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ABSTRACT

Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the
Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions in differentiable

vector optimization problems.
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1. Introduction

In discussing a gap between multiobjective optimization
and scalar optimization (a gap first pointed out by Wang
and Yang [1]), Aghezzaf and Hachimi [2] state that “in
multiobjective optimization problems, many authors
have derived the first-order and second-order necessary
conditions under the Abadie constraint qualification, but
never under the Guignard constraint qualification”. This
deserves some comments. Indeed, some authors have
proposed a suitable Guignard-Gould-Tolle constraint
qualification (it would be better to speak of “Guignard-
Gould-Tolle regularity condition”, as it involves also the
objective function, besides the constraint functions) in

order to obtain a Karush-Kuhn-Tucker type multiplier
rule for a Pareto optimization problem.

For example, Maeda [3] considers the following Pa-
reto optimization problem

Min f (x),subject to g (x) <0,

where f:R"—>RP, g:R"—>R"™ are differentiable
functions, and introduces the following *generalized
Guignard constraint qualification” for this problem

c(Qx’)c GCI (conv(T (Q'x )))

where x° is a feasible vector,

Q:{xaR”:g(x)SO,f(x)ﬁ f(xo)};

Q' ={XER“:g(x)s0, f (x)< fk(xo),kzl,z,---, pandk;ti};

C(Q,xo):{heIR{” :Vfi(xo)hso,izl,n-, p;ng(xo)hﬁo, jel (xo)};

T(Q',x’) is the Bouligand tangent cone or contin-
gentconeto Q' at x° (see Definition 2) and
I (x°2 ={i:9;(x°)=0{. Indeed, in the above constraint
qualification (better: regularity condition) the inclusion
means in fact equality.

Jimenez and Novo [4], Giorgi, Jimenez and Novo [5],
[6], Giorgi and Zuccotti [7] have given similar, but more
general results. What is true is that the Guignard-
Gould-Tolle theory cannot be transferred “sic et simplic-
iter” from the scalar to the vector case. Indeed, it is well-
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known that if we have a scalar optimization problem
Min f (X),Xe McR",

with f:R" >R, f differentiable, and x° is a local
solution of the said problem, then we have

—Vf(xf’)e(T(M,xO))* )

(A" is the negative polar cone of the cone A). The result
obtained by Guignard [8] seems at first sight more gen-
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eral, as Guignard claims that

—Vf(XO)E(P(M,XO))*
where P(M,x“):cl(conv(T M, X° ) is the so-called
pseudotangent cone to M at x°. However, this greater

generality is only apparent, as it is true that for any cone
C, itholds

C* =(cl(conv(C)))

S0 we obtain

(T(M,xo))* :(P(M,x(’))*.
Relation (1) obviously is equivalent to the inconsis-
tency of the inequality

Vf(x“)y<0

for yeT(M,x°), or, equivalently, for yeP(M,x°).
Now, consider a vector optimization problem (vop)

Min f (x),xe M c R",

where f:R" —RP is differentiable. When, as in the
present paper, the ordering cone is RP, (vop) is also
known as Pareto optimization problem. We recall some
basic notions and definitions.

Definition 1.

A vector x°eM s said to be a weak Pareto optimal
point for (vop) if there does not exist another vector
xeM such that f,(x)<f,(x°) for all k=1--,p.
A vector x° is said to be a Pareto optimal point for
(vop) if there does not exist another vector xe M such
that f, (x)< f,(x°) forall k=1--,p, with f,(x)<
f,(x°) for at least one index. A vector xX°eM is a
local weak Pareto optimal point (respectively, a local
Pareto optimal point) if the above definitions hold with
respectto M N B(x’,5), where B(x°,5) is asuitable
neighborhood of x°.

Definition 2.

Let M cR". The contingent cone at x°ecl(M)
or Bouligand tangent cone at x° is:

T(MxX°)={yeR":3{y"} > v,3{t,}.t, > 0",
such that x° +t,y" e M}
or, equivalently,
T(M,xo)z{yeR” :EI{/ln}cK,Ei{x”}c M, x" — x°,
such that A, (X" -=x°) - y}.

It is well-known that this cone is closed, but not nec-
essarily convex (see, e.g., Aubin and Frankowska [9],
Bazaraa and Shetty [10]).

Copyright © 2013 SciRes.

It can be proved that if x° is a local weak optimal
point for (vop), then we have the relation (see, e.g., Bigi
([11], Corley [12], Giorgi and Zuccotti [13], Staib [14])

Vi (x°)veg—int(R?),vveT(M,x°), )
i.e. the system
Vfi(xo)v<0,i:1,~--,p, 3

has no solution for veT (M , x°) ,i.e. it holds

k'\:/ll,?‘-),(p{ka (XO)V} >0, WeT(M,x°).

