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ABSTRACT 

Some remarks are made on the use of the Abadie constraint qualification, the Guignard constraint qualifications and the 
Guignard regularity condition in obtaining weak and strong Kuhn-Tucker type optimality conditions in differentiable 
vector optimization problems. 
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1. Introduction 

In discussing a gap between multiobjective optimization 
and scalar optimization (a gap first pointed out by Wang 
and Yang [1]), Aghezzaf and Hachimi [2] state that “in 
multiobjective optimization problems, many authors 
have derived the first-order and second-order necessary 
conditions under the Abadie constraint qualification, but 
never under the Guignard constraint qualification”. This 
deserves some comments. Indeed, some authors have 
proposed a suitable Guignard-Gould-Tolle constraint 
qualification (it would be better to speak of “Guignard- 
Gould-Tolle regularity condition”, as it involves also the 
objective function, besides the constraint functions) in 

order to obtain a Karush-Kuhn-Tucker type multiplier 
rule for a Pareto optimization problem.  

For example, Maeda [3] considers the following Pa- 
reto optimization problem  

  Min ,subject to 0,f x g x 
m

,

 

where ,  are differentiable 
functions, and introduces the following “generalized 
Guignard constraint qualification” for this problem 

: n pf   : ng  

     0 0

1

, cl conv ,
p

i

i

C Q x T Q x


  

where 0x  is a feasible vector, 
 

      0: 0,nQ x g x f x f x    ;  

      0: 0, , 1,2, , andi n
k kQ x g x f x f x k p k i ;        

        0 0 0, : 0, 1, , ; 0,n
i jC Q x h f x h i p g x h j I x        0 ;



 

 
 0,iT Q x  is the Bouligand tangent cone or contin-

gent cone to  at iQ 0x  
0

(see Definition 2) and  
 Indeed, in the above constraint 

qualification (better: regularity condition) the inclusion 
means in fact equality. 

 0I x j g  : j 0 .x

Jimenez and Novo [4], Giorgi, Jimenez and Novo [5], 
[6], Giorgi and Zuccotti [7] have given similar, but more 
general results. What is true is that the Guignard- 
Gould-Tolle theory cannot be transferred “sic et simplic-
iter” from the scalar to the vector case. Indeed, it is well- 

known that if we have a scalar optimization problem 

 Min , ,nf x x M    

with , f differentiable, and : nf ϒ ϒ 0x  is a local 
solution of the said problem, then we have 

    0 ,f x T M x


  0

obtained by Guignard [8] seems at first sight more gen-

            (1) 

(A* is the negative polar cone of the cone A). The result 
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eral, as Guignard claims that 

 0   ,f x P M x


   0

where      0 0, cl conv ,P M x T M x
tangent cone to 

 is the so-called 
pseudo M  at 0x . However, this greater 
generality is only apparent, as it is true that for any cone 
C , it holds 

   cl conv ,C C
   

so we obtain 

     0 0, ,T M x P M x
 
  .

Relation (1) obviously is equivalent to the inconsis-
te



for or, equivalently, for 

ncy of the inequality 

  0 0f x y  

 0, ,y T M x   0, .y P M x  
oblem (vop) N vector optimization prow, consider a 

 Min , ,nf x x M    

where is differentiable. When, as in the : n pf ϒ ϒ  
paper, the opresent rdering cone is ,p

  (vop) is also 
known as Pareto optimization problem e recall some 
basic notions and definitions. 

Definition 1. 

. W

A vector 0x M  
op) if t

 is said to be a weak Pareto optimal 
point for (v here does not exist another vector 
x M  such that    0

k kf x f x  for all 1, , .k p   
or 0A vect x  is sai to optima  

(vop) if the  does not exist another vector 
d

e
 to be a Pare l point for

r x M  such 
that    0

k kf x f x  for all 1, , ,k p   with  kf x   
k 0f x one inde r 0 for at least x. A vecto x M  is a

ely, a 
  

eak Pareto optimal point (respectiv local 
Pareto optimal point) if the above definitions hold with 
respect to  0 , ,M B x

local w

  where  0 ,B x   is a suitable 
neighborhood of 0.x  

Definition 2. 
Let .nM    The contingent cone at  0 clx M  

or Boul ent cone at 0igand tang x  is: 

  0 n n  

0

, : , ,

such that

n n

n
n

T M x y y y t t

x t y M

0 ,     

 


 

or, equivalently, 

n

It is well-known that this cone is closed, but not nec-
essarily convex (see, e.g., Aubin and Frankowska [9], 
Bazaraa and Shetty [10]). 

