b,
s @
=40, if b, <X, <b +L,

X -L,it X, >b+L, i=12

Observe that if L, =+ the limited XL reinsurance
becomes unlimited. We fix L;,i=1,2, with 0<L, <+o,
for the two classes of insurance business, respectively,
and we make use of the retention limits 5,i=12, as
decision variables. We refer to (6) and (7) and we set
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Y[(b[,L,.)ZZ(b[),iZLZ, ®)

identically distributed to the j-th payment of the reinsurer
Y, (b),j=12, and

X,(b,L)=X,(b),i=12, )

identically distributed to the j-z& payment of the first

insurer X, (,),j=12,-.

ij
Then, the aggregate claims amount process for the in-

surer generated from the two classes of business after

reinsurance, in a given period of time, is S, (b )+S,(5,)

with

S,(6)=3.X,(b)i=12. (10)

-1

-

As usually, the reinsurance premiums are evaluated as
follows:

Ci(bi):(1+Hi)E[Ni]E[Z(bi):|’i:1’2’

where 6, >0,i=1,2, is the corresponding safety loading.
We therefore have

¢ (b)
=(1+0))(a, +a) 7ljfi|:1—F;.(x)]dx,i:1,2. D

Then, after reinsurance, the surplus process in the given
period of time is

U(b,b,)

(12)
=u+c,+c,— (¢ (B)+c (b)) (S, (b)) +S, (B,))
and the expected utility is
(-0 (b5}
E|—e
[ ] s

_ g Hlurarer) ghlalalt) g [_emsl(mmz(w)) J

In the following Section, we will take the problem of
the maximization of the wealth expected utility, having
the retention limits b,,i =1,2, as decision variables.

3. The Problem

As already mentioned, our problem is to find the pair
(b,b,), with b, >0,i=1,2, that maximizes (13). We
observe that from the moment generating function of the
bivariate Poisson distribution (see [10,16]) it follows that

E|:e/3(51(b1)+52(’&)):|

_ e{(a1+a)(M)?1(f;1)(ﬂ)‘l)+(‘12+a)(M)72(”2)(ﬂ) -1 (14)

Xe{“(M)?l(q)(/”) ~1)(M gy (6) ,1)}

where we assume that the moment generating function
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Mg ,\(B),i=12, exists. In particular, we assume that

the variables X, have a limited distribution or that the
following relationship is true:

lim e [1-F,(x)]=0,

X0 (15)
i=12
It therefore results
M)?l (B) (ﬁ)
_ E[eﬂ)?f(by)}

b
= [e”*dF, (x)+e” Prob[h, < X, <b, + 1]
0

£ [ A (x)

bi+L;

bi+L;
i=12
(16)
We put

b ©
Jeﬁx [1—F, (x)]dx+e7’“” J eh~ [1—[7; (x):|dx
0 bi+L;
= Bi (bi)’ (17)

i=12.
and we straightaway observe that
B/(b)=e"[F (b +L)-F(b)]>0i=12 (18)

sinceitis ;>0 and F'(x)>0 by assumption.
Because of (14), (16) and (18), (13) can be written as

£ [e{—ﬂm.bz ) J
_ e’ﬂ("*"l*"z) % {_eﬂ(cl(bl)*CZ(bz)*(‘11“1)31(}’1)) (19)

Xeﬂ((“z +a)By (by )+apBBy(by) By (b2)) }

that is, putting
a(b)+c,(b)+(a,+a)B,(b)+(a, +a)B,(b,)
+af3B, (b,)B, (b,)= H(b,,b,),

we have

E[e{—ﬂﬁ(h,bz )} J

(20)
— efﬂ(u+c1+cz) {_eﬂll(l’i:bz) } )

Therefore, maximizing (13) is equivalent to minimizing
H (by,b,); itfollows that, since
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min{H (b,b,)} = —max {-H (b,,b,)}, our problem con-
sists of

max{~H (by,b )}
P:{b >0 (21)

b, >0.

We proceed in a similar way to that followed in [10].
The Kuhn-Tucker conditions for the P problem are

o _,
ob,
420 ,Vvi=12, (22)
b >0
Ab =0
where, remembering (11) and (18):
ou
ob,
=[F(b+L)-F(b)] (23)

x{—(l+ 0,)(ay+a)+e" [(ay +a)+apB, (b, )]}
and

OH

8_bzz|:Fz(b2+Lz)_F2(b2)]

{10+ ) o
+eht [(052 +a)+afB, (bl)]}

Let us start by proving the following theorem.

Theorem 1.

The Hessian matrix of —H (bl,bz) is negative defi-
nite, whenever the gradient is null.

Proof. Considering (23) and (24), it results

0" (-H)
ablz 3H:

2220
aby

——pe" [ F (b + 1)~ F ()]

x{al +a[1+ BB, (b, )]} <0

- =-pe’ [ F,(b,+L,)-F,(b,)]
b} |en

by

x{az + a[1+ BB, (bl)]} <0

=R+ n)-A(5)]

b, ob,

x[ Fy (b, +L,)~ F, (b,) ] ape” ")

and
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0" (-H)*(-H) (o (-H))
o ob: 0b,0b,

OH _0H -0
by oby

=p*e" " F (b + L)~ F,

CYINRACES AR AT
x{alaz [al(l+ﬂB( ))+az(l+ﬂB( ))]a’