One may wonder if the system (3) (for p >1) is also
inconsistent for v e cl(conv(T (M, x°) L;/as it holds for
p =1. The answer is: no, as shown by Wang and Yang
[1] with a numerical example (a misprint in the example
has been corrected by Castellani and Pappalardo [15]).
This is the “gap”, with reference to a result of Guignard
to which the title of the paper of Wang and Yang in its
turn makes reference.

This note is organized as follows.

In Section 2 we give short proofs of the weak Kuhn-
Tucker type necessary optimality conditions, for a Pareto
optimization problem with both inequality and equality
constraints, under the Abadie constraint qualification,
and of the strong Kuhn-Tucker type conditions, for the
same problem, under a Guignard regularity condition.

In Section 3 we make some further comments on the
said “gap” between scalar optimization problems and
vector optimization problems.

The conclusions are briefly expounded in Section 4.

2. First Order Necessary Conditions: Abadie
Constraint Qualification, Guignard
Regularity Condition

The feasible set of (vop) is, from now on, specified by
inequality and equality constraints. More precisely, we
consider the problem

(vop); Min f (x),xe M,
where
M ={XeR”:gi(X)SO,izl,m,m;
h;(x)=0, j =1,-~,r},
f:R" > RP g:R"—>R" are differentiable at least in a
neighborhood of the feasible point X°, and h:R" — R’
is continuously differentiable at least in the same

neighborhood of x°. We denote by 1(x°) the index set
of the active constraints g;,i=1---,m, at xX’eM , i..

I(xo):{i:gi(xo):o}.

Let x° e M ;the cone
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K(xo):{yeR” Vg, (X°)y<0,viel(x);
vh; (x°)y =0,V :1,---,r}

is called the linearizing cone at x° for (vop);.
The cone

K°(x°):{yeR” vy, (X°)y<0,viel(x);
th(xo)y:O,Vj :1,~--,r}

is called the weak linearizing cone at x° or cone of
decreasing directions at x° for (vop).

Lemma 1. (see Giorgi [16])

Let x>eM and letf, g and h verify the previous dif-
ferentiability assumptions. Then we have:

1) T(M.X)cK(x);

2) if the Jacobian matrix Vh(x’) has full rank, it
holds K°(x*)=T(M,x");

3) if, moreover, K°(x°)=@, then it holds

C|(K°(X0))=T(|V|,XO): K(xo).
We are now ready to prove in a short way a Fritz
John-type optimality condition for (vop);.
Lemma 2.
Suppose that the Jacobian matrix Vh(x°) has full
rank. Let x° €M be a local weak Pareto optimal point
for (vop);. Then the system

VE (X°)v <0k =1, p,
Vgi(x°),v<0,iel(x°), (4)
th(xo),v:o, j=1-r,
has no solution veR".

Proof.

Apply Lemma 1 to the optimality condition (3). W

Theorem 1.

If XM is a local weak Pareto optimal point for

(vop);, then there exist vectors @eR”,AeR", and
ueR", notall zero, such that

kiekvfk (x°)+§:ﬂ,,Vgi (x°)+i,ujvhj (xo) =0, (5)

/Lgi(xo):o,izl,~--,m, (6)
6,20k=1---,p;420/i=1---,m. )

Proof.

If the gradientthj(x0 ,j=21---,r, are linearly de-
pendent, just set #=0,4=0 and choose a nonzero
vector xeR" such that
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If the above gradients are linearly independent, the
thesis follows from Lemma 2, applying the Motzkin al-
ternative theorem (see, e. g., Mangasarian [17]) and set-
ting 4 =0 for all iel(x°).

A Karush-Kuhn-Tucker-type optimality conditions for
(vop)1, by means of the Abadie constraint qualification
(acq), has been obtained by Lin [18] and by Singh [19];
however, their proofs work only if x° is a weak Pareto
optimal point for (vop),, and not a local weak Pareto op-
timal point. The flaw is corrected in Marusciac [20]; see
also the errata corrige of Singh [19], who, however, does
not justify his rectification; see also the paper of Wang
[21], more specific on this point. We give here a simple
proof of the result of Wang.

Definition 3.

The constraint set M satisfies the Abadie constraint
qualification (acq) at x° e M if

K(x")=T(M,x°).

Due to relation 1) of Lemma 1, the (acq) can be writ-
ten also as an inclusion

K(x")=T(M,x°).

Singh [19] claims that his version, as an inclusion, of
the (acq) is more general than the one proposed by
Marusciac [20] as an equality.