 0    
  0

, : , ,

such that .

n n
n

n
n

T M x y x M x x

x x y





      

 

 
 

0 ,

It can be proved that if 0x  is a local weak optimal 
point for (vop), then we have the relation (see, e.g., Bigi 
([11], Corley [12], Giorgi and Zuccotti [13], Staib [14]) 

     0 0int , , ,pf x v v T M x          (2) 

i.e. the system 

 0 0, 1, , ,if x v i p          

for 

      (3) 

has no solution  0,v T M x , i.e. it holds 

    0 0Max 0, , .k
k p1, ,

f x v v T M x


   
Λ

 

One may wonder if the system (3) (for ) is also 
inconsistent for 

1p 
   0cl conv ,v T M x , as it holds for 

1p  . The ans d Yang 
[1  (a misprint in the e

 Castellani and Pa
This 

optimality conditions, for a Pareto 
op uality and equality 
co

 Conditions: Abadie 

Regularity Condition 

ine ly, we 
co

wer is: no, as shown by Wang an
] with a numerical example xample 

has been corrected by ppalardo [15]). 
is the “gap”, with reference to a result of Guignard 

to which the title of the paper of Wang and Yang in its 
turn makes reference. 

This note is organized as follows. 
In Section 2 we give short proofs of the weak Kuhn- 

Tucker type necessary 
timization problem with both ineq
nstraints, under the Abadie constraint qualification, 

and of the strong Kuhn-Tucker type conditions, for the 
same problem, under a Guignard regularity condition. 

In Section 3 we make some further comments on the 
said “gap” between scalar optimization problems and 
vector optimization problems. 

The conclusions are briefly expounded in Section 4. 

2. First Order Necessary
Constraint Qualification, Guignard  

The feasible set of (vop) is, from now on, specified by 
quality and equality constraints. More precise

nsider the problem 

(vop)1         Min , ,f x x M  

where  

 
  

: 0, 1, ,  

0, 1, , ,

n
i

j

M x  ;g x i m

h x j r

 

 






 

: , :n p nf g      
neighborhood of the feasib
is continuously differen
neighborhood of x0. We de

m are differentiable at least in a 
le point x0, and 

tiable at least i  
: n rh    

n the same
note by  0I x  the index set 

of the active constraints , 1, , ,ig i m   at 0x M , i.e. 

    0 0: 0 .iI x i g x 

Let 0

 

x M ; the cone 
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     


0 0: 0, ;

0, 1, ,

n
i

0

 0
j

K x y g x y I x

j r

     

   


 

i

h x y

is called the linearizing cone at 0x  for (vop)1. 
The cone 

0     
  

0 0

0

: 0, ;

0, 1, ,

n

j

iK x y g x y i I x

h x y j r

     

    

°
 

is called the weak linearizing cone at 0x  or co  of 
decreasing directions at 

ne
0x  for (vop)1. 

Lemma 1. (see Gior ) gi [16]
Let 0x M  and let f, g and h verify th previous dif-

ferentiability assumptions. Then we have:
0 0

e 
 

1)    , ;T M x K x  
2) if cobian matrix  0h x  has full rank, it 

holds    0 0, ;
 the Ja
K x T M x°  

3) if, moreover,  0K x° ,   then it holds 

     0 0cl , .0K x T x K x °  M

We are now rea  in a short wady to prove y a Fritz 
John-type optimality condition for (vop)1. 

Lemma 2. 
Suppose that the Jacobian matrix  0h x  has full 

rank. Let 0x M  be a local weak Pareto optimal point 
fo  the system r (vop)1. Then

 
 

0

0 0

, 0, 1, , ,

,i  
 0

0, ,

, 0, 1, ,

k

j ,

f x v k p

g x v

  
 



i I x

h x v j r





   

         (4) 

has no solution 
Proof. 
Apply Lemma 1 to the optimality condition (3).   