+{[1+ﬂ3 (b,) ][“ﬂB b)]|-[F(b+L —Fl(bl)}[Fz(bz+L2)_Fz(bz)]'eﬂ(h+b2)}a2}
=g’ (b + L)~ F () [ F (b, + L,) - F (b,)]
x{a1a2 [al(l+ﬂB (b ))+0{2 (1+ﬂB (b ))]0:
[eﬂfa[p (b+L)- ]Qz +ef” |:F (b, +L,) :'Ql )+0i(b) 0, (b )J }
>0,
where 0, >a,and 6, > a, (31)
0.(h J'e[?’xdF .[ e’dF, (x), and it is
by 6, > 4, and 6, > 4, (32)
i=12.
or
4. The Khun-Tucker Conditions b6, <4,and 6, < 4, (32)

We look for the points (&,b,) that fulfill the Kuhn-
Tucker conditions. To this purpose, we put

afB,(0) af3B,(0)

=g and —2 " =g, (25)
o, +a o ta
Il _fand Linit% g, (26)
B 1l+a, p l+q
af3B, (b afB, (b,
L(l): ndLM:AZ (27)
a,+a o +a

and we prove the following theorem where a,,E and
4,,i=12, are defined by (25), (26) and (27), respec-
tively.

Theorem 2.

1) The point (0,0) satisfies the system (22) if and
only if it is

6, <a,and 6, <a,. (28)

2) The point (51,0), with 51 >0, satisfies the system
(22) if and only if it is

6, >a,and 6, < 4. (29)

3) The point (0,172), with 172 >0, satisfies the system
(22) if and only if it is
6, <4,and 6, > a,. (30)

4) Ifitis
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then it exists the point (l;l,l;z), with O<1§l<51 and

0< l;z < 52 , satisfying the system (22), and it is

1+6
= I —/\
B apB,(b,)
1+———~
ot+a (33)
~ 1 1+6,
, =—In——=——.
B apBi(b)
1+——~
a,+a
Proof.
1) It results
oH
6b ) -

=F(L){-6,(,+a)+apB,(0)} 20 =
the first of (28) holds and

oH
8b

21y =y =0
=F,(L,){-6,(a, +a)+apB,(0)} 20 <
the second of (28) holds.
2) We recall that b, is defined by (26). From (29) it

follows that &, >0 <> the first of (29) holds.
Furthermore, remembering (25) and (26),
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Z:LL::Z [y +a+(a +a)a2J}

and, remembering (27)

o
ob,

by=by by =0
= F, (L, ){_92 (a, +a)+apB, (51)}
=F,(L,){-6, (o, +a)+(a, +a) 4} 20 =

the second of (29) holds.
3) We recall that b, is defined by (26). From (29) it
follows that b, >0 < the second of (30) holds.
Furthermore, remembering (25) and (26),

o
abz by =0,by=b,

=[F (b + L) By (B,)

X{_(1+ 6,)(a, +a)+e™ [a, +a+aﬁBl(O)]}
~[F(B 1)~ (5)]

x {—(l+ 0,) (e, + )+ i
=0
and, remembering (27)

oH]|
ob,

el ra+(a, +0!)a1]}

+a

=0,b,=F,
:Fl(Ll){_(l+el)(al +0l)+aﬂBz (Ez)}
:Fl(Ll){—(l—i-Hl)(al +a)+ (o +a)A2} 20

the first of (30) holds.
4) Because of (31) it results

b, >0and b, >0 (34)
We put

&1 (bpbz)

=M [(al +a)+apB, (b, )} —(oy +a)(1+6)

and
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&8> (bl'b2)
=g/ [(az +0[)+0(ﬂ’B1 (bl)]—(ot2 +a)(1+6,)
and we note that it results
oH _,
ob, @{gl(bl,bz):o
oH _,
ob,

&> (bl,b2)=0. )

We solve the system (35). We have:
1 1+6,

b1=—|n—=bl bz
B 1+aﬂBz(b2) ( )

o +a

2, (b (b,).b,) =0.

To solve the equation g, (&, (b,),b,) =0, we make use
of a similar procedure to that in [10]. We note that g, is a
continuous function of b, and that, by (34), it results

b,(0)=5,>0and
_ 0if (32)holds
bl(bz):£|n1+—91_ > ( )
B apB,(b,) |<0if (32')holds.
14— 222

o +a

If (32) holds, remembering (27) and (25), and being
B, anincreasing function, it results

gZ(bl(O)’O)

= 2,(5,.0)

= afB, (1;1)—02(052 +a)
=(a,+a)(4,-6,)<0

(36)

and

& (5(2.) )

1+6,(a, +a —
= a, +a4(raﬂBl()O) [(0!2 +0()+0!ﬂ31 (bl(bz)):|

—(a +a)(1+6,)>0;

it therefore exists 152,0<l§2 <b,, satisfying the second
of (36). Substituting b, in (36), it results

~ oy 1 1+,
b1=b1(b2)=;|naﬂ+—321(52)

1+ o +a (37)
1 1+0,
b= apB, (b, (5,))

with, by (31) and (32), since B, is an increasing function:
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0<£In1+—91_<l;l<ilni:l7l (38) 6
B apB,(b,) s, BB (0) [6]
1422 e
o +a o ta

therefore, (l;l,l;z) satisfying (33) fulfills the system
(22).

Similarly, if (32”) holds, remembering (27) and (25),
and being B, an increasing function, it results

g, (bl(o)’o) =(a, +a)(4-6,)>0
and
&> (bl(gz)!gz)

1+6,(a, +a)

a,+a+afB, (0) [(az +ta)+afB, (bl (52 ))J
—(a, +a)(1+6,) <0

it therefore exists bA2,0<bA2 <b,, satisfying the second
of (36). Substituting &, in (36) we obtain (37), (38) and
the point (131,132) fulfilling the system (22).
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