Lemma 3.

Let x° M be a local weak Pareto optimal point for
(vop)s, and suppose that the (acq) holds at x°. Then the
system

ka(XO)V<0,k =1, p,
v (x°Jv<0iiel(x’), (8)
vh (x°)v=0,j=1-r,

has no solution veR".

Proof.

Suppose, on the contrary, that the above system has a
solution veR". Then, the (acq) implies that veT(M,x");
thanks to relation (3) it will hold Vf, (x°)v=0 for at
least one index k, contradicting the relations of the sys-
tem. |

Applying to system (8) the Motzkin theorem of the al-
ternative, we get the following (weak) Karush-Kuhn-
Tucker-type multiplier rule for (vop);.

Theorem 2.

Let x’ M be a local weak Pareto optimal point for
(vop): and let the (acq) hold at x°. Then there exist
vectors 0eR”, 1eRT, and peR, with =0, such
that (5), (6) and (7) hold.

As the cone K(xo) is polyhedric, the (acq) implies
that T (}M,xo) is a convex cone. If we substitute
T (M , X ) with the closure of its convex hull, we obtain
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the Guignard-Gould-Tolle constraint qualification (Guig-
nard [8] Gould and Tolle [22])

K(x"):cl(conv(T(M,xo))): P(M,x°), (9

but, as already remarked in the Introduction, this more
general constraint qualification does not enable to obtain,
for p>1, the multiplier rule of Theorem 2, unless to
make further assumptions on T(M,x°) or on the
objective function. See the next Section 3.

If we want to obtain a strong Karush-Kuhn-Tucker
type optimality condition for (vop),, i.e. a multiplier rule
(5), (6) and (7), where 8 >0 in (5), we have to impose
some condition, where also the objective function is con-
sidered. We prefer, in this case, to speak of regularity
conditions, instead of constraint qualifications. The con-
dition considered by Maeda [3] and reported in the In-
troduction of the present paper, is therefore a regularity
condition. For other regularity conditions for (vop); and
their relationships, see also Jimenez and Novo [4] and
Giorgi and Zuccotti [7].

We now consider a slightly modified version of the
Guignard regularity condition proposed by the above
authors. See also Bigi [11].

Definition 4.

Let x° € M ; then the set

F(xo):{VGR” :Vk(xo)vso,kzl,m, p}

is the cone of descent directions for f at x°. Given any
seP={1,-,p},theset

M, Z{XEM (X)) - fk(x°)<0,keP,k¢s}U{x°}

is the set of all feasible points, which do not allow x° to
be a weak minimum point for (vop); when the compo-
nent f, isdropped fromf.

Definition 5.

Let xeM Then the (modified) Guignard-Gould-
Tolle regularity condition (ggtrc) holds at x° if

F(xo)ﬂK(xo):écl(conv(T(Ms,xo))).

Lemma 4.

Suppose that x° € M is a local weak Pareto optimal
point for (vop); and that (ggtrc) holds at x°. Then for
each keP={1,-,p} the following system

(10)

has no solution veR".

Copyright © 2013 SciRes.

Proof.

On the contrary suppose that there exists S e P such
that (10) has a solution. Therefore, (ggtrc) implies that
V€C|£COHV T(M,x°))). Since the definition of local
weak Pareto optimal pdint for (vop), implies that x° is
a local minimum point of the scalar function f, over
M,, then we get the inequality Vf(x")v>0, in con-
tradiction with the assumption. |

The previous lemma, which states the impossibility of
p systems, enables us to obtain a strong Karush-Kuhn-
Tucker-type multiplier rule for (vop);.

Theorem 3.

Suppose that x° € M is a local weak Pareto optimal
point for (vop); and that (ggtrc) holds at x°. Then there
exists vectors #eR”, 1 eRT and xeR', with 6, >0,
foreach k eP={1,--, p}, such that (5), (6) and (7) hold.

Proof.

The proof is immediate, by applying the Motzkin
theorem of the alternative to system (10), for each se P
and summing up the resulting multipliers. |

We note that Maeda [3] has proposed a slightly weaker
condition than (ggtrc), generalized to (vop), by Jimenez
and Novo [4], by Giorgi, Jimenez and Novo [5,6], and by
Giorgi and Zuccotti [7], but this weaker regularity condi-
tion “works” for local Pareto optimal points and not for
the weak ones. Finally, we remark that (generalizing
some approaches of Bigi and Pappalardo [23]) Maciel,
Santos and Sottosanto [24] and Giorgi and Zuccotti [7]
have studied the following question: which regularity
condition for (vop), is both necessary and sufficient to
obtain that 6, >0,k e P, for all triplets of multipliers
(6,4, 41) which satisfy relations (5), (6) and (7)? Let us
denote by FJ <x°) the above set of multipliers, i.e. the
set of all Fritz John multipliers for (vop),, and let us in-
troduce the following generalization of the Mangasar-
ian-Fromovitz constraint qualification.