.nv  

■  
Theorem 1. 
If 0x M  is a local  weak Pareto optimal point for 

(vop)1, then there exist vectors , ,p m     and 
zero, such that ,r  not all 

   0 0 0
m r

k k i if x g x        (5)  
1 1 1

0,
p

j j
k i j

h x
  

 

 0 0, 1, , ,i ig x i     m          (6) 

m0, 1, , ; 0, 1, , .k ik p i            (

Proof. 
If the gradients , are linearly

pendent, just set 

7) 

 0 , 1, ,jh x j r    
0, 0

 de-
    and choo

 such that 
r

se 
ve

dients are linearly
 Lemma 2, 

e theor Mangasarian [17]) and set-
ting 

a nonzero 
ctor  r

 0

1

0.j j
j

h x


   

If the above gra  independent, the 
thesis follows from applying the Motzkin al-
ternativ em (see, e. g., 

 for all  0 . i I x
ucker-ty

0i                    
-Kuhn-T pe optim ity conditions f

(vop)1, by means of the Abadie constraint qualification 
(a

■  
or A Karush al

cq), has been obtained by Lin [18] and by Singh [19]; 
however, their proofs work only if 0x  is a weak Pareto 
optimal point for (vop)1, and not a local weak Pareto op-
timal point. The flaw is corr ed in Marusciac [20]; s  ect ee
also the errata corrige of Singh [19], who, however, does 
not justify his rectification; see also the paper of Wang 
[21], more specific on this point. We give here a simple 
proof of the result of Wang. 

Definition 3. 
The constraint set M satisfies the Abadie constraint 

qualification (acq) at 0x M  if 

   0 0, .K x T M x  

Due to relation 1) of Lemma 1, the (acq) can be writ-
te lusion n also as an inc

   0 0, .K x M x  T

Singh [19] claims that his version, as an inclusion, of 
the (acq) is more general than the one proposed by 
M

Let 

arusciac [20] as an equality. 
Lemma 3. 

0x M  
, and supp

be a local weak Pareto optimal point for 
(vop)1 ose that the (acq) holds at 

 
0x . Then the 

system 

 0 0, 1, , ,k

   0 00, ,

 0 0, 1, , ,

i

j

f x v k p  



Λ

g x v i I x    

h x v j r

   Λ

has no so

        (8) 

lution 
Proof. 
Suppose, on the contrary, that the above

solution 

.nv  

 system has a 
nv t  0,v T M x ; . Then, the (acq) implies tha

thanks t on (3) it will hold 
least one in k, contradicting the 

         
o system (8) the Motzkin theorem of the al-

te

o relati
dex 

  0v   for at 
ns of the sys-
        ■

0
kf x

relatio
            tem.            

Applying t
rnative, we get the following (weak) Karush-Kuhn- 

Tucker-type multiplier rule for (vop)1. 
Theorem 2. 
Let 0x M  be a local weak Pareto optimal point for 

( vop)1 and let the (acq) hold at 0x . Then there ex t is
vectors , ,p m      and   , with 0  , such 
that (5), (6) and (7) hold. 

As the cone  0K x  is polyhedric, the (acq) implies 
that  0,T M x  is a convex cone. If we substitute 
 0x  with,M the closure of its convex hull, we obtain T  
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th t q
Gould and Tolle

e Guignard-Gould-Tolle constrain ualification (Guig- 
nard [8]  [22]) 

      0 0 0, , ,cl convK x T M x P M x     (9) 

but, ready remarked in the Introduction, this more 
general constraint qualification does not enable to obtain, 
for 1p  , the multiplier rule of Theorem 2, unless to 
make further assumptions o

 as al

n  or on the 
ob unction. See the ne

If we want to obtain a strong Karush-Kuhn-Tucker 

 0,T M x
xt Section 3. jective f

type optimality condition for (vop)1, i.e. a multiplier rule 
(5), (6) and (7), where 0   in (5), we have to impose 
som dition, where also the objective function is con-
sidered. We prefer, in this case, of regularity 
conditions, instead of constraint qualificati

e con
to speak 

ons. The con-
dition considered by Maeda [3] and reported in the In-
troduction of the present paper, is therefore a regularity 
condition. For other regularity conditions for (vop)1 and 
their relationships, see also Jimenez and Novo [4] and 
Giorgi and Zuccotti [7]. 

We now consider a slightly modified version of the 
Guignard regularity condition proposed by the above 
authors. See also Bigi [11]. 

Definition 4. 
Let 0x M ; then the set 

0 n    0: 0, 1, ,kF x v x v k p     Λ  

is the cone of descent directions for f at 0x . Given any 
 1, ,s P p  , the set Λ

      0 0, , 0:s k kM x M k P k s x     f x f x  

is the set of all feasible points, which do not allow 0x  to 
en

 
be a weak minimum point for (vop)1 wh  the compo-
nent sf  is drop

on 5. 
Let 

ped from f. 
Definiti

0x M  Then the (modified) Guignard-Goul - 
Tolle regularity condition (ggtrc) holds at 

d
0x  if 

ose that

       0 0 0

1

cl conv , .
p

s
s

F x K x T M x


   

Lemma 4. 
Supp  0x M  is a local weak Pareto optimal 

point for (vop)1 and that (ggtrc) holds at 0 .x  Then for 
each the following system  , pΛ  1,k P 

 
 

 

0

0

0

, 0,

, 0, ,

s

k

i

j

f x v

   0 0

,

, 0, ,

, 0, 1, , ,

f x v k P k s

h x v j r

 



   Λ

g x v i I x

   

  

         (10) 


has no solution 

Proof. 
On the contrary suppose that there exists 

.nv  

s P  such 
that (10) has a solution. Therefore, (ggtrc) implies that 

   0cl conv , .v T M x  
weak Pareto optimal point f

Since the def
or (vop)1 implies that 

inition of local 
0x  is 

 point of the scalar function a local minimum sf  over 

sM , then we get the inequality 
e assump

 0 0sf x v 
             

, in co
    

n- 
tion.  

vious lemma, which states the impossibility of 
p rush-

Theorem 3. 

tradiction with th ■  
The pre
systems, enables us to obtain a strong Ka Kuhn- 

Tucker-type multiplier rule for (vop)1. 

Suppose that 0x M  is a local weak Pareto op mal 
point for (vop)1 and that (ggtrc) holds at 0 .

ti
x  Th  there 

ts vectors ,
en

exis p m      and h 0k   ,r  wit   , 
for each  1, , ,k P p  Λ  such that (5), (6) and (7) hold. 

Proof. 
The proof is immediate, by applying the Motzkin 

theorem of the alternative to system (10 s P  
  ■  

), for each 
an  the resulting multipliers.        

p)1

y Giorgi, Jim d Novo nd by
d Zuccotti [7], b

tio  for local Pareto optimal points and not for 
th

7
ha

d summing up
We note that Maeda [3] has proposed a slightly weaker 

condition than (ggtrc), generalized to (vo  by Jimenez 
and Novo [4], b enez an  [5,6], a  
Giorgi an ut this weaker regularity condi-

n “works”
e weak ones. Finally, we remark that (generalizing 

some approaches of Bigi and Pappalardo [23]) Maciel, 
Santos and Sottosanto [24] and Giorgi and Zuccotti [ ] 

ve studied the following question: which regularity 
condition for (vop)1 is both necessary and sufficient to 
obtain that 0,k k P   , for all triplets of multipliers 
 , ,    which satisfy relations (5), (6) and (7)? Let us 
denote by  0FJ x  the above set of multipliers, i.e. the 
set of all Fritz John multipliers for (vop)1, and let us in-
troduce the following generalization of the Mangasar-
ian-Fromovitz constraint qualification. 

Definition 6. 
Let 0x M , then the Mangasarian-Fromovitz regu-

larity conditi r (vop)1 is satisfied at 0on (mfrc) fo x  if: 
vectors 1) the  0 , 1, , ,jh x j r    are linearly inde-

pendent; 
2) for all  1, ,s P p  Λ  the system 

 0 , 0, , ,k

   0 0

 0

, 0, ,

, 0, 1, , ,

i

j

f x v k P k s

g x v i I x

h x v j r

   

  

   Λ

 

has solution 
the fo  (see Maciel, 

Santos and Sottosanto [24], Giorgi and Zuccotti [7]). 
Theorem 4. 
Let 

.nv  
 proved It can be llowing result

0x M  and let . Then in (vop)1 we 
have 

 0FJ x  
   0, , FJ x     with 0k   for all k P , if 
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and only if (mfrc) holds at 0 .x  
given

f th
ons

t qua
usly 

In this section we have  a simple and short proof 
of the Fritz John type and o e weak Kuhn-Tucker type 
necessary optimality conditi  for the problem (vop)1, 
under the Abadie constrain lification. This completes 

 what previo proved by Singh [19]. We 

eda 
[3

ween   

and improves
give also a short proof of the strong Kuhn-Tucker type 
conditions for (vop)1, under a Guignard regularity condi-
tio oves what previously proved by Man. This impr

]. 