Definition 6.

Let x°eM , then the Mangasarian-Fromovitz regu-
larity condition (mfrc) for (vop), is satisfied at x° if:

1) the vectors Vh; (xo), j=21---,r, are linearly inde-
pendent;

2)forall seP={1-.,p} thesystem

ka(xo),v<0,k ePk #s,
Vgi(xo),v<0,i el (xo),
Vhi (x°),v=0,j =1,

has solution veR".

It can be proved the following result (see Maciel,
Santos and Sottosanto [24], Giorgi and Zuccotti [7]).

Theorem 4.

Let x°eM andlet FJ(x°)=@. Then in (vop); we
have (0,4,u)eFI(x°) with g, >0 forall keP, if
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and only if (mfrc) holds at x°.

In this section we have given a simple and short proof
of the Fritz John type and of the weak Kuhn-Tucker type
necessary optimality conditions for the problem (vop),,
under the Abadie constraint qualification. This completes
and improves what previously proved by Singh [19]. We
give also a short proof of the strong Kuhn-Tucker type
conditions for (vop);, under a Guignard regularity condi-
tion. This improves what previously proved by Maeda

3.

3. Again on the “Gap” between Scalar
Problems and Vector Problems

We have described in the Introduction the *“gap” occur-
ring between scalar and vector optimization problems,
generated by the use of the classical Guignard-Gould-
Tolle constraint qualification. We have also mentioned
this “gap” in the previous section. An obvious sufficient
condition to remove this “gap” is that the cone T (M, x°)
is convex; this condition has been envisaged by Wang
and Yang [1], who, however, did not go further in the
discussion. It is well-known that T(M,x°) is convex
when M is a convex set. As the structure of the contin-
gent cone T(M,x°), as of all the other first-order local
cone approximations, depends only from the structure of
M arouund x° (see, e.g., Elster and Thierfelder [25]),
we can state that T(M,x0 is convex also when M is
locally convex at x°, i.e. there exists a neighborhood of
x°, N(xo), such that M ﬂN(x0 is a convex set.
This is no longer true when M is only star-shaped at x°,
ie. AxX°+(1-2)xeM,V¥xeM, contrary to what stated
in Giorgi and Guerraggio [26] and to what seems stated
in Palata [27] and in Staib [14].

If M is star-shaped at x° e M
T(M,xo)zA(M,xo), where

AM,X°)={veR":3p:R, >R",
36 > 0such that () e M,
v0e(0,5),0(0)=x",¢'(0)=v}

is the cone of the attainable directions or Kuhn-Tucker
cone at x’ecl(M). So, when M is star-shaped at
x>eM , the (acq) and the Kuhn-Tucker constraint
qualification (ktcq)

K(x")=A(M,x)

it holds that

coincide (see Bazaraa and Shetty [10], who, however, do
not recognize that the cone A(M,x°) is closed).

It is also well-known that if T M,xo) equals the
Clarke tangent cone

TC(M,XO):{VERn v, =07, vx" > x°, x" e M,

V" - vsuch that X"+t v" e M ,Vn},

Copyright © 2013 SciRes.

then T(M,x0 is convex, being TC(M,x°) always
closed and convex. In this case Penot [28] qualifies the
set M as tangentially regular at x°. We follow the
treatment of Aubin and Frankowska [9].

Definition 7.

We say that a closed subset M —R" is sleek at
x> € M if the multivalued map x:;T(M,xO),XG M,
is lower semicontinuous at x°.

Theorem 5. (Aubin and Frankowska [9])

Let M be a closed subset of R" and x°eM . If M
is sleek at x°, then the contingent cone T (M,xo) and
the Clarke tangent cone TC(M ,XO) coincide and con-
sequently T(M,xo) is convex.

Another possibility to remove the “gap” is suggested
by Castellani and Pappalardo [15], who impose that the
objective function f is convexlike ad refer a result of Li
and Wang [29]. This can be proved directly in the
following way.

Definition 8.

A function f:R" —R" is convexlike on the non-
empty set X cR" if for any x',x*eX and any
A€[0,1) thereexists x°e X such that

Af (x1)+(1—/1) f (xz)— f (x3)eRf.