3. Again on the “Gap” bet  Scalar
Problems and Vecto Pr roblems 

We have described in the Introduction the “gap” occur-
ring between scalar and vector optimization problems, 
generated by the use of the classical Guignard-Gould- 
Tolle constraint qualification. We have also mentioned 
this “gap” in the previous section. An obvious sufficient 
condition to remove this “gap” is that the cone  0,T M x  
is convex; this condition has been envisaged by Wang 
and Yang [1], who, how did not go furt
discussion. It is well-kn at 

ge

ever, 
own th

her in the 
 is convex 

ontin-
order local 

 0,T M x

st-
when M is a convex set. As the structure of the c

nt cone  0,T M x , as of all the other fir
cone approximations, depends only from the structure of 
M arouund 0x  (see, e.g., Elster and Thierfelder [25]), 
we can state that  0,T M x  is convex also when M is 
locally convex at 0x , i.e. there exists a neighborhood of 

0x ,  0N x , such that  0M N x  is a convex set. 
This is no longer true when M is only star-shaped 0 at x , 
i.e.  0 1 , ,x x M x M       contrary to what stated 
in Giorgi and Guerraggio [26] and to what seems stated 
in Palata [27] and in Staib [14]. 

If M is star-shaped at 0x M  it holds that  
  0 0, , ,T M x A  where 

  
 

      

0

0

, : : , 

h that ,

0, , , 0

n nA M x v

M

M x

0 suc

x v



  

    

   

 

  

  
 

is the cone of the attainable directions or Kuhn-Tuck r 
cone a





e
t  0 cl .x M  So, nwhe  M  is star-shaped at 

0x M , the (acq) and the Kuhn-Tucker constraint 
qualification (ktcq) 

   0 0,K x x  A

 

M

coincide (see Bazaraa and Shetty [10], who, however, do 
not recognize that the cone  0,A M x

if T M
 is closed). 

It is also well-known  equals the 
Clarke tangent cone 

0 , 

then 

 that 

0
n

n

t 

 0, x

  , : 0 , , n n nTC M x v x x x M

v x

    

 



such that , ,n n
nv t v M n  

 

 0,M x  is convex, being  0,TC M x  always 
closed and convex. 

T

M as 
In this case Pen fies the 

set tangentially regular at 
ot [28] quali

0.x  We fo
[9  

llow the 
treatm n and Frankowska 

subset 

ent of Aubi ].
Definition 7. 
We say that a closed nM    is sleek at 

0x M  if the multivalued map 0, , ,x T M x x M  
is lower semicontinuo 0us at x . 

FranTheorem 5. (Aubin and 
Let M be a closed subset of  and 

kowska [9]) 
n 0x M M. If  

is sleek at 0x , then the con  cone
the Clarke tangent cone 

tly 

tingent
0,M x

 ,T M x
coincide an

 0

d c
 and 

on-  TC  
sequen  0, x  is convex. 

Another possibility to remove the “gap” is suggested 
by Castellani and Pappalardo [15],  impose that the 
objective function f is convexlike ad refe

T M

who
r a result of Li 

an s can be proved directly in the 
fo

Defin
 is convexlike on the non-

em

d Wang [29]. Thi
llowing way. 

ition 8. 
A function : n pf  
pty set nX    if for any 1 2,x x X  and any 
 0,1  there exists 3 x X  such that 

    1 2 31 .   pf x x  f x f     

Note that in the above definition 3,x  which usually 
depends from 1 2,x x  and ,  is not required to be the 
convex combination of 1x  and 2.x  Note, moreover, 
that if 1p  , then any real-valued function is convexlike. 
Obviously, all convex functions : n pf   are con-
ve

 
t cond  For oxlike; this is o

n
nly a sufficien ther suf-

fic s see Elste
Komiya umar [32]

ns o nction tion 
A straigh seque ition 8 is the 

following characterization. 
Theorem 6. 

l

ition.
ient conditio r and Nehse [30]. See also 

Hayashi and  [31] and Jeyak  for appli-
catio f convexlike fu s to optimiza problems. 

tforward con nce of Defin

The function : n pf    is convex ike on nX    
if and only if the set   pf X   is convex. 

Theorem 7. 
Supp hat f is convexlike on .nM    If 0



ose t x M  
is a weak Pareto optimal point for ere exists 
a nonnegative nonzero vector 

(vop), then th
p   such that 0x  is a 

minimum point of the scalar problem 

  Min , .f x x M   

Proof. 
n By assumptio  0    int .pf x f M   

ption on f im
 The con-

ve mxlikeness assu plies that  
   int pf M    is co refore the usual

tio plies the e
nvex; the

xistence of a nonzero 
 separa-

vector n theorem im
p   and of a scalar    such that 

    0f x f x d      
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for all  intd M  and for al .x Ml  Therefor  con-
sidering 0

e,
x x , we obtain 0  ; given any  int pd  

 
  

and co  as nsidering td 0,t   we get  0f x f x    

and therefore the thesis follows.                  
proof of the above ressult we use 

th

■  
We note that in the 
e property that    int pf M 

weaker condition is equivalent that f
 M (see Li and Wang [29]). The “sca-

larization theorem” just proved allows us to state the fol-
 result (recall that 1  the Guign

   

 for p

is a convex set; this 
 is 

subconvexlike on

lowing ld- 
Tolle theory is consistent). 

Theorem 8. 
ose that  conve

on M

: n p 

ard-Gou

Supp : n p   is xlike (or subcon-
vexlike) . If 0

f
x M a weak Par   is eto optimal

point for (vop), then 

  0Max 0,k
k P

f x v


 

  0 .v T x 
 

Similarly, with reference to (vop)1, we can assert the 
following result. 

Theorem 9. 
Suppose that 0

cl conv ,M

x M  is a weak Pareto optimal point 
for (vop)  and that : nf 1

nvexlike) on 

p is convexlike (or sub-
co

   
ose th
ation

M. Supp
alific

at the Guignard-Gould- 
Tolle constraint qu  (9) holds at 0x . Then, 
there exist multiplier , 0,s p m     and r    
such that (5), (6) and (7) hold. 

Another condition which allows to apply to (vop)1 the 
(ggtcq) and which entails the objective function f is given 
in the following theorem. 

Theorem 10. 
Let 0x M  be a weak Pareto optimal point for 

(vop)1; suppose that x0 verifies the (ggtcq) and that there 
exists a nonnegative vector , 0p   , such that 

  0f x T M 0, .x


   

Then 0x  verifies the conditions (5), (6) and (7). 
Proof. 
The (ggtcq) can be equival  


ently written in the form  

   0 0, ,M x K x  or   T     0 0, .T M x K x
 
  On 

the other hand, being  0K x  a polyhedral cone, deter- 
mi tors ned by the vec  0

ig x ,  0i I x  and  0
jh x , 

1, olar will be given by  

    
0

0 0 ,
r

i j

, , its pj r

 
 

0

1
i j

ji I x

 00, .i

K x g h x
     x 










 

i I x    


Therefore, being     0 0,f x T M x


   , we can write 

   


 

 

0 0

0

,

0, ,

r

i j j
0

 0 1ji I x

i

if x g x h

i I x

      

  

  x

i.e. the conditions (5), (6) and (7), by choosing 



  


0i   
for  0 .i I x

We remark tha
                             

t if 
  ■  

0x M  
n, for e

is a weak Pareto o
point for (vop)1, the ach convex cone S

pyimal 
, with 

 0,S T M x , there nonnegative vector  exists a p  , 
0  , such that  0f x S   

pply the classical theorem
when 

, The proof is left
 on separation 


and obtain also the result stated in the previous theorem. 

In this section we have investigated the reasons for the 
existence of a gap between a scalar programming prob-
lem and a multiobjective programming problem (vop)1, 

ssica
- ou ve

o o

n si

The a esent paper is 

hn-Tucker t
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