Note that in the above definition x3, which usually
depends from x',x*> and A, is not required to be the
convex combination of x' and x*>. Note, moreover,
that if p =1, then any real-valued function is convexlike.
Obviously, all convex functions f:R" — R" are con-
vexlike; this is only a sufficient condition. For other suf-
ficient conditions see Elster and Nehse [30]. See also
Hayashi and Komiya [31] and Jeyakumar [32] for appli-
cations of convexlike functions to optimization problems.

A straightforward consequence of Definition 8 is the
following characterization.

Theorem 6.

The function f:R" — RP isconvexlikeon X cR"
if and only if the set f (X)+RP isconvex.

Theorem 7.

Suppose that f is convexlike on M cR". If x’eM
is a weak Pareto optimal point for (vop), then there exists
a nonnegative nonzero vector @ eRP® such that x° isa
minimum point of the scalar problem

Min{6f (x),xeM}.

Proof.

By assumption f(x°)e f(M)+int(Rf). The con-
vexlikeness assumption on f implies that
f(M )+int(]Rf) is convex; therefore the usual separa-
tion theorem implies the existence of a nonzero vector
0 ecR? andofascalar aeR such that

0f (X’)<a<0o(f(x)+d)
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for all d eint(M) and for all xe M. Therefore, con-
sidering x = x°, we obtain > 0; given any d int(Rf
and considering td as t—0, we get Of (x)>6f(x°)

and therefore the thesis follows. |

We note that in the proof of the above ressult we use
the property that f (M )+int(R?) is a convex set; this
weaker condition is equivalent that f:R" —>R" is
subconvexlike on M (see Li and Wang [29]). The “sca-
larization theorem” just proved allows us to state the fol-
lowing result (recall that for p=1 the Guignard-Gould-
Tolle theory is consistent).

Theorem 8.

Suppose that f :R" — R is convexlike (or subcon-
vexlike) on M. If x®cM is a weak Pareto optimal
point for (vop), then
Max{ka (xo)v} >0,

YV e cI(conv(T (M , xo))).

Similarly, with reference to (vop);, we can assert the
following result.

Theorem 9.

Suppose that x° € M is a weak Pareto optimal point
for (vop); and that f:R" — RP is convexlike (or sub-
convexlike) on M. Suppose that the Guignard-Gould-
Tolle constraint qualification (9) holds at x°. Then,
there exist multipliers 0eRP,0=0,21eR] and peR'
such that (5), (6) and (7) hold.

Another condition which allows to apply to (vop); the
(ggtcq) and which entails the objective function f is given
in the following theorem.

Theorem 10.

Let xX’eM be a weak Pareto optimal point for
(vop),; suppose that x° verifies the (ggtcq) and that there
exists a nonnegative vector 8 eRP,0 =0, such that

oV (x°)e(T(M,x°))*.

Then x° verifies the conditions (5), (6) and (7).
Proof.
The (ggtcq) can be equivalently written in the form

(r(0,0)) =K (<), or (1(w.3)) =(K (<) - o

the other hand, being K(xog) a polyhedral cone, deter-
mined by the vectors Vg (x”), ie1(x°) and Vh;(x°),
j=21---,r, its polar will be given by

(K()) =1 3 499, () + 2 v, (x7),

iel(x°) j=

y) zo,viel(xo)}.

Therefore, being -6V (x°) e (T (M, x°))*, we can write

Copyright © 2013 SciRes.

OV (x)= 3 4, (¢)+ vy (x0),
iel(xo) i=

4 20viel(x),

i.e. the conditions (5), (6) and (7), by choosing 4 =0
for igl xog. |

We remark that if x°<M is a weak Pareto opyimal
point for (vop);, then, for each convex cone S, with
ScT(M, xog, there exists a nonnegative vector deR”,
0#0, such that —vf (x)e ™, The proof is left to the
reader (apply the classical theorem on separation of con-
vex sets). Note that when S=T(M,x°) we obtain the
result already observed at the beginning of this Section
and obtain also the result stated in the previous theorem.

In this section we have investigated the reasons for the
existence of a gap between a scalar programming prob-
lem and a multiobjective programming problem (vop)i,
gap which has its origins in the use of the classical
Guignard-Gould-Tolle constraint qualification. We have
given some proposals to remove the said gap.

4. Conclusions

The aim of the present paper is twofold. On one side we
present simple and brief optimality conditions of the
Fritz John type and of the Kuhn-Tucker type (both weak
and strong) for a Pareto multiobjective programming
problem with both inequality and equality constraints.
On the other side we investigate the existence of a gap,
originated by the use of the classical Guignard constraint
qualification, between a scalar nonlinear programming
problem and the Pareto problem described above.

The author thanks an anonymous referee for his sug-
gestions.